
Integrating Surface Normal Vectors using
Fast Marching Method

Jeffrey Ho1, Jongwoo Lim2, Ming-Hsuan Yang2, and David Kriegman3

1 Department of CISE, University of Florida
Gainesville, FL USA
jho@cise.ufl.edu

2 Honda Research Institute
Mountain View, CA USA

{jlim, myang}@honda-ri.com
3 Department of Computer Science and Engineering, University of California

San Diego, CA USA
kriegman@cs.ucsd.edu

Abstract. i Integration of surface normal vectors is a vital component
in many shape reconstruction algorithms that require integrating surface
normals to produce their final outputs, the depth values. In this paper,
we introduce a fast and efficient method for computing the depth val-
ues from surface normal vectors. The method is based on solving the
Eikonal equation using Fast Marching Method. We introduce two ideas.
First, while it is not possible to solve for the depths Z directly using
Fast Marching Method, we solve the Eikonal equation for a function W
of the form W = Z +λf . With appropriately chosen values for λ, we can
ensure that the Eikonal equation for W can be solved using Fast March-
ing Method. Second, we solve for W in two stages with two different λ
values, first in a small neighborhood of the given initial point with large
λ, and then for the rest of the domain with a smaller λ. This step is
needed because of the finite machine precision and rounding-off errors.
The proposed method is very easy to implement, and we demonstrate
experimentally that, with insignificant loss in precision, our method is
considerably faster than the usual optimization method that uses conju-
gate gradient to minimize an error function.

1 Introduction

Many shape reconstruction algorithms in computer vision require integrating
surface normal vectors. Reconstruction algorithms that use multi-view corre-
spondences, such as structure from motion, generally recover the depth values
directly from the pixel correspondences. However, algorithms that depend on ex-
ploiting illumination effects, such as photometric stereo and shape from shading,
the depth values in general cannot be computed directly. Instead, under the usual
Lambertian assumption, the normal vectors of the object’s surface are recovered,
and the depth values are obtained by integrating the surface normals. Successes
abound in applying these techniques to important reconstruction problems in

computer vision, ranging from the human face reconstruction [1] to the more re-
cent optical-flow based object reconstruction from video sequences [2]. And in all
these successes, integration of normal vectors is an important part of the story.
This paper proposes a new method for integrating surface normals, which, with
insignificant loss in precision, is about two order of magnitude faster than the
traditional algorithm that uses conjugate descent to minimize some error func-
tion. This improvement in performance is particularly noticeable on large-scale
problems, with images containing up to two million pixels.

The normal integration problem can be stated very simply as follows. For an
usual XY grid, we are given a normal vector N = N(x, y) at each grid point
(x, y). The task is then to recover a surface S, represented by the height function
Z(x, y), such that N is a normal vector field of S. A simple calculation shows
that a normal vector of S at a point (x, y) is given by the formula,

N(x, y) = (
∂Z

∂x
,
∂Z

∂y
,−1). (1)

In the following discussion, we will adhere to the convention and denote
quotients Nx

Nz
and Nx

Nz
by P and Q, respectively. Since the normal vector is only

defined up to multiplication by a constant, for any normal vector N, the ratios
of its x and y components with its z-component are the partial derivatives of Z
with respect to x and y, respectively. Namely,

∂Z

∂x
= −Nx

Nz
= −P, (2)

∂Z

∂y
= −Ny

Nz
= −Q, (3)

where Nx, Ny and Nz are the x, y and z components of N. A straightforward way
of solving this system of PDEs is then to minimize the following error function
over the entire grid [3]:

E(Z) =
∑
i,j

(
∂Z

∂x
+

Nx

Nz
)2 + (

∂Z

∂y
+

Ny

Nz
)2. (4)

The error function E is a quadratic function of its variables, zi,j , the values
of the function Z at the grid point (i, j). In principle, its global minimum can
be determined by solving the K-by-K4 linear system Ax = b derived from the
condition,

∇E = 0. (5)

