
In Proceedings of ICCV '95Invariant-Based Recognition of Complex Curved 3D Objects fromImage ContoursB. Vijayakumar D. J. KriegmanCenter for Systems Science, Yale UniversityNew Haven, CT 06520-8267 J. PonceBeckman Institute, University of IllinoisUrbana, IL 61801AbstractTo recognize three-dimensional objects bounded bysmooth curved surfaces from monocular image con-tours, viewpoint-dependent image features must be re-lated to object geometry. Contour bitangents and in-
ections along with associated parallel tangents pointsare the projection of surface points that lie on the oc-cluding contour for a �ve-parameter family of scaledorthographic projection viewpoints. An invariant rep-resentation can be computed from these image featuresand used for modeling and recognizing objects. Mod-eling is achieved by moving an object in front of acamera to obtain a curve of possible invariants. Therelative camera-object motion is not required, and 3Dmodels are not utilized. At recognition time, invari-ants computed from a single image are used to indexthe model database. Using the matched features, inde-pendent qualitative and quantitative veri�cation pro-cedures eliminate potential false matches. Examplesfrom an implementation are presented.1 IntroductionOne of the primary goals of computer vision is ob-ject recognition; that is, given image data as input,determine the identity of objects in a scene. In itspurest form, 3D objects are observed from a single ar-bitrary viewpoint; the recognition system is given adatabase of object models and must determine whichof these models is most compatible with some sub-set of the image. Ideally, object models are acquireddirectly from images rather than being hand coded.Many approaches to recognition have been pro-posed. Broadly speaking, there are three classes ofgeometric representations: 3D descriptions such asstructural descriptions of volumetric primitives, poly-hedra, collections of 3D points, and algebraic surfacesexplicitly encode the object's geometry. Alternatively,objects are represented by their appearance in theform of a multiple-view representation such as an as-pect graph. Finally, it may be represented by a collec-tion of geometric invariants computed from image fea-tures. Depending on the representation, only certainimage features (vertices, straight lines, the silhouette,etc.) can be used for recognition. Speci�c algorithmsare a consequence of these choices and may tradeo�computational time, memory, and robustness.In this paper, we present a new invariant-based rep-resentation that can be employed to recognize com-plex curved 3D objects in a single image. Recently,

invariant-based recognition has received a great deal ofattention [12]. Most of this work deals with 2D (lami-nar) objects since the perspective projection image is aprojective transformation of the original shape. Morerecently, geometric constructions have been used toarrive at a projective transformation relating objectto image features for certain restricted classes of 3Dobjects (e.g. surfaces of revolution, generalized cylin-ders, etc.) [15]. One of the advantages of geometricinvariants is that they can be computed without us-ing any speci�c object information; hence, they canindex directly into a database of models. Using hashtables or trees, indexing can occur in time that is sub-linear with respect to database size [10]. However,some of the enthusiasm for invariant-based recogni-tion was dampened by the observation that there areno nontrivial invariants for the image of an arbitrary3D point set [1, 5, 11]. Consequently, a 3D point setcannot be represented by a single vector which is in-variant from all viewpoints.For smooth curved 3D objects, the line drawing isthe projection of visible points on the occluding con-tour (surface points where the line of sight lies in thetangent plane). Because the features themselves de-pend on viewpoint, it is not surprising that a curvedobject cannot be represented by a single vector of in-variants. In recent work on \HOT curves" [6, 8], itwas shown how a particular collection of 3D surfacecurves could be related to image features; taken overall viewpoints, the coordinates of the correspondingimage features de�ne a surface in some higher dimen-sional space. Unfortunately, these surfaces cannot bedirectly computed from images measurements { a 3Ddescription of the surface curves is required, and soa method for reconstructing these curves from an im-age sequence with known camera-object motion wasdeveloped [8] based on the work of [3, 4].In this paper, we extend the HOT curve approachby exploiting some of the same image features (bitan-gents and in
ections) and surface features (bitangentdevelopable and parabolic curves). For each of thesefeatures, we can de�ne another set of features calledparallel tangent points. Up to occlusion, these fea-tures are mutually visible over a �ve-parameter fam-ily of scaled orthographic projection viewpoints. Fromthese features, a function can be evaluated which isinvariant over this entire �ve-parameter family. Anobject can be modeled by moving it in front of a cam-era to reveal new feature points and obtain a curve of1



