
   
 
 

1 

 
Abstract 

 
Despite recent advances in video segmentation, many 
opportunities remain to improve it using a variety of low 
and mid-level visual cues. We propose improvements to 
the leading streaming graph-based hierarchical video 
segmentation (streamGBH) method based on early and 
mid level visual processing. The extensive experimental 
analysis of our approach validates the improvement of 
hierarchical supervoxel representation by incorporating 
motion and color with effective filtering. We also pose and 
illuminate some open questions towards intermediate level 
video analysis as further extension to streamGBH. We 
exploit the supervoxels as an initialization towards 
estimation of dominant affine motion regions, followed by 
merging of such motion regions in order to hierarchically 
segment a video in a novel motion-segmentation 
framework which aims at subsequent applications such as 
foreground recognition.  
 

1. Introduction 
Video analysis literature has two predominant research 

directions in feature-based [1] methods and segmentation-
based methods [2]. Several driving applications such as 
object recognition [3], augmented reality [4] or animation 
[5] require dense segmentation, and feature based method 
is not a natural fit in such cases. Thus video segmentation 
acquired a rich history in the last decade.   

Despite of several approaches proposed in the literature 
of video segmentation, more recently the idea of 
associating initial over-segmentations into supervoxels, 
followed by processes such as hierarchical grouping [6], 
long range tracking [7], superpixel flow [8] have been 
proposed. As an early vision tool, color-based supervoxel 
segmentation method “streaming graph-based hierarchical 
segmentation” (streamGBH) [9] reportedly has the best 
performance in terms of quality and complexity. In this 
paper we propose a significant increment and 
improvement to the state-of-the-art streamGBH in terms 
of improving segmentation quality by using dense optical 
flow. We use optical flow as feature and at the same time 

as a guiding tool for the temporal connection in the initial 
graph. We perform thorough experimental analysis on a 
benchmark database [10] used in the evaluation of libsvx 
library [11] for streamGBH. We evaluate our approach 
visually and in terms of video segmentation objective 
metrics. We also discuss further extension of streamGBH 
towards the challenging task of video analysis. We exploit 
the supervoxels as an initialization for the estimation of 
dominant affine motion regions followed by merging of 
such motion regions based on their geometric distance. 
We present a novel framework of hierarchical motion 
based video segmentation to enable a powerful 
intermediate level video representation for subsequent 
recognition or other task-specific applications. 

The remainder of this paper is as follows.  In Section 2, 
we outline related work. The proposed video segmentation 
methodology using early and mid-level visual processing 
is presented in section 3. Experimental results are reported 
and commented in section 4, followed by concluding 
remarks in section 5. 

2. Related Work 
There are three different paradigms in video 

segmentation. First is frame processing in which each 
frame is independently segmented, but no temporal 
information is used. This method is fast but the temporal 
coherence is poor. Second is 3D volume processing that 
represents a model for the whole video. It is bi-directional 
multi-pass processing. The results are best, but the 
complexity is too high to process long videos and does not 
cater to the need for streaming videos. Stream processing 
processes the current frame only based on a few 
previously processed frames. It is forward-only online 
processing, and the results are good and efficient in terms 
of time and space complexity. The state-of-the-art 
streaming segmentation (streamGBH) outperforms other 
streaming methods and competitive with full-video 
hierarchical methods. The streamGBH in libsvx 
implements this video segmentation approximation 
framework.  In this framework, the streaming video is 
conceptualized as a set of non-overlapping subsequences ν 
= {v1, v2,…,vm}with ki frames for subsequence vi. The 
hierarchical segmentation result, s, is approximately 
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decomposed into {s1, s2,…,sm}, where si is hierarchical 
segmentation of subsequence vi. StreamGBH adopts the 
graph-based grouping method into the streaming 
hierarchical segmentation framework. It constructs a graph 
which is similar to a graph over the spatial-temporal video 
volume with a 26-neighborhood in 3D space-time. 
However, this graph  is only constructed for the 
current two subsequences in process, vi and vi-1. This graph 
is the first layer of the hierarchy and its edge weights are 
direct color dissimilarity (measured by χ2 distance of the 
normalized color histogram) of voxels. The streaming 
hierarchical segmentation results upto subsequence vi, uses 
ideas from the previous section. In other words, given the 
hierarchical segmentation result si-1 of vi-1, the layer by 
layer hierarchical segmentations for vi are inferred. Being 
a streaming segmentation method, StreamGBH thus 
becomes a powerful early vision tool. 

