
Image-based Prediction of Landmark Featuresfor Mobile Robot NavigationGregory D. Hager David Kriegman Erliang Yeh Christopher RasmussenComputer Science Electrical Engineering Electrical Engineering Computer ScienceYale University, New Haven, CT 06520AbstractWe have been developing an architecture for vision-based navigation which relies on continuous feedbackfrom visual \landmarks" to control robot motion. Inthis approach, landmarks are consistently located andacquired as they come into view. To make this pro-cess e�cient and robust, it is important that the im-age locations of these features can be predicted fromavailable image information. In this article, we dis-cuss methods for direct image-based prediction of pointand line features for a mobile system operating on aplanar surface. Preliminary experimental results sug-gest that image-based prediction can be performed ef-�ciently and with su�cient accuracy to ensure robustacquisition of navigational landmarks.1 IntroductionMost prior research on robot navigation has focusedon developing methods for computing and/or control-ling the position of a mobile system with respect tosome geometric or topological map [1, 3, 9, 11, 12,13, 14, 16]. However, there are applications where theability to explicitly represent and reason about geom-etry is not essential. For example, consider a robotassigned to follow a routine delivery route on a 
exi-ble manufacturing 
oor, or a robot sentry assigned topatrol the perimeter of a recently established militaryencampment. In principle, there is no need to developan extensive navigation system for these functions|the robot simply needs to constantly and reliably re-peat the same path on a continuous basis. The systemcan be \programmed" by simply \showing" it the paththat it should follow.This problem o�ers a number of challenges to manypublished approaches to robot navigation. Given thatthe environment and the allowable paths through itmay change often and abruptly, it is unlikely that aprior geometric model will be available, eliminatingapproaches which rely on them [1, 11, 12]. For simi-lar reasons, \situated" approaches which implicitlyusestrong assumptions about the environment are also in-

applicable [3, 9]. While it is possible to arrange �du-cial markers for such a task, it is onerous to erect andcalibrate such markers. Finally, the fact that the robotmay need to navigate accurately in large open areassuggests that topological approaches based on placerecognition and approaches relying on range-limitedsensing such as sonar [13, 14] may have di�culty sup-porting accurate and reliable motion.Our aim is to develop a vision-based navigation sys-tem capable of performing these types of tasks. Ourchoice of vision is based on the fact that it can observelarge areas to �nd useful \landmarks" for de�ning thepath, and our desire to use passive sensing techniques.In a previous paper [6], we outlined the general archi-tecture of such a vision-based navigation system. Thecentral idea in this design is to constantly track im-age features used as landmarks for navigation. Suchtracking is cheap and simple [7]; it quickly and con-tinually reduces image information to the time historyof a small set of feature locations. This time historyis learned once (the teaching phase), and subsequentmotion is de�ned by controlling the robot so as toreplicate the learned feature time history. This pro-vides constant and accurate control of position, yetavoids the overhead of computing an explicit geomet-ric model of the environment.One central component of this architecture is theability to e�ectively predict and acquire landmarksas they come into view. Given a geometric model,prediction could be handled using a well-understoodcombination of odometry and estimation [11, 12]. Ina purely sensor-based approach, prediction must beperformed solely on image information. This problemis closely related to the image transfer problem dis-cussed in the area of projective geometry applied to vi-sion [2, 5, 8, 15]. In this paper, we describe specializa-tions of image transfer methods for the two commonlyused image features, point-features and line features,for a mobile system operating on a planar surface.



