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ABSTRACT 
In this paper, we propose a segmentation system based on 
the normalized cut framework proposed by Shi and Malik 
(1997). The goal is to partition the image from a big picture 
point of view. Perceptually significant groups are detected 
first while small variations and details are treated later. 
Different image features - intensity, color, texture, contour 
continuity, motion and stereo disparity are treated in one 
uniform framework. 

1. INTRODUCTION 
There has been a large amount of work on image and video 
segmentation. We will review some representative exam- 
ples here. The most widely used segmentation algorithm 
is edge detection [3]. An edge detector marks all the pix- 
els where there are big discontinuities in intensity, color 
or texture. The cue of contour continuity is exploited to 
link the edgels together to form long contours [8]. Tex- 
ture information is encoded as the responses to a set of 
linear filters [5]. Another formulation for segmentation is 
the variational formulation. Pixel similarities are defined 
locally, but the final segmentation is obtained by optimiz- 
ing a global functional [7]. For motion segmentation, one 
popular algorithm is the motion layer approach - the goal 
is to simultaneously estimate multiple global motion models 
and their spatial supports. The Expectation-Maximization 
(EM) algorithm allows one to achieve this goal by a gradient 
descent search [4]. 

Despite all the work above, there is no satisfactory so- 
lution to image segmentation for natural scenes. The key 
issues pertain to natural texture, weak contrast edges and 
combining different cues together. In this paper, we pro- 
pose a segmentation system which addresses these prob- 
lems. Our system is based on the normalized cut framework 
proposed by Shi and Malik [lo]. The goal is to partition the 
image from a “big picture” point of view. Perceptually sig- 
nificant groups are detected first while small variations and 
details are treated later. Different image features - inten- 
sity, color, texture, contour continuity, motion and stereo 
disparity are treated in one uniform framework. 

2. SEGMENTATION USING NORMALIZED 
CUTS 

In this section, we review the normalized cut framework for 
grouping proposed by Shi and Malik in [lo]. Shi and Malik 
formulate visual grouping as a graph partitioning problem. 
The nodes of the graph are the entities that we want to 
partition, for example, in image segmentation, they will be 
the pixels; in video segmentation, they will be a space-time 
triplet. The edges between two nodes correspond to the 
strength with which these two nodes belong to one group, 

0-8186-8821-1/98 $10.00 0 1998 IEEE 
943 

again in image segmentation, the edges of the graph will 
correspond to how much two pixels agree in intensity, color, 
etc; while in motion segmentation, the edges describe the 
similarity of the motion. Intuitively, the criterion for par- 
titioning the graph will be to minimize the sum of weights 
of connections across the groups and maximize the sum of 
weights of connections within the groups. 

Let G = { V ,  E }  be a weighted undirected graph, where 
V are the nodes and E are the edges. Let A,B be a par- 
tition of the graph: A U B = V , A  n B = 0. In graph 
theoretic language, the similarity between these two groups 
is called the cut  

c u t ( A , B )  = w(u,v) 
uEA,vEB 

where w(u, IJ) is the weight on the edge between nodes u and 
v.  Shi and Malik proposed to use a normalized similarity 
criterion to evaluate a partition. They call it the normalized 
C1I.t: 

c u t ( A ,  B )  c u t ( B ,  A) 
asso (A ,  V )  i- asso(B, V )  

N c u t ( A , B )  = 

where asso (A ,  V )  = x U c ~ , t E ~  w(u, t )  is the total con- 
nection from nodes in A to all the nodes in the graph. For 
more discussion on this criterion, please refer to [lo]. 

One key advantage of using the normalized cut is that 
a good approximation to the optimal partition can be com- 
puted very efficiently. Let W be the association matrix, 
i.e. Wij is the weight between nodes i and j in the graph. 
Let D be the diagonal matrix such that D;i = cj Wij, i.e. 
Dii is the sum of the weights of all the connections to node 
i. Shi and Malik showed that the optimal partition can be 
found by computing: 

y = argminNcut 

- Y T ( D  - W ) Y  - argmin 
Y Y T D Y  

where y = {a ,b }N is a binary indicator vector specifying 
the group identity for each pixel, i.e. yi = a if pixel i be- 
longs to group A and yj = b if pixel j belongs to B. N is 
the number of pixels. Notice that the above expression is 
the Rayleigh quotient. If we relax y to take on real values 
(instead of two discrete values), we can optimize Equation 1 
by solving a generalized eigenvalue system. Efficient algo- 
rithms with polynomial running time are well-known for 
solving such problems. Therefore, we can compute an ap- 
proximation to the optimal partition very efficiently. For 
details of the derivation of Equation 1, please refer to [lo]. 