When the question of target applications such as 
animation or object recognition or 2Dto3D video 
conversion arises, we need to go beyond the early vision 
problem of supervoxel segmentation. In order to do task-
specific jobs such as recognizing objects, we intend to 
achieve hierarchical motion layer representations of a 
video such that a single segment would represent a single 
object. Layered models offer an elegant approach to 
motion segmentation and have many advantages. A typical 
scene consists of very few moving objects and 
representing each moving object by a layer allows the 
motion of each layer to be described more simply [12]. 
Though motion analysis on longer image sequences [13] 
can produce best results; however, the computational and 
memory complexity becomes an issue for online 
applications. There are several methods for pursuing 
motion-based layer segmentations such as [12]. However, 
we are not aware of any method that does streaming 
hierarchical motion-layer segmentation.  

3. Methodology 
The proposed method for video segmentation uses early 
and mid-level visual processing. We improve streamGBH 
by incorporating edge-preserving smoothing and motion 
information. We also extend streamGBH for hierarchical 
motion segmentation. 

3.1. StreamGBH+  
As a pre-processing step, we apply bilateral filtering [14] 
as an edge-preserving smoothing to improve 
segmentation. Along with color similarity, we consider 
motion similarity of voxels and influence of motion 
direction on graph connectivity. Use of dense optical flow 
[15] considerably improves segmentation results. Firstly, 
instead of connecting a voxel (i,j,t) to its immediate 9 
neighbors (i+m, j+n,t-1), m,n ϵ {-1,0,+1} in the previous 
frame, we connect it to its 9 neighbors along the backward 

flow vector (u,v), i.e. (i+u(i,j) +m, j+v(i,j)+n, t-1) similar 
to the approach proposed in [6]. This is a generalization of 
prior grid-based volumetric approaches which can only be 
achieved using a graph representation.  

Secondly, we use optical flow as a feature for each 
region during hierarchical segmentation. As optical flow is 
only consistent within a frame, we use a per-frame 
discretized flow histogram. Unlike [6] which discusses 
SIFT-like (with respect to angle) motion feature 
representation, we propose simpler representation of two 
histograms of horizontal and vertical component of optical 
flow field. The benefit of this simpler approach is to 
distinguish motions with same direction but different 
magnitude. Matching the flow-descriptors of two regions 
then involves averaging the χ2 distance of their normalized 
per-frame flow-histograms over time.  
 We combine the χ2 distance of the normalized 
color histograms dc ϵ [0,1] with the χ2 distance of the 
normalized flow histograms df  ϵ [0,1] by 

൫݀ ,݀൯ → (1− (1− ݀)(1 − ݀))ଶ              (1) 
This function is close to zero if both distances are close to 
zero, and close to one if any one of them is close to one. 
We also tried exponential form of distance function which 
produces similar result. 

Throughout this paper we term our approach of 
supervoxel segmentation as streamGBH+.      

3.2. Supervoxel to hierarchical motion-layer 
segmentation  

We build a hierarchical motion layer framework on top 
of streamGBH+. We estimate the motion of each segment 
and hierarchically merge different segments using 
geometric distance notion in affine space in a streaming 
fashion. 

 
3.2.1 Motion-based segmentation overview 
Following the approach of most of the layered 
segmentation techniques, we also assume a parametric 
motion for each layer. Simple translation or just a rotation 
might be too restrictive to capture the motion of natural 
scenes; so we consider affine motion. We process optical 
flow for frame-pairs and estimate affine parameters in 
streaming fashion and propose a hierarchical online 
motion segmentation framework. We see different aspects 
of the motion scene in the layers of hierarchy. Different 
regions following affine motions are merged to produce 
smaller number of foreground objects as the hierarchy 
level increases. The novel framework for merging spatial 
regions is based on geometric distance conceptualized as 
directed divergence in affine space. 
 