2 Problem FormulationIn an image- or appearance-based approach to nav-igation, the robot can be said to be at a place if whatit sees corresponds, with some tolerance, to what canbe seen at this place. Given that we know which loca-tion we are at from its appearance, we can use visualtracking to extend the de�nition of place to a rangeof locations, and require that all (or nearly all) of theworld corresponds to some place. We then utilize thecontinuity of our representation to predict changes ofview between places, thereby eliminating the need fora strong notion of recognition. Navigation is posed asthe problem of moving from place to place|that is,from view to view|using techniques developed in thearea of visual servoing [4, 10].In order to make this problem precise, we de�ne thefollowing terms (detailed more fully in [6]). We usethe term marker to denote any visual entity that is insome way visually distinctive so that it can be trackedas the robot moves. A scene is a set of markers whichare tracked concurrently in an image. A sequence isan ordered list of scenes containing the same set ofmarkers. A map is a directed graph of sequences. Inoperation, the robot �rst \learns" a series of sequences(a map) by discovering, tracking, and recording themotion of visual features as it moves. Later, in order tomove from its current location to a speci�ed goal, therobot \follows" a series of stored sequences or partialsequences in the map, all directed head to tail, fromits current scene to the chosen goal scene.Central to this approach is the idea that the tran-sition from one sequence to the next, a process whichinvolves determining the image locations of a new setof markers, can be accomplished using only image in-formation. This motivates the problem considered inthis paper:Given the locations of n markers trackedthrough a sequence of images during learn-ing, and the locations of m < n of the samemarkers in an image acquired during navi-gation, predict the location of the remainingn�m markers.Speci�cally, the nmarkers are those needed to initi-ate tracking for the next sequence in the path. The mknown markers are those common to both the currentsequence and the next sequence | in other words, themarkers whose location is already known. Our goal isto establish a lower bound on m as well as to describealgorithms for performing the prediction for di�erenttypes of markers.Within this paper, we simplify the problem by onlyconsidering the locations of the markers in two images

within the sequence since this is su�cient for the pre-diction task. Thus, the information at our disposalis two scenes with n markers (the map images) takenat two di�erent locations in the world, and a thirdscene (the current image) which contains a subset ofm markers. We are to predict the location of each ofthe remaining n�m markers.The problem of predicting the location of markersor features without explicitly reconstructing their 3-DEuclidean location is known in photogrammetry as im-age transfer [2]. Using projective geometry and projec-tive invariance, methods for performing image transferhave been developed for point and line features undera variety of assumptions about the con�gurations ofthe features, the camera model (orthographic projec-tion, a�ne, perspective, projective), and availabilityof camera calibration [2, 5, 8].For point features, Barrett et. al. show that linearmethods can be used to transfer points from two mapimages to a third image if eight additional points areobserved in all three images [2]. Hartley's methods forprojective reconstruction of lines can be used for linetransfer, and it requires observing thirteen lines in allthree images [8]. In both of these general methods, thecamera can be at an arbitrary 3-D position and orien-tation, and the camera may have di�erent calibrationparameters at each location. However, transfer canbe accomplished with many fewer points or lines ifthe motion of the camera is constrained, if the cameraparameters at each location are identical, and if someof the calibration parameters are available.In particular, we will consider a mobile robot mov-ing on a plane (the ground plane) with a camera whoseoptical axis is parallel to the ground plane. We willmodel the camera as pin-hole perspective, and with-out loss of generality assume unit focal length. Wede�ne a world coordinate system centered at the op-tical center of the �rst camera with the x and y axesspanning the image plane and the z-axis aligned withthe optical axis. Now, consider three camera locationsdenoted by coordinate frames 0; 1 and 2. For planarrobot motion, the rotation matrix R and translationvector T between frames 0 and 1 take on the formR = 24 cos� 0 � sin�0 1 0sin� 0 cos� 35 ; T = 24 Tx0Tz 35 : (1)Similarly, a rotation matrix S and translation vectorU characterizes the relation of frames 0 and 2.As the camera moves, the height of the camera cen-ter remains constant; the plane through the movingcamera center is parallel to the ground plane and is



called the horizon plane. For any camera position, ev-ery point on the horizon plane projects to a single linein the image named the horizon line (the intersectionof the horizon plane with the image plane).3 PredictionWe now develop transfer methods for two types ofmarkers: point-like markers and line-like markers.3.1 PointsEquation and unknown counting can be used toshow that a minimum of two point features are re-quired to perform prediction. This leads to a set ofquartic equations to be solved. Unfortunately, wehave observed that the results are unacceptably noisy,perhaps due to inaccuracies in the camera calibrationcoupled with image noise propagating through non-linear equations. Instead, we have developed a sim-pler method based on a specialization of the methodby Barrett et. al. [2]. For a particular point x whosecoordinates in the world frame (and the frame of cam-era 0) are (x; y; z)t, the image coordinates (p; q) forcamera 1 can be expressed as:R(x� T ) = (x0; y0; z0)t;and (p � p0) = x0=z0 (q � q0) = y0=z0where (p0; q0) is the center of projection in internalcamera coordinates. When the camera is fully cali-brated, R has the form in (1). When it is uncalibrated,the cosines and sines become arbitrary numbers.These expressions can be rearranged into a systemof equations that are linear in the homogeneous coor-dinates of x,� a1b1 �0BB@ xyz1 1CCA = diag(p; q)� c1c1 �0BB@ xyz1 1CCA :Denoting the image coordinates of the correspondingfeature in image 0 by (�p; �q), the projection equationsfor camera 0 can be written similarly. Combining thetwo systems of equations, we arrive at a homogeneousequation of the form[A� diag(p; q; �p; �q)C]X = 0:where X are the homogeneous coordinates of x. Anecessary condition for there to be a nontrivial valueof X is that jA� diag(p; q; �p; �q)Cj = 0 (2)