invariants. To completely model an object using thesefeatures, the object only has to be observed from atrajectory (curve) of viewpoints rather than from allviewpoints. Objects are then represented as collec-tions of invariant curves. To recognize an object inan image, an invariant is computed and used as anindex into a database of curves. Using the same fea-tures, independent qualitative and quantitative veri-�cation procedures eliminate potential false matches.Note that 3D object models are never used.In [13], Murase and Nayar also use curves de�ned inhigh-dimensional spaces as a basis for object recogni-tion. In their case, the curves are splines representingthe possible appearances of an object as a function ofviewpoint and illumination. They are embedded inthe space de�ned by the principal components deter-mined from a set of images of the object. Matchingis achieved by �nding the closest model curve to anew point computed by projecting the image into thisspace. This approach has only been implemented fora single degree of pose freedom.In the next section, we introduce the set of im-age features that are used to construct these invariantcurves and show their relationship to the correspond-ing 3D surface curves. In Section 2.2, we then presenta simple function of the coordinates of these featureswhose result is invariant for all viewpoints where thefeatures are visible. From a moving camera, a curveof invariants is obtained and used to model an ob-ject. From an image, a combination of indexing, con-strained search and an independent veri�cation proce-dure is used to recognize an object. The algorithm hasbeen implemented and examples are presented. Moredetails can be found in [14].2 Object RepresentationThe approach for recognizing curved objects isbased on using feature points of the image contourextracted from 2D images and computing measuresthat are invariant under viewpoint variations. Theprocess is divided into two stages, o�-line and on-line. During the o�-line modeling process, a sequenceof images of the object is taken either by moving anuncalibrated camera about the object or moving theobject in front of a camera. The images are processedto extract features, invariants are computed, and re-tained in a model base. During the on-line process,similar features are extracted from just one image ofthe curved object, and the invariants are used to in-dex model database. Returned matches are then veri-�ed using additional quantitative and qualitative con-straints. Let us now consider the speci�c features.We assume scaled orthographic projection in the sub-sequent discussion.2.1 Image FeaturesEstablishing a correspondence between image andobject features is a matter of combinatorics for poly-hedra because the image features are viewpoint inde-pendent and correspond to object edges and vertices.For a smooth curved surface, the occluding contouris viewpoint-dependent, and so point-to-point corre-spondences cannot be established. However a point-to-curve correspondence can be determined for two
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ec-tion points and bitangents resp.) [6, 7, 8].Now, consider parallel projection of a single limit-ing bitangent developable. This bitangent will fall onthe occluding contour for any viewing direction thatlies in the tangent plane, and the set of such viewingdirections forms a great circle on the view sphere.1 Inaddition, all surface points whose tangent planes areparallel to the tangent plane of the limiting bitangentwill also be part of the occluding contour, up to oc-clusion. Since all of these tangent planes are parallel,the tangents to the image contour at the projectionof these surface points will also be parallel. (See Fig-ure 1). We call the image points parallel tangent pointsand will use them along with the corresponding imagebitangent as features for recognition. These featuresare stable and easy to detect in images. From all view-points on the great circle, the set of tangent planes ofthe feature points project onto a set of parallel lines inthe image; for di�erent viewpoints on the circle, theset of lines di�er merely by a similarity transformationwhen the camera is calibrated or an a�ne transfor-mation otherwise. Such properties of parallel tangentfeatures in a di�erent context have been exploited byKutulakos and Dyer [9]. Parallel tangent points canalso be used as \interest points" in an a�ne-invariantbased recognition scheme for 2D objects as proposedby Lambdan et. al. in [10].When the entire limiting bitangent curve is con-sidered, the set of parallel tangent points de�nes afamily of surface curves. When modeling the object,any camera motion outside of the tangent plane willreveal a new pair of points on the limiting bitangentcurve, and consequently the entire family of curves canbe observed from a trajectory (a curve) of viewpoints.The same arguments apply to parallel tangents de�ned1This is true up to occlusion by an opaque object. Note thatwhen the limiting bitangent lies on the convex hull, it is visibleover the entire great circle of viewpoints.2