3.2.2 Segmentations and streamGBH+  
Affine motion parameter estimation in regions iterate over 
hierarchy levels. Initialization at the lowest level of 
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motion hierarchy is influenced by the output from 
streamGBH+. Unlike the block-based estimation of affine 
parameters [12], we initialize affine parameter estimation 
from optical flow field using RANSAC over the segments 
from streamGBH+. Thus every region has an initial 
parametric model estimated. The most important question 
then becomes which regions are to be merged at what 
level of hierarchy. To address this, we take the notion of 
geometric distance between affine regions. The 
dissimilarities between affine regions directly depend on 
the directed divergence described below from associated 
warping error between those regions. As shown in Figure 
1, at a certain level of motion hierarchy, every region has 
an affine motion parameter set associated with it. Clearly 
the torso of the player, his legs, the tennis racket, two parts 
of the gallery are in different segments. 
  

 
Figure 1: Different regions demonstrated in non-black colors 
with their corresponding affine motion parameters 
 
We aim at estimating motion layers by merging 
supervoxels or over-segmented regions having apparently 
little different spatio-temporal feature. We propose a 
criterion to use for merging two regions based on affine 
flow.  The geometric distance between affine regions uses 
the notion of warping error based dissimilarity, directed 
divergence. Directed divergence of region #k from region 
#i ݀݅ݒ(݇, ݅) and directed divergence of region #i from 
region #k ݀݅ݒ(݅,݇) are defined as: 
 
,݅)ݒ݅݀ ݇) = 


∑ ቂ1ܯ = ݏܾܽ  ቀ ܶܥ൫ ܶ(ܴ)൯ − ൫ܥܶ  ܶ(ܴ)൯ቁቃ 

,݇)ݒ݅݀ ݅) = 
ೖ
∑ ቂ2ܯ = ݏܾܽ ቀܶܥ൫ ܶ(ܴ)൯ − ൫ܥܶ ܶ(ܴ)൯ቁቃ 

     ቑ   (2) 

 
Where, ∑   denotes matrix-wide summation i.e. sum of all 
elements of a matrix;  ܴ and ܴ are i-th and k-th region. 
Ti is the transformation estimated for region #i. In order to 
have a fair comparison base for different regions of 
different sizes, we transform every region with respect to a 
canonical reference frame i.e. the transformation to a pre-
determined image-size (say, p x q). TC is the 
transformation to canonical reference frame which always 
yields a matrix of size p x q. The sum over all the elements 
of the difference matrix is then normalized by the 
corresponding number of pixels in a region e.g. ni is the 
number of pixels in region #i and nk is the number of 
pixels in region #k. Figure 2 shows distance evaluation 
visually.  The maximum among the pair (i,k) and (k,i) of 
directed divergence values is treated as the distance 
between two regions in their affine space. The distance 
metric is defined as follows: 

 
(݇,݅)ݐݏ݅݀ = ,݇)ݐݏ݅݀  ݅) = max൫݀݅ݒ(݅, ݇), ,݇)ݒ݅݀ ݅)൯     (3) 

 
Two regions can be merged if the distance between the 
corresponding affine spaces is small.  If either of div(i,k) 
or div(k,i) is high, the region #i and region #k are not 
merged. 

    
(a)         (b)   

  
                       (c)                       (d) 

E12 = WarpError(1,2)        E21 = WarpError(2,1) 
 
 

(1,2)ݒ݅݀ =  ∑∑ாభమ
#௫௦

(2,1)ݒ݅݀                  =  ∑∑ாమభ
#௫௦

 
      
Figure 2: Evaluating geometric distance between (a) affine 
regions#1 and (b) affine region #2. Apply following 
transformations to region #1. Affine transformation associated 
with region #1, followed by a transformation into canonical 
reference frame (fixed size).  Similar operations for region 
number #1with transformation #2. (c) Normalized sum of pixel-
level warping error, ݀݅(1,2)ݒ, is the directed divergence of region 
2 from region 1. (d) Similarly ݀݅(2,1)ݒ is evaluated. Clearly, 
     (2,1)ݒ݅݀ is not same as (1,2)ݒ݅݀
 