where j � j denotes the matrix determinant.Expanding the determinant and grouping termsyields an equation involving sixteen unique combina-tions of observables multiplied by coe�cients. Thesecoe�cients can be expressed as determinants of ma-trices composed of rows from A and C: In the generalcase, it is shown in [2] that the �rst seven of thesecoe�cients are zero. The remaining coe�cients aremultipliers of the terms (p�p; p�q; q�p; q�q; p; q; �p; �q; 1): Itfollows that only eight points can have independentvectors of this form, and hence the determinant of amatrix composed of nine such point pairs vanishes.This provides a linear constraint on the values of theobservations of these points [2] .For the case of planar motion, we can specialize thisresult and show that the coe�cients of p�p; q�q and �p arezero. This would mean that six points determine aninvariant relationship. Suppose that we also know theimage coordinates of the center of projection. Settingp0 and q0 to zero causes the coe�cients of p and 1 todrop out. Hence, (2) becomes a linear homogeneousequation in b = (p�q; q�p; q; �q).As a result, given two views of four points, we canpredict the location (s; t) of a fourth point in a thirdview from the other three points. Two linear equa-tions in (s; t) can be established and solved. To setup these two equations, a 4�4 transfer matrix can beestablished with the four rows composed of the vectorb given above computed for four distinct points. Letthe �rst row correspond to the point being transferred,and let us decompose this matrix as� qs pt t qd1 d2 d3 d4 �where each di is a 3 element columnvector, (p; q) is thelocation of the point in the �rst image, and (s; t) is theunknown coordinates in the third view. Expandingthe determinant in terms of the minors of the matrixyields the following linear equation in (s; t)qjd1;d2;d3j � qjd2;d3;d4js+(pjd1;d3;d4j � jd1;d2;d4j)t = 0: (3)The second training view yields a second linearequation in (s; t), which can be readily solved. Sincethis result is independent of the scale of the imagecoordinate, it holds when the focal length or internalscaling parameters are unknown.3.1.1 DegeneraciesThe degeneracies of this solution can be determined byanalyzing when the linear system de�ned above loses