While this is perfectly doable, it is definitely not recommended for a large system.
For example, on an image of size 1401-by-1401, the dimension of the linear
system above is roughly two millions. While A is sparse, it is still a daunting
task to solve the linear system Ax = b directly using, e.g. LU factorization,
4 K is the number of grid points.

which has the complexity of O(K3). Therefore, conjugate gradient is often used
to find a minimum of E . The main problem with this approach is the speed of
convergence. As is well-known, it depends on the initial point (some given height
function Z) that starts the iteration as well as the conditioning of the matrix
A. Of course, it also depends on the size of the problem. Not surprisingly, for
large scale problems, the convergence of the conjugate gradient optimization of
Equation 4 is often excruciatingly slow.

The other commonly used method for solving the normal integration problem
is to transform the problem to the frequency domain [4]. Suppose P and Q have
the following Fourier expansions:

P =
∑

cP (ωx, ωy)ei(ωxx+ωyy),

Q =
∑

cQ(ωx, ωy)ei(ωxx+ωyy),

where ωx, ωy are the fundamental frequencies. Then, a best surface (in the least
square sense) is then given by the formula

Z =
∑

c(ωx, ωy)ei(ωxx+ωyy),

where

c(ωx, ωy) =
iωxcP (ωx, ωy) + iωycQ(ωx, ωy)

ω2
x + ω2

y

Fast Fourier Transform can be applied to efficiently solve the problem. However,
as is well-known, FFT works well only with grids whose sizes are powers of 2,
and there are also other problems associated with this approach.

In this paper, we propose a fast method for solving the normal integration
problem. The algorithm is based on solving the Eikonal equation, and it uses the
Fast Marching Method developed by Sethian and others for solving the Eikonal
equation [5]. Our idea is as follows. While Fast Marching Method cannot be
applied directly to solve for the height values Z, we can nevertheless try to solve
for a function W of the form W = Z +λf , where λ is a parameter and f is some
known function. The idea is to find a pair of λ and f so that we can use Fast
Marching Method to solve for the Eikonal equation for W . Even though the idea
is simple, to the best of our knowledge, nothing similar has been reported in the
computer vision literature before.

This paper is structured as follows. In the next section, we describe the pro-
posed method of integration. In Section 3, we briefly review some related work,
and we describe the similarities as well as disparities between the problem we
solve here and the shape from shading problem. Experimental results comparing
our method with the direct optimization of Equation 4 using conjugate gradient
is reported in Section 4. The paper ends with a short summary and conclusion.

2 Integrating Surface Normals by Solving Eikonal
Equation

It is well-known that the problem of integrating surface normals is intimately
related to the solution of the Eikonal equation (e.g. [5]). Starting with the pair
of equations in Equations 2 and 3, we have the following Eikonal equation:

‖∇Z‖ =
√

P 2 + Q2. (6)

Therefore, a solution of the above equation is the desired height function Z. The
Eikonal equation has appeared in various places in computer vision literature.
For example, in many algorithms that use the level-set technique, Eikonal equa-
tion is often solved to produce a signed-distance function from the level set, and
this re-initialization of the level-set function is a crucial step. Lately, there has
been a considerable amount of interests in studying a modified Eikonal equation
for solving the shape from shading problems [6]. Our approach here is also about
solving the Eikonal equation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fig. 1. Left: A function with two local minimums that cannot be recovered using
Fast Marching Method. Right: We solve for W with two different λ values in two
complementary regions.

The Fast Marching Method [5] provides a very efficient method to solve
the Eikonal equation. Starting with an initial value at some given point u, it
determines the Z value at every point by computing the time of arrival of an
expanding wavefront. This method is very efficient, and it has the time complex-
ity of roughly O(K log K) with K the number of grid points, using an auxiliary
heap structure for keeping track of the wavefront. In addition, it is also very
easy to implement. Unfortunately, Fast Marching Method cannot be applied di-
rectly here. For one thing, the initial point u has to be the global minimum of Z
and in general, this information is not available. Furthermore, it will also have
a difficulty dealing with functions that have local minimums. For example, the
simple function depicted in Figure 1(Left) with two local minimums cannot be
recovered by a straightforward application of Fast Marching Method. A modi-
fied Fast Marching approach [5][7] is to determine the local minimums first, and

starting from these local minimums, every step extends reconstruction to higher
depths and the entire reconstruction is then accomplished in one single pass.
However, in our problem, we do not assume that we know the locations of these
local minimums. In principle, one can detect the local minimums by determining
the locations where ∂Z/∂x = ∂Z/∂y = 0, and the Hessian