3.2.3 Grouping method at layer hierarchies 

We consider first fit or local greedy way as the region 
grouping method. Our assumption is if region i, region j, 
and region k all are to be merged; the merging criteria for 
all of the pairs (i,j), (j,k) or (i,k) would be satisfied. No 
matter with which pair we start, eventually we would 
come to the same grouping at the end. The directed 
divergence and distance metric concept has been 
visualized in Figure 3.  Directed divergence metric is not 
symmetric. As explained in the figure, ݀݅(1,2)ݒ and 
 .are not same(2,1)ݒ݅݀

After the region merging, the significant errors are 
found especially near the object boundary. To overcome 
this problem, we explore Markov Random Field based 
smoothing as described in [16]. As we know the number 
and parameters for candidate motions at each hierarchy 
level, we apply BVZ [17] algorithm to achieve smoother 
segments. In the MRF framework, we intend to optimize 
both the pixel-wise warping error satisfying a prior 
smoothness constraint. 



   
 
 

4 

 
Figure 3: Geometric distance based affine region merging:  six 
initial regions are shown in left most border. The square directed 
divergence matrix is shown in the center. Each element in this 
matrix is based on normalized sum of directed warping errors. 
An element of the symmetric distance matrix is the maximum 
between a pair of directed divergence entries. Entries (1,2), (2,1) 
and (3,5) in directed divergence matrix have been visualized as 
examples. Color code: higher color temperature means higher 
distance values. The diagonal entries in the matrix mean distance 
with self, which are zeros. The warm color temperature e.g. entry 
for ݀݅(3,5)ݒ means high distance value  
 
3.2.4 Temporal consistency 

Enforcing temporal consistency has two paradigms. 
Firstly, since the affine motion is consistent within a 
frame, we cannot use their values as we do in volume 
graph using color feature value. Rather, we use a per-
frame discretized flow histogram and thus the association 
of a motion segment from previous to current frame is not 
inherent. To address the issue of enforcing temporal 
consistence in simple and effective way, we use the 
segmentation from backward warping from the previous 
frame-pair as an initialization for the segmentation process 
(forward warping) of current frame-pair. Thus, the 
question of associativity between segments over time 
becomes only about an associativity of segments from 
forward warping to backward warping of a frame-pair. 

The best matching segment, in terms of overlapping 
area, in the second image (wrt the warped segment in the 
first image) establishes segment correspondence between 
forward and backward warped motion segmentations. 

4. Experimental Evaluations 
We demonstrate the results of applying streamGBH+ and 
hierarchical motion segmentation onto several videos. 

4.1. streamGBH+ 
4.1.1 Quantitative Performance: Benchmark 

Comparisons  
Data: We use the recently published benchmark dataset 
(ChenXiph.org) [10]  and video segmentation 
performance metrics [11] for the quantitative experiments. 
This video dataset is a subset of the well-known xiph.org 
videos that have been supplemented with a 24-class-
semantic-pixel labeling set  (The same classes from the 
MSRC object-segmentation dataset [10]). In the 
implementation, we use sequence length 3 in all 
experiments and thus performance is not expected to be 
near to full-video processing. 

 

 
Figure 4: number of supervoxel vs. 3D Boundary Recall metric 
values for streamGBH, streamGBH with bilateral filtering and 
streamGBH+ (streamGBH+ bilateral filtering+ motion). Top: 
evaluation result for the sequence Ice and bottom: evaluation 
result for the sequence Stefan. 
 
The 8 videos (‘Bus’, ‘Container’, ‘Garden’, ‘Ice’, ‘Paris’, 
‘Salesman’, ‘Soccer’ and ‘Stefan’) in this set are densely 
labeled with semantic pixels and have duration of  85 
frames each. This dataset has been used for evaluation for 
the state-of-the-art StreamGBH method. This dataset 
allowed us to evaluate these segmentation methods against 
human perception.  
 
3D Boundary Recall: The 3D boundary is the shape 
boundary of a 3D object, composed by surfaces. It 
measures the detection of spatio-temporal boundary. For 
each segment in the ground-truth and segmentations, we 
extract the within-frame and between-frame boundaries 
and measure recall using the standard formula [11]. Figure 
4 shows the dependency of 3D Boundary Recall on the 
number of segments. StreamGBH+ performs better.  
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Explained Variation: Explained Variation metric is 
proposed in [18] as a human-independent metric. It 
considers the supervoxel as a compression method of a 
video. The metric is defined as: 

ܴଶ = ∑ (ஜିஜ)మ
∑ (௫ିஜ)మ

                                  (3) 
It is evaluated by summing over i voxels where xi is the 
actual voxel value, μ is the global voxel mean and μ   is 
the mean value of the voxels assigned to the supervoxel 
that contains xi [11]. 