‘Finding the true optimal partition is an NP-complete 
problem. 
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3. THE MASS-SPRING ANALOGY 
As we have just seen, the Normalized Cut algorithm re- 
quires the solution of a generalized eigensystem involving 
the weighted adjacency matrix. In this section, we develop 
the intuition behind this process by considering a physical 
interpretation of the eigensystem as a mass-spring system. 

One can readily verify that the symmetric positive semi- 
definite matrix (D - W), known in graph theory as the 
Laplacian of the graph G, corresponds to a staness  matrix 
while the diagonal positive semidefinite matrix D represents 
a mass matrix. These matrices are typically denoted by K 
and M, respectively, and appear in the equations of motion 
as 

Mx(t) = -Kx(t) 

If we assume a solution of the form x ( t )  = v k  COS(wkt + q5), 
we obtain the following generalized eigenvalue problem for 
the time-independent part, 

Kvk = w;Mvk 

in analogy to Equation (1). 
The intuition is that each pixel represents a mass and 

each connection weight represents a Hooke spring constant. 
If the system is shaken, tightly connected groups of pixels 
will tend to shake together. 

In light of this connection, the generalized eigenvectors 
in Equation (1) represent normal modes of vibration of an 
equivalent mass-spring system based on the pairwise pixel 
similarities.’ For illustrative purposes, a few normal modes 
for the landscape test image in Figure 2 are shown in Figure 
1, together with a snapshot of a superposition of the modes. 

Figure 1: Three generalized eigenvectors (v2, v3 and v4) 
for the landscape test image are shown in (a)-(c). As an 
illustration of the connection between Normalized Cuts and 
the analysis of mass-spring systems, a superposition of the 
modes at an arbitrary time instant is shown in (d) as a 
surface plot. 

2Note that since we assume free boundary conditions around 
the edges of the image, we ignore the first mode since it corre- 
sponds to uniform translation. 

Using the mass-spring analogy, one can proceed to de- 
fine a measure of similarity within the space of modes by 
considering the maximum extension of each spring over all 
time. We refer to this as the inter-group distance. As de- 
scribed in [2], the inter-group distance between two pixels 
i and j may be defined as the following weighted L1 norm: 

Since the springs have large extensions between groups and 
small extensions within groups, an obvious application of 
the inter-group distance is to define a measure of local “edgi- 
ness” at each pixel. Please refer to [2] for a more detailed 
discussion of this idea. 

4. LOCAL I M A G E  FEATURES 
In region-based segmentation algorithms, similarity between 
pixels are encoded locally and there is a global routine that 
makes the decision of partitioning. In the normalized cut 
framework, local pixel similarities are encoded in the weight 
matrix W discussed in section 2. In this section, we will 
describe how local pixel similarities are encoded to take into 
account the factors of similarity in intensity, color, texture; 
contour continuity and common motion (or common dis- 
parity in stereopsis). 

4.1. Brightness, Color and Texture 
We fist look at how we measure pixel similarities due to 
brightness, color and texture. Texture information is mea- 
sured as the responses to a set of zero-mean difference of 
Gaussian (DOG) and difference of offset Gaussian (DOOG) 
kernels, similar to those used for texture analysis in [5]. We 
call the vector of filter responses the texture feature vec- 
tor: uter = (fi * I, fz * I,. . . , fN * I ) ~ .  Intensity and color 
are measured using histograms with soft binning. We write 
the intensity/color feature vector as ucol. The combined 
texture and intensity/color feature vector a t  pixel i is thus 
given by: ui = (&, uT0JT. This feature vector is normal- 
ized to have LZ norm equal to 1: &, = u i / ~ ~ u ; ~ ~ .  Notice that 
llucolII is approximatly equal to a constant. The normaliza 
tion step can then be seen as a form of gain control, which 
diminishes the contribution of the intensity/color compo- 
nents when there is a lot of activity in the texture compo- 
nents. The dissimilarity between two pixels is then defined 

Since we are measuring texture properties at a point, the 
texture feature vectors are different at the center of a texel 
than in the space between two texels. We introduce the idea 
of area completion, which modifies the dissimilarity measure 
to essentially specify that the space between two texels on a 
texture belongs to the same surface as well. We would like 
to emphasize that using texture point properties together 
with area completion is better than the traditional way of 
averaging texture features in a large window, because it can 
handle boundaries better. 