H(x, y) =

(
∂2Z
∂2x

∂2Z
∂y∂x

∂2Z
∂x∂y

∂2Z
∂2y

)
(7)

is positive definite. However, with the noise present in the data as well as quan-
tization effect, there is no guarantee on how accurately these local minimums
can be located.

Instead, we propose to solve the Eikonal equation for a function W of the
form

W = Z + λf, (8)

where λ is a constant and f is some function such that W is a function with
one single global minimum at the initial point u and without any other critical
points. In a way, the function f is here to cancel off any critical point of Z so that
W is critical point free except at u. In particular, the level-set W−1(c) is always
topologically the same for any value of c such that W−1(c) contains more than
one point. Clearly, W can be solved using Fast Marching Method, and hence Z
can be recovered from W if f and λ are known.

Since we are solving the height function Z over a finite domain, we can as-
sume that both Z as well as its derivatives are bounded, |Z| < c1 and ‖∇Z‖ < c2.
In practice, this is not a restrictive assumption since the surfaces been recovered
by most shape reconstruction algorithms are often assumed to be smooth, and
in many variational approaches [8], there is usually a smoothing term that min-
imizes the norm of ∇Z anyway. With this assumption in mind, we take f to be
the squared-distance function (from the point u = (ux, uy)):

f = (x− ux)2 + (y − uy)2.

Without loss of generality, we assume that the initial point u is the origin in the
following discussion. The derivatives of f vanish at the origin; therefore, u is not
a critical point of W = Z + λf unless it is a critical point of Z. However, with
sufficiently large λ, one can show that the critical points of W = Z + λf are all
confined to a disk centered at origin with radius r = q/2, where q is the grid
spacing, the distance between two neighboring grid points:

Lemma 1. Suppose ‖∇Z‖ < c2. If λ > c2
2R for some real number R, then

W = Z +λf has no critical point outside of a disk Dr centered at the origin with
radius R.

The proof is trivial since in the region outside Dr, ‖∇f‖ > 2R and ‖λ∇f‖ >
2Rλ > c2 > ‖∇Z‖. That is, ∇W = ∇Z + λ∇f can never be zero outside of
Dr since ∇Z and λ∇f can never be the same. Therefore, in principle, we can
choose a sufficiently large λ such that W only has critical points in the disk of

radius q/2. Since we are computing everything on the grid, these critical points
will be invisible, and we can treat the origin as the only critical point of W . The
constant c2 can be determined in a single pass over the input datum P and Q.
Note that since we know the derivatives of Z as well as those of f , the Eikonal
equation for W is simply

‖∇W‖ =
√

(P + 2x)2 + (Q + 2y)2. (9)

Once W is computed, Z can be easily recovered.
While the approach above is mathematically valid, because of finite machine

precision, large λ would have incurred large rounding-off errors for the Z values.
The situation is particularly urgent for points far away from the origin, where
the term λf would have been considerably larger than Z. In this region, we
prefer a small λ, while in the region close to the origin, we can accommodate a
larger value for λ. Our second idea is then to solve the problem in two stages.
In the first stage, we solve for Z in a small neighborhood of the origin, e.g., in a
disk of radius R = 1. In this region, we can use larger values for λ because the
term λ(x2 +y2) will in general still be manageable. In the second stage, we solve
Z for the rest of the domain using the result from the first stage as the initial
values. By the Lemma above, we can take λ to be c2