Figure 5 shows the dependency of explained variation 
metric on the number of supervoxels. StreamGBH+ again 
performs better than streamGBH. 

 

 
Figure 5: Number of supervoxel vs. Explained Variation metric 
values for streamGBH, streamGBH with bi-lateral filtering and 
streamGBH+. Top: evaluation result for the sequence ICE and 
bottom: evaluation result for the sequence Soccer 
 
3D Segmentation accuracy: This metric measures what 
fraction of a ground-truth segment is correctly classified 
by the supervoxels; each supervoxel should overlap with 
only one object/segment as a desired property [11] of 
video segmentation. To evaluate the overall segmentation 
quality, we also take the average of the fraction across all 
ground-truth segments in the video. Figure 6 shows the 
dependency of 3D accuracy on the number of supervoxels. 
Here also streamGBH+ performs better than streamGBH. 
 
3D Under-segmentation Error: 3D under-segmentation 
error measures what fraction of voxels goes beyond the 
volume boundary of the ground-truth segment when 

mapping the segmentation onto it. The details for this 
metric can be found in the benchmark paper [11].  
 

 

 
Figure 6: number of supervoxel vs. 3D segmentation accuracy 
metric values for streamGBH, streamGBH with bi-lateral 
filtering and streamGBH+ (streamGBH + bi-lateral filtering + 
motion). Top: evaluation result for the sequence ICE and bottom: 
evaluation result for the sequence Soccer 
 

metric 
streamG
BH  

streamGBH
+ 
motion 

streamGBH 
+ 
BLF  streamBHG+ 

boundary 
recall 2D 0.44 

 
0.442 0.451 0.452 

boundary 
recall 3D 0.47 

 
0.482 0.49 0.49 

explained 
variation 0.71 

 
0.72 0.73 0.75 

accuracy 
2D 0.58 

 
0.58 0.58 0.58 

accuracy 
3D 0.56 

 
.54 0.55 0.55 

Under 
segmentation 
error 2D 8  

 
 
9 9 10  

Under-
segmentation 
error 3D 18 

 
 
18 15 18  

Table 1: Average comparative metric values for all the videos in 
Chen database 

 
Proposed streamGBH+ performs better than the state-of-
the-art streamGBH for videos with object motions. 
Overall, streamGBH+ outperforms in the evaluation of 
metrics such as boundary recall 2D, boundary recall 3D, 
explained variation. As per Table 1 for the metrics 
accuracy 2D and accuracy 3D we see no difference for this 
database overall. Though, the performance of 
streamGBH+ for the under segmentation metrics is not 
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better than the state-of-the-art, we care for other metrics 
more at this time because of our future target application 

on object recognition or 2D-to-3D video conversion.

 

          
Figure 7: Different details of objects in the layers of hierarchy. Video frame, supervoxel segmented frame at hierarchy level 1, 10 and 15 

 

 
Figure 8: Qualitative time consistent performance of streamGBH+.  Left to right: pairs of video frame and supervoxel segmented frame 
from video clip “Pirate”.  
 

   

   

   
Figure 9: Qualitative performance of streamGBH+.  Top: input video “Ice”, frame 1, frame 15 and frame 26. Middle: segmentation 
result of state-of-the-art streamGBH at hierarchy level 5. Bottom: segmentation result of our method streamGBH+ at hierarchy level 5 

We use the optical flow method [15] based on constant 
memory; coarse to fine warping techniques which uses 
fixed point iterations. Thus the overhead of memory and 
computational complexity of streamGBH+ is not 
significant compared to streamGBH.  

Qualitative Performance: Here we show some 
qualitative results on long videos, which necessitate a 
streaming  method. We see different details of an 
object in the layers of hierarchy. For example, in Figure 7 
one can see more than three parts in the object “Pirate” in 
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5th layer, and locate a single human body pose in 15th 
layer. Figure 8 shows a long term temporal coherence of 
streamGBH+. Figure 9 corroborates that streamGBH+ is 
able to avoid unnecessary over-segmentation compared to 
state-of-the-art streamGBH. 