rank. This analysis was carried out using Mathemat-ica, and it was found that the singularities of the linearsystem can be reduced to the following three cases:1. One or more points are in the horizon plane andproject to the horizon line. Since the horizon lineis invariant under the allowed camera transfor-mations, no information is obtained from the ycoordinate of the feature.2. If the three camera centers are collinear, the pen-cils of epipolar planes for all pairs of camera posi-tions are identical. Therefore, the two equationsin (s; t) given by (3) become linearly dependent.Note that this includes the case when the cameradoes not move, but only rotates.3. The �nal condition can be expressed as the van-ishing of a determinant:������ x1 z1 1x2 z2 1x2 z3 1 ������ = 0 (4)This determinant vanishes when the projectionsof the three points onto the ground plane (the x-zplane) are collinear, i.e. when the three points lieon a vertical plane.The �rst condition is easily avoided when choosingmarkers to include in the sequence, and hence neverarises in practice. In the case of the last two con-ditions, it is still possible to compute the line in theimage that the transferred point must lie on, hencethe constraint still provides useful information for con-straining marker search.3.2 LinesIn this section, we consider the problem of usingimage transfer to predict the location of a line in animage under perspective projection, assuming that thecamera is constrained to move in a plane. Recall thata line in a plane can be represented as a point in IP2whereas a 3-D line can be characterized as a point ona 4-D manifold. Thus, the problem of line transferdi�ers from that of point transfer; they are not duals.Note also that we are not using information about thelocation of the endpoints of measured line segments.Often the endpoints are di�cult to localize becauseedge detectors break down near corners. Furthermore,when the endpoint is a t-junction, the images of theendpoint may not correspond to the same 3-D pointbecause of occlusion.Again, equation and unknown counting can be usedto show that a minimum of four lines must be mea-sured in three images to transfer a �fth line; how-ever, the resulting system of equations is again highly
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Figure 1. The image of a 3-D line can be represented bya normal n to the plane spanned by the line and cameracenter.nonlinear. Here we will consider a linear method topredict the location of a seventh line from six corre-sponding lines in three images and the seventh lineobserved in the two map images.Expressing the rotation matrices in terms of thecolumn vectors R = [R1 j R2 j R3 ] and S =[S1 j S2 j S3 ], we can de�ne the following:E = R1UT � TST1 ;F = R2UT � TST2 ;G = R3UT � TST3 :Taken together, these three 3�3 matrices form the so-called trifocal tensor. For point and/or line correspon-dences, methods have been developed for estimatingthe trifocal tensor when the cameras are uncalibratedand in arbitrary locations [8, 15].Now, consider the image of a 3-D line as shown inFigure 1. The 3-D line and the center of projectionde�ne a plane. In turn, the intersection of this planewith the image plane de�nes a line which can be mea-sured in the image. Conversely, from a line segmentmeasured in an image, the normal to the plane canbe determined. If image coordinates are (p; q) and theline's equation is ap + bq + c = 0, the coordinates ofthe normal in the camera frame are n = (a; b; c).For three images of the same line, it is shown in apaper by Weng, Huang and Ahuja [18] that the nor-mals to the corresponding planes are related by:n2 � 24 nT0En1nT0Fn1nT0Gn1 35 = 0 (5)where ni denotes the normal to the plane de�ned bya line and camera center i. Hartley observes that forthree uncalibrated cameras, this same set of equations



holds where E;F and G are arbitrary 3� 3 matricesforming the trifocal tensor [8].While the cross product in (5) de�nes three scalarequations, only two of these are linearly independent.Furthermore, the elements of the 3� 3 matrices E;Fand G enter linearly in this constraint. Five entries ofE;F and G are constant because of the constrainedcamera motion, and so (5) can be expressed as a lin-ear equation in only 12 unknowns rather than 27 un-knowns. Therefore, given six lines measured in threeviews, we can de�ne 12 homogeneous equations in u =(Ux; Ux; Tz; Ty; F11; F31; F13; F33; E11; E31; E13; E33)which can be expressed in matrix form as Ku = 0where K is a 12� 12 matrix whose elements are func-tions of the image measurements (n1;n2;n3 for eachline). u must lie in the kernel of K which is gener-ically one dimensional except for degenerate motionsor line con�gurations. This equation can be solved forthe elements of E;F; U and T . To transfer a seventhline measured in two images and represented by n0and n1, we note from (5) thatn2 = 24 nT0En1nT0Fn1nT0Gn1 35 : (6)3.2.1 DegeneraciesLike point transfer, there are degeneracies for linetransfer. For the same reasons, transfer is impossi-ble when two camera centers are coincident or whenthe three camera centers are collinear. Like the thirddegeneracy mentioned above, transfer is not possibleif one of the lines lies in the horizon plane. As notedin [18], there are other degeneracies for structure frommotion from straight lines that are likely to apply tothis case of image transfer under constrained motion.3.3 Relaxing AssumptionsWhen formulating the transfer problem in Sec-tion 2, we assumed that the camera was neither tiltednor rotated about the optical axis; (i.e. that the opti-cal axis is parallel to the ground plane, and the cam-era's y axis is pointing vertically). It is straightfor-ward to use information derived from images to han-dle tilted or rotated cameras. For a moving camera,the focus of expansion (FOE) must lie on the horizonline. From a sequence of images from a moving cam-era, the motion of the FOE can be used to estimatethe horizon line. Under our assumptions, the horizonline should be aligned with the x axis in the image andpass through the principal point. Now, if the camerais tilted and rotated about the optical axis, the hori-zon line will be tilted and will not pass through the