2 + 1. See Figure 1(Right).
In our implementation, we choose the neighborhood Dr beforehand, and we fix
it to be a window W of size, say 15-by-15, centered at the given point u. We
take λ to be

λ = max
p=(x,y)/∈W

‖∇Z‖
2‖p‖

+ 1 = max
p=(x,y)/∈W

√
P 2 + Q2

2
√

x2 + y2
+ 1. (10)

Again, λ can be determined in a single pass over the input datum P and Q.
The other way to solve for the Z values in a small neighborhood of the

origin is to explicitly invert the linear system Ax = b. Since the neighborhood
is supposed to be small, it makes sense to solve the system directly, and the
inversion process is relatively cheap. In particularly, if we fix the size of this
neighborhood W, and because A depends only on the connectivity of W, the
LU factorization of A can be computed off-line and the online inversion of the
linear system is then fast and effortless.

3 Comparison with Shaping from Shading Literature

One common method for solving the shape from shading problem is to solve an
Eikonal equation of the form [5]:

‖Z‖ =

√
1
I2
− 1. (11)

Here we assume that the single light source is from the direction (0, 0, 1), and
the Lambertian object has uniform albedo of value 1. I above denotes the image

intensity value. Many papers have been devoted to solving this equation (e.g.
[6]). We point out, however, that the major distinction between our problem of
integrating surface normal vectors and the shape from shading problem formu-
lated above is that in our case, we have the values for the x and y components
of ∇Z, while in the shape from shading problem, only the magnitude of ∇Z is
known, and it is related to the intensity value through the equation above.

It is precisely because we know the x and y components of ∇Z, we can
solve the Eikonal equation for W in Equation 9 since the right hand side can
be computed. An equation analogous Equation 9 is not available for the shape
from shading problem. Therefore, more elaborated scheme has to be designed in
order to solve the Eikonal equation efficiently.

Finally, we also mention one important fact about the comparison between
using the proposed method and the direct minimization of Equation 4 using
conjugate gradient descent. While Fast Marching Method is unquestionably effi-
cient in solving the Eikonal equation, it is not an iterative process and therefore,
there is no way to further improve the quality of the solution. Typically, as in
the experiments reported in the next section, there will always be errors between
the reconstructed depths and the true depths. In our experiment, the error is
usually at most 1% of the true depth value. The point we try to make in this
paper is that to reach the precision obtained via our method would usually re-
quire conjugate gradient to run as much as 200 times longer. However, being an
iterative scheme, conjugate gradient can keep running until it reaches a global
minimum (or within the given tolerance set by the machine precision and the
user). Therefore, there are two ways to apply our proposed method in a normal
integration problem. If the precision requirement is stringent (with relative error
< 10−3), one can use the proposed method to quickly obtain an initial surface
estimate, and feed this result into an efficient optimization method to yield a
more precise result. On the other hand, if the precision requirement is not too
demanding, the output of our method will usually be sufficient.

4 Experiments and Results

In this section, we report our experimental results. All experiments reported
below were run on a 3.19 GHz DELL Pentium desktop computer with 2.00 GB
of RAM running Windows XP. We implemented the proposed method using
a simple C++ implementation without any optimization except a heap struc-
ture for keeping track of the front points and their neighbors. We compare the
performance of the proposed method with the standard conjugate gradient min-
imization of Equation 4 5. The implementation of the conjugate gradient descent
is taken straight out of [9]. Except for the Brent line minimization, no further
optimization of the code has been implemented.

5 The standard conjugate gradient without line search usually fails to converge to the
precision we required. Therefore, we include the line minimization to ensure that the
iterative process will converge to the required precision.

Below, we provide two types of experiments. In the second group of experi-
ments, we work with the (noisy) normal vectors of a human face estimated using
the photometric stereo algorithm [1]. In the first group of experiments, which is
our main focus, we work with surfaces with known depths and normal vectors.
The goal is to compare the speed of our method and that of the conjugate gradi-
ent descent under the same precision requirement. For each of the four functions
Z = Z(x, y) given below, we compute the normals of the surface represented
by Z using Equation 1. The estimated depth value Z ′ is computed using both
methods at each point, and also the relative error

ε =
|Z − Z ′|
|Z|

.