with respect to parabolic points; our subsequent dis-cussion will concentrate on bitangents, since they canbe measured very accurately in images and computede�ciently [15].2.2 Invariants from Parallel TangentsWe now derive a simple a�ne invariant from a mea-sured bitangent and corresponding parallel tangentpoints. Consider a bitangent and two parallel tan-gent points. These points and the common tangentdirection de�ne three parallel lines in the image whichcan be expressed as n � x + di = 0, i=1,2,3, where nis the common unit normal direction, and di is thedistance of line i from the origin. De�ne the distancevector to be d = (d2�d1; d3�d1). We now show thatthe projective coordinates of d are invariant under ana�ne transformation of the image plane.Let an a�ne image transformation be given by: x =Ax0 + b where A is a nonsingular 2x2 matrix andb 2 IR2. After applying this transformation, the linescan be written as:1jn0jn0 � x + n � b+ dijn0j = 0where n0 = An, and d0i = n�b+dijn0j is the distanceof the i-th transformed line from the origin. Thetransformed vector of distances between the lines isd0 = 1jn0j (d2 � d1; d3 � d1). Since d0 = �d with �being a non-zero scalar, the direction of the vectorsd0 and d are una�ected by an a�ne transformation.Equivalently, treating d and d0 as homogeneous coor-dinates, both d and d0 represent the same point in aone-dimensional projective space IP1. Thus the pro-jective coordinates of distances, (d2 � d1; d3 � d1) areinvariant up to an a�ne transformation of image coor-dinates. Another perspective on this invariant is thatthe ratio of the distances given by (d2�d1)(d3�d1) is also in-variant under an a�ne transformation.The implications of a�ne invariance follow. Sinceimage plane rotation, scaling and translations are asubgroup of a�ne transformations, the distance vectord is also a similarity invariant. The invariance prop-erty holds even if the camera is uncalibrated (that is,when the aspect ratio of the pixels are unknown).In general, a single image bitangent and the n cor-responding parallel tangent points at distances di,i = 1; � � � ; n from the developable de�ne a point(d1; � � � ; dn) in an n � 1 dimensional projective space,IPn�1. To visualize a point in IPn�1, it can be seenas a point on an n � 1 dimensional sphere embed-ded in an n dimensional Euclidean space given by1j(d1;���;dn)j (d1; � � � ; dn). The invariance of this measure-ment with respect to 3D rotation of the object aboutan axis aligned with the surface normal is the basis formodeling 3D curved objects.2.3 Representing Objects with a Curve ofInvariantsIn the previous section, we considered a measure-ment which is invariant over 3D rotations about the
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3D curved objectFigure 2. The geometry of parallel tangent curves.surface normal. We now show how a curve of invari-ants can be obtained from a sequence of images.A camera measures a feature point P0 (bitangentendpoint or in
ection) of the silhouette and n othersilhouette points Pi, (i = 1; � � � ; n) with parallel tan-gents. If t and n are the unit tangent and normalvectors to the image contour at P0, (t;n) form a basisof the image plane. We can then construct a right-handed orthonormal coordinate frame (t;n;v), wherev is the viewing direction. Let (v; t) form a basis ofthe tangent plane Tp that contains the limiting bi-tangent. For i = 1; � � � ; n, we writePi � P0 = xit+ yin+ ziv (1)where Pi � P0 denotes the vector joining Pi and P0.xi and yi are the image coordinates of the i-th featurewritten in the (t;n) basis. In (1) the quantities xi, yican be computed from image measurements. On theother hand zi, and the coordinates of t;n;v in a worldcoordinate system are unknown.So far, we have considered invariants extracted froma single image. For a camera or object moving alonga trajectory parameterized by time t, the bitangentdevelopable curve and family of surface points withparallel tangent planes will be observed. From the ob-served feature point P0(t) and parallel tangent pointsPi(t)(i = 1; � � � ; n), we de�ne a curve �n(t) as the traceof (x1(t); y1(t); � � � ; xn(t); yn(t)) 2 IR2n and the invari-ant curve, 	n(t) as the projection of �n(t) de�ned by(y1(t); � � � ; yn(t)) 2 IPn�1.An object can now be simply modeled. It is movedin front of an uncalibrated camera or equivalently anuncalibrated camera around a stationary object. Thebitangents and corresponding parallel tangents are de-tected in each image. To expose a new point on thelimiting bitangent developable or parabolic curve, thecamera is moved by a small amount in any directionexcept where the change in viewing direction lies in thecommon tangent plane of the features. In this manner,the limiting bitangent curves are fully revealed; the setof measured feature points are tracked through the se-quence of images yielding the curve �n(t) where n is3