Point Error Line Error in DegreesImage Pixels Line 1 Line 2 Line 3c (28.9, -5.6) 1.25 .72 .71d (9.2, -3.1) 1.85 1.12 1.46e (-12.2, -0.3) .74 1.12 .93f (-6.7, -1.6) 1.29 .64 .11g (-13.9,-0.2) 1.07 .88 1.14h (-13.9, -1.6) 1.27 .48 .81Table 1. A summary of the errors for point and linetransfer for the examples in Figures 2 and 3. The pointerror is measured in pixels, and the line error is measuredin degrees between the predicted and measured normal.principal point. However, from the horizon line esti-mated using the motion of the FOE, it is possible todetermine a transformation from image coordinates toa frame corresponding to a virtual camera that meetsour assumption. The coordinates of all markers wouldthen be transformed to the virtual camera frame, andthe transfer methods of Sections 3.1 and 3.2 could beapplied.4 ExperimentsThe transfer methods described above have beentested on video images of a typical cluttered labora-tory environment. In each case, two images were ac-quired and used to \train" the system by selecting aset of features by hand. In a series of subsequent im-ages, a subset of the features were tracked, and thelocations of one or more features were predicted fromthe information provided by tracking.Figure 4 shows two training images (labelled a andb). Figure 4.b was taken about three feet to the leftof Figure 4.a, looking in the same direction. The re-maining images were taken at equal intervals as therobot moved forward approximately ten feet from itsposition in Figure 4.b. During training the image co-ordinates of all four features marked in Figure 4.a wereknown initially, then tracked to their positions in Fig-ure 4.b. The crosses in the subsequent six images in-dicate the robot's predictions of the feature location.Table 1 shows errors in units of pixels for each im-age. The mean error magnitude of the x coordinateis 14.1 pixels, and for the y coordinate it is 2.1 pixels;the mean distance between the predicted and actuallocation of the point is thus about 14.3 pixels.Figures 3.a and 3.b show two images of a labora-tory scene with nine line segments that were detectedusing an implementation of the Canny edge detector.Six of these segments along with corresponding linesdetected in a third image were used to estimate E;Fand G. From these estimates, the location of three ad-



a. b.c. d. e.f. g. h.Figure 2. The location of four features (circles and box) are shown in the upper two \training" images. In the subsequentsix images, the predicted location of one of the features is indicated by a cross.a. b.c. d. e.f. g. h.Figure 3. Nine line segments are shown in the upper two \training" images. Six of these are used to estimate E;F andG, and subsequently transfer the other three lines. In the subsequent six images, the predicted locations of the three linesare shown.



ditional lines were predicted. The remaining imagesin Figure 3 show the predicted location of the threelines in six images. The error between the predictednormal n2 from (6) and the measured normal can beexpressed as the angle between these two vectors. Ta-ble 1 presents the error for all 18 predicted lines.5 DiscussionAs noted in the introduction, this work is part ofa larger approach to navigation that is based on ac-tive vision and prediction. The results on transfer inthis paper suggest that image-based prediction can beused reliably for transfer when combined with a searchmechanism for matching previously observed markersto the new image.Our current work is progressing toward integrat-ing prediction with image search routines and image-based control, and unifying the framework to supportmixtures of point and line features. Recent work byHartley has shown how a line matched in three im-ages provides four constraints on the trifocal tensorwhile a point provides six constraints on the trifocaltensor. In our case, there are further constraints onthe elements of this tensor. We are still experiment-ing with various possibilities for using prediction forimage-level search. E�cient search and image-levelmatching is clearly important, particularly when theprediction equations are singular or nearly so. We planto compute the covariance of the predicted feature lo-cations, and to use this to generate a search region.This formulation is particularly appealing as it allowsfor a uni�ed treatment of singular and non-singularsystems.Prediction can also be used to control the motionof the robot. For example, it may be the case that thepredicted image location is outside the image plane,suggesting the robot must pan the camera in order toacquire it. Likewise, the variance of the prediction canbe used to control motion to improve prediction.Acknowledgments This research was supported byARPA grant N00014-93-1-1235, Army DURIP grantDAAH04-95-1-0058, by National Science Foundation grantIRI-9420982, and by funds provided by Yale University. D.Kriegman was funded in part under NSF Young Investiga-tor award NYI IRI-9257990.References[1] S. Atiya and G. Hager. Real-time vision-based robotlocalization. IEEE Trans. Robotics and Automation,9(6):785{800, 1993.[2] E. Barett, M. Brill, N. Haag, and P. Payton. Invariantlinear methods in photogrammetry and model match-ing. In J. Mundy and A. Zisserman, editors, Geomet-
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