The mean, median and also the standard deviation of the relative errors are
computed for each function, and they serve as the measurements used to compare
both methods.

4.1 Experiment with Simulated Data

In this group of experiments, we study the performance of our method for sur-
faces with known depths and normals. We run the experiments on a grid of size
1401×1401, and there are roughly two million grid points. In all experiments, it
takes less than three seconds (2.677 to be exact) for our method to finish. Note
that the speed of our method is independent of the value of λ as well as the
chosen initial starting point. We compute the mean, median and standard devi-
ation of the relative errors of the reconstruction result given by our method. We
then run the conjugate gradient (CG) with sufficiently many iterations in order
to reach the same precision requirement. In the experiments reported below, CG
usually takes about 250 to 350 iterations to converge to the required precision,
and this translates into roughly from 475 to 700 seconds. Averagely, our method
is about 200 times faster than the conjugate gradient method.

Sphere For the first experiment, we look at the simplest case of a sphere,

Z =
√

1.52 − x2 − y2

over the domain D ≡ {(x, y)| − 0.7 ≤ x, y ≤ 0.7}. In this example, we take the
domain Dr to be the disk with radius r = 7 grid points. For the first experiment,
the initial starting point is chosen at the center of the grid, the apex of the sphere
over the domain D. We pick the optimal value of λ = 6 determined by Equation
9. The mean, median and the standard deviation of the relative errors with this λ
setting are 0.0046, 0.0045, and 0.0015, respectively, which is sufficiently accurate
for many applications.

Next, we vary the value of λ from 0 to 100. The mean, median and the stand
derivation for these values of λ are plotted in Figure 2. The optimal λ value of 6 is
very close to the empirical optimal value of λ = 4, which gives the mean, median,

standard deviation of 0.0042, 0.0042, and 0.0015, respectively. Note that with
λ = 0, which corresponds to a direct application of Fast Marching Method to
solve the Eikonal equation, the result is, as expected, completely incorrect. Also
as expected, as the value of λ increases, the rounding-off errors start creeping in
and accumulating, the reconstruction result begins to deteriorate. However, even
with the relatively large value of λ = 60, the median and mean of the relative
error is still below 3% with standard deviation less than 2%.

Fig. 2. From Left to Right: Plots of the mean, median and standard deviation of the
relative errors of the reconstruction results for the sphere with λ ranging from 0 to 100.

In Figure 3, we show the reconstruction results using λ = 0, 6, 100. Clearly,
the reconstruction result for λ = 0 is completely incorrect.

Fig. 3. From Left to Right: Reconstruction results for the sphere using λ = 0, 6 and
100, respectively. The images are colored-coded according to depth values.

Monkey Saddle While we have passed the rudimentary test using sphere, the
next example, which is a little more challenging, uses the function

Z = x(x2 − 3y2) + 3.

Instead of the global maximum in the example above, the origin is now a saddle
point of the function Z. We run the experiment over the same range of λ, from

0 to 100. The mean, median and the stand derivation of the relative errors for
these values of λ are plotted in Figure 4. Again, we observe the similar pattern
as above that when λ = 0, the reconstruction result is completely incorrect.
Furthermore, the quality of the reconstruction, as measured by the mean, median
and standard deviation of the relative errors, deteriorates as λ increases. In this
example, we have used λ = 12 and it is close to the empirical optimal value of
λ = 18.

Fig. 4. From Left to Right: Plots of the mean, median and standard deviation of the
relative errors of the reconstruction results for the Monkey Saddle with λ ranging from
0 to 100.

Fig. 5. From Left to Right: Reconstruction results for the Monkey Saddle using λ =
0, 12 and 100, respectively.