the number of parallel tangent points that are trackedthrough a temporal sequence. The projection of �n(t)then de�nes the invariant curve 	n(t) 2 IPn�1, anda collection of such curves can be used to model anobject. Note that this representation is built withoutknowing the actual camera motion or reconstructingthe 3D surface.Until now, we have largely neglected occlusion; wenow show how this representation methodology canbe extended to allow for both self-occlusion duringthe model building procedure as well as occlusion (ormissing features) during object recognition.To account for occlusion during modeling and on-line recognition, we represent the invariant curve mod-els in multiple dimensions of the projective space.Consider for example, an invariant curve 	41 con-structed from four parallel tangent points. An im-age with three corresponding parallel tangents must bematched to invariant curves in IP2 de�ned from threeof the four parallel tangents tracks. There are �43� = 4such combinations corresponding to projecting fromfour homogeneous coordinates to three coordinates. Ingeneral, from an invariant curve 	nj (t) 2 IPn�1, we cande�ne n invariant curves, 	n�1i (t)(i = 1; :::; n) 2 IPn�2which are the projections of 	n(t) along the n homoge-neous coordinate axes of IPn�1. This interdependenceof invariant curves across the various dimensions ofprojective space can be exploited in implementing ane�cient and fast indexing scheme during the recog-nition phase as will be explained in Section 3. Therelationship of invariant curves across dimensions canbe visualized as a tree structure with a node indicat-ing a speci�c invariant curve (i.e., for a speci�c j)	ij(t) 2 IPi�1 its parents representing curves in IPiwhose projections onto IPi�1 in one of the i directionsis 	ij(t) and its children being the i�1 curves in IPi�2which 	ij(t) projects onto.Note that for each bitangent, the correspondingparallel tangents can be uniquely ordered by increas-ing signed distance during both modeling and on-linerecognition. Thus, there is no need to consider all per-mutations of the parallel tangents during recognition.In summary, an object is modeled as a collectionof invariant curves, 	ij(t) 2 IPi�1(i = 3; � � � ; n) and(j = 1; � � � ; �ni�) where n is the maximum number ofparallel tangent features extracted in a single image.3 Object RecognitionThe computed invariant curves can be used for on-line recognition, and here we present a simple algo-rithm. Given an arbitrary image, some edge detectionand linking method is used to compute a line draw-ing. From the image contours, �rst bitangents (or in-
ections) and then the corresponding parallel tangentsare determined.From a bitangent and its n corresponding paralleltangents extracted on-line, the recognition process be-gins by indexing into the database with all �n3� combi-nations of invariants in IP2. The indexing procedure
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a. b. c. d.e. f. g. h.Figure 4. Image processing for modeling and testing. (a) Image of a mallard decoy. (b) a pintail decoy. (c,d) Extractedbitangents and a sample set of parallel tangents of (a). (e) Invariant curves, 	3j(t) of both decoys drawn on a unit sphereembedded in IR3. (f) Invariant curves on a portion of the unit sphere obtained from three non-overlapping trajectories forthe same bitangent; they are labeled with \2", \4" and \�.' (g,h) A test image of the pintail and mallard decoys alongwith the bitangents extracted.formations [3, 7]. Second, the direction toward or awayfrom the bitangent of the outward pointing normal ata point on the image contour is also invariant.An additional quantitative constraint can also bederived from trajectory of feature tracks used to modelan object. Reconsider Figure 2. Di�erentiating (1)with respect to time and taking the dot product of theresult with n yields after some simple manipulation:2_yi + xi _t � n+ zi _v �n = 0 (2)A match between measured and modeled pointsimplies that the viewing directions for the two im-ages must lie in the tangent plane of the matchedfeature; they di�er by a rotation about the surfacenormal of the feature. This is the situation illustratedin Figure 3. Let the second viewing direction be v0and construct as before the corresponding coordinatesystem(t0;n0;v0). Since the camera has remained inTp, n = n0. All of the feature point Pi(i = 0; � � � ; n)will be visible in both images up to self occlusion.Let � be the angle of rotation about n which mapsv onto v0. The change of coordinates between the twoframes can be written as( x0 = x cos � � z sin �;y0 = y;z0 = x sin � + z cos �: (3)Combining (2) and the �rst row of (3) yields( _v � n)(x0 � xi cos �) � sin �( _yi + xi _t � n) = 0 (4)2We take advantage of two facts to simplify the expression ofthe dot product: since the points P0 and Pi lie on the occludingcontour, the tangents to the corresponding surface curves givenby _P0 and _Pi lie in the tangent plane i.e., _Pi �n = 0 and secondly,the vector n is a unit vector and is therefore orthogonal to itsderivative.