4.2. Motion Segmentation Results 
As we increase the hierarchy level, we allow higher 

acceptance for distances between affine regions for 
merging feasibility and thus more number of regions are 
combined. Figure 10 and Figure 11 demonstrate the results 
on sequence Stefan and Lovebird. As some regions are 
merged, we refine our affine parameters by estimating 
them again over the merged regions.  

 

 
Figure 10: Two layers of hierarchical motion segmentation on 
Stefan. Top: Hierarchy level 1 has 4 regions; the background, the 
legs of the player; the tennis racket and the torso. Bottom: Level 
2 has three layers 
 

 

 

 
Figure 11: Three layers of hierarchical motion segments on 
sequence Lovebird. Top: Hierarchy level 1 has 5 regions; 
middle: h-level 2 has 4 regions; bottom: h-level 3 has 3 regions 
 

 

 
Figure 12: Temporal consistency shown for hierarchy level 2 
motion layer segmentation of sequence Garden. Top: 3 segments 
estimated for frame #1. Bottom: corresponding 3 layers for frame 
#10 
Figure 12 shows one example of the temporal consistency 
of our streaming motion segmentation. Here, we show 
segmentation at hierarchy level 2 for frame number 1 and 

frame number 10. Note the temporal correspondence 
between layers. Some more results for hierarchy level 3, 
where each segment is represented in separate color, have 
been shown Figure 13. In all these videos except the 
“Calendar” sequence, the camera is moving, thus the 
background is not static. 

In the first case, the car and the background are 
segregated based on motion analysis. In the second case, 
the background, the car and the cyclist have been 
discriminated. In sequence “Calendar”, the ball and the toy 
engine are distinguished from the static background. In the 
“Garden” sequence the tree segment has been segregated 
but a little part of the flower bed has been merged with the 
tree at this hierarchy level. In the “Lovebird” sequence, 
two persons are assigned different motion layers compared 
to the background. In Stefan, the tennis player, his racket 
and the background (including the gallery and the court) 
are detected as different layers in this hierarchy. For most 
of the cases, object level motion layer has been detected at 
one hierarchy level or other. 

 

 

 
Figure 13: hierarchy level 3 motion layer segmentation. Top to 
bottom and left to right: results on Car1, Car2, Mobile, Garden, 
Lovebird, Stefan. 
 

 

                  
Figure 14: segmentation after MRF smoothing at hierarchy level 
3. Top: Motion layer segmentation of Garden, Bottom: motion 
layer segmentation of Car 
 

In order to smooth out the segmentations and reduce the 
error near object boundaries, Markov Random Field based 
post-processing has been applied. Figure 14 shows MRF 
based smoothing results on sequence Garden and Car. 
However, as we apply MRF based smoothing on Stefan, 



   
 
 

8 

we tend to miss the small region of different motion of the 
tennis racket. Though the segmentation around the torso of 
the player becomes stricter, but the motions of the lower 
part of the body of the player and the tennis racket have 
been merged with the background.  
Thus, MRF isn’t always a win as shown in Figure 15.  

        

         
Figure 15: segmentation after MRF smoothing. Top: 
segmentation from forward warping. Bottom: segmentation from 
backward warping. Segment of tennis racket (before MRF as in 
Figure 13) does not have any associated regions for both forward 
and backward warping after MRF 

5. Concluding remarks 
We propose improvement towards hierarchical video 
segmentation using early and mid-level visual processing. 

We have presented an improvement to the state-of-the-
art color-based supervoxel segmentation methodology, 
called “Streaming Graph-based Hierarchical” segmented 
method by incorporating motion information. We have 
evaluated the performance of our approach vis-à-vis the 
performance of streamGBH on different videos and have 
shown that our approach, streamGBH+, produces 
improved supervoxels compared to the state-of-the-art. 
 We also propose an extension to streamGBH+ 
from supervoxel to layered representation. We exploit the 
supervoxels as an initialization for the estimation of 
dominant affine motion regions followed by merging of 
such motion regions based on their geometric distance. 
 We plan to evaluate the performance of the 
streaming hierarchical motion-layer segmentation on other 
motion analysis database in near future. 
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