Sinusoidal Function and Gaussian Figures 6 and 7 display the reconstruc-
tion results for the following two functions:

Z = sin(2π(x2 + y2)) + 3 (12)

Z = e−x2−y2
+ 10 (13)

For the gaussian exponential function, again, we see that the reconstruction
result for λ = 0 is incorrect. For the function Z = sin(2π(x2 + y2)) + 3, instead
of displaying the reconstruction result for λ = 0, we show the result with λ = 4,
which is clearly incorrect and incomplete.

Fig. 6. From Left to Right: Reconstruction results for the function Z = sin(2π(x2 +
y2)) + 3 using λ = 4, 30 and 100, respectively.

Fig. 7. From Left to Right: Reconstruction results for Z = e−x2−y2
+10 using λ = 0, 8

and 100, respectively.

4.2 Experiment with Real Data

In this experiment, we work with the normal vectors provided in the Yale Face
Database B [1]. Images of each of the ten individuals in the database were taken
under different illumination conditions. The normal vectors are estimated using
the photometric stereo algorithm of [10]. Figure 8 shows the reconstruction result
using our method for one individual in the database. Since the image here is of
size 168 × 192, which is considerably smaller than the ones we used above, it
takes less then 0.02 second for our method to complete the integration.

Fig. 8. From Left to Right: Three views of the reconstruction result of one individual
in the Yale Face Database B.

5 Conclusion

In this paper, we have presented a method for computing depth values from
surface normal vectors. The proposed method is based on the Fast Marching
Method for solving the Eikonal equation. Our main contribution is the obser-
vation that while we cannot apply Fast Marching Method directly to solve the
Eikonal equation for the unknown depth Z directly, we can solve the Eikonal
equation for a function W , which is the sum of the unknown depth plus and
some function. The idea is that W is a function with one critical point and Fast
Marching Method can be applied to solve W quickly, and hence Z recovered.
Because of the finite machine precision and rounding-off errors, we are forced to
solve W in two stages, first in a small neighborhood containing the given initial
point and then solve W for the rest of the domain. We have presented several
different experiments with synthetic examples, which allow us to examine pre-
cisely several aspects of our algorithm. In all examples, we have demonstrated
that given the same precision requirement, the proposed method is considerably
faster than the old method based on conjugate gradient descent. Since surface
normal integration is an important component in many shape reconstruction
algorithms, we believe that the results presented in this paper will be of interest
to a sizable portion of the computer vision community.

6 Acknowledgements

This work was partially supported by NSF IIS-0308185, NSF EIA-0224431, NSF
CCR 00-86094, University of Florida and the Honda Research Institute.

References

1. Georghiades, A., Kriegman, D., Belhumeur, P.: From few to many: Generative
models for recognition under variable pose and illumination. IEEE Transactions
on Pattern Analysis and Machine Intelligence 23 (2001) 643–660

2. L. Zhang, B. Curless, A.H., Seitz, S.: Shape and motion under varying illumination:
Unifying structure from motion, photometric stereo, and multi-view stereo. In:
Proc. Int. Conf. on Computer Vision. (2003) 618–625

3. Horn, B.K.P., Brook, M.J.: Shape from Shading. MIT Press (1997)
4. Frankot, R., Chellappa, R.: A method of enforcing integrability in shape from shad-

ing algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence
10 (1988) 439–451

5. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Press
(1996)

6. Prado, E., Faugeras, O.: Shape from shading: A well-posed problem ? In: Proc.
IEEE Conf. on Comp. Vision and Patt. Recog. (2005) 158–164

7. A. Tankus, N.S., Yeshurun, H.: Perspective shape from shading by fast marching.
In: Proc. IEEE Conf. on Comp. Vision and Patt. Recog. (2004) 618–625

8. Trucco, E., Verri, A.: Introductory Techniques for 3D Computer Vision. Prentice
Hall (1998)

9. W. H. Press, S. A. Teukolsky, W.T.V., Flannery, B.P.: Numerical Recipes in C,
Second Edition. Cambridge Press (1992)

10. Yuille, A., Snow, D.: Shape and albedo from multiple images using integrability.
In: Proc. IEEE Conf. on Comp. Vision and Patt. Recog. (1997) 158–164