4.2. Contour Continuity 
Information about curvilinear continuity can also be in- 
corporated into the similarity measure between two pixels. 
Contour information can be computed “softly” through ori- 
entation energy [6] (OE(5)) .  Orientation energy is strong 
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at an extended contour of sharp contrast, while it will be 
weak at low contrast gaps along the contour. We enhance 
the orientation energy at low contrast gaps by propagating 
the energy from neighboring pixels along an extended con- 
tour. The probability of propagation is derived from the 
energy of the elastica curve completion model [12]. Ori- 
entation energy, after propagation, provides us with soft 
information about the presence of contours. Intuitively, the 
factor of curvilinear continuity says that two pixels belong 
to two different groups if there is a contour separating them. 
The dissimilarity is stronger if the contour is extended. Ori- 
entation energy allows us to capture this notion very easily. 
Given pixels p l  and p2,  dissimilarity between them is high if 
the orientation energy along the line joining them is strong. 
Thus, if I is the straight line between pl  and p2 and x is a 
pixel on 1, we define the dissimilarity due to contour conti- 
nuity as: 

&g(pi,p2) = max{OE(x) - 0.5(OE(p1) + OE(p2))) 
Z € l  

As an alternative to this definition, one can restrict the 
evaluation of the orientation energy to points lying on edge 
contours. The edge contours can be detected and localized 
using, for example, zero crossings of the oriented second 
derivative [9]. Such a definition leads to sharper segmenta- 
tion at the expense of a small amount of added computa- 
tion. 
4.3. Motion and Stereo Disparity 
For motion segmentation (or binocular segmentation for a 
stereo pair), the nodes of the graph are the triplet (x, y, t ) ,  
where ( q y )  denote image location and t is time. The 
weights between two nodes describe the similarity of the 
motion at the two pixel locations at that time. We propose 
to compute these weights softly through motion profile. In- 
stead of trying to determine exactly where each pixel moves 
to in the next frame (as in optical flow), we compute a prob- 
ability distribution over the locations where the pixel might 
move to. Similarity between two nodes is then measured as 
the similarity of the motion profiles. 

This technique can be made computationally efficient 
for long image sequences by considering only a fixed number 
of image frames centered around each incoming image frame 
in the time domain to compute the segmentation. Because 
there is a significant overlap of the image frames used to 
compute the segmentation from one time step to another, 
we can use it to our advantage to speed up our computation. 
Specifically, when solving the generalized eigensystem using 
the Lanczos method, the eigenvectors from a previous time 
step can provide us with a good guess for the initial vectors 
at the next time step, and we can arrive at the solution very 
quickly. An example of the motion segmentation results for 
the flower garden sequence is shown in 4. For details, please 
refer to [Ill. 

5. RESULTS AND DISCUSSION 

computing eigenvectors, the algorithm is efficient. More- 
over, there are many methods for multiresolution imple- 
mentation of the segmentation. Due to space limitations, 
details are omitted here. 

A good image/video segmentation system has numer- 
ous applications. It has not escaped our notice that the 
segmentation system we have described immediately sug- 
gests an efficient method of image and video compression. 
Another major application is image retrieval in large image 
databases such as in [l]. 
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Results are shown in Figure 2 using texture and intensity 
and in Figure 3 using contour continuity. For more re- 
sults, the reader is encouraged to look at our Web site: 
http;//www. cs. berkeley. edu/-jshi/Grouping/. 

In this paper, we have proposed a coherent system for 
image and video segmentation based on the normalized cut 
framework. Since finding the best partition is equivalent to 
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Figure 2: Segmentation using intensity and texture. Original 
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image shown on the left and the segments on the right. 
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Figure 3: Segmentation based on intensity and contour continuity. Left: original image; middle: segments; right: boundaries 
of segments. 

(a) 

Figure 4: Subplot (a) shows three of the first six frames of the “flower garden” sequence along with the segmentation. The original 
image size is 120 x 175, and image patches of size 3 x 3 are used to construct the partition graph. Each of the image patches are 
connected to others that are less than 5 superpixels and 3 image frames away. Subplot (b) shows the 15th to the 18th frame of the 
sequence and the motion segmentation using tracking algorithm with the sliding time window method. 
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