For every triplet of parallel tangent features P1, P2,P3 to P0, we de�ne vectors x = (x1; x2; x3)T , x0 =(x01; x02; x03) and _y = ( _y1; _y2; _y3). Equation (4) can berewritten in vector form as( _v � n)(x0 � cos �x) � sin �( _y + (_t � n)x) = 0 (5)This implies that vectors x0�cos �x and _y+(_t�n)x arelinearly dependent or equivalently their cross-productis zero, i.e.,( _t � n)x� x0 + cos �x � _y + _y � x0 = 0 (6)In turn, (6) admits a solution in cos � and _t � n if andonly if the vectors x�x0, x� _y, and _y�x0 are linearlydependent, or equivalently, if the vectors x, x0, and _yare linearly dependent. Algebraically, this conditioncan be written as Det(x;x0; _y) = 0: (7)Vector x0 is formed from triplets of components ofmeasured feature points in the tangent direction t0written in the appropriate (t0;n0;v0) coordinate sys-tem, and the vectors x and _y correspond to the hy-pothesized matches. Only matches satisfying the zero-determinant condition are retained, and the rest arediscarded. In practice, the determinant will not eval-uate to precisely zero for a correct match due to mea-surement noise. One approach is to simply check ifdeterminant is within some interval about zero. How-ever, because the entries of the matrix can have a largerange of values, a single threshold is inappropriate.Because of noise, the true coordinates (x; y) are re-lated to the measured feature coordinates (~x; ~y) by(~x; ~y) = (x; y) + (nx; ny) where (nx; ny) is the imagenoise. Assuming only that nx and ny are within some5



a. b. c. d.e. f. g. h.Figure 5. Recognition results: (a-d) Test bitangent and parallel tangent features. (e-h) corresponding matches from themodel base after indexing and veri�cations. Filled circles in the test images indicate all of the parallel tangent featuresextracted for the indicated bitangent. The triangles in corresponding drawings show the features that were matched.interval about zero (e.g. plus or minus one pixel), thedeterminant can evaluate to some interval. If zero lieswithin the interval, the match is considered to passthe veri�cation test.4 Implementation and ResultsWe have implemented the invariant-based model-ing and recognition algorithm described in Sections 2and 3, and will demonstrate it with two duck decoys(a mallard in Fig. 4.a and a pintail in Fig.4.b). Thedecoys were placed on a pan-tilt stage, and image se-quences were acquired by a �xed camera with a 50mmlens under scaled orthographic projection conditions.Sequences of about 100 images were taken of each ob-ject. Each image was passed to an image process-ing routine: The edges were �rst detected via sim-ple thresholding, the image bitangents were trackedthrough scale space as in [8], and the correspondingparallel tangent points were detected from zero cross-ings of the angle between the image contour tangentand the given bitangent. For each decoy, we retainedonly 9 bitangents some of which are shown in Fig-ure 4.c. Parallel tangent features for a sample bitan-gent are shown in Figure 4.d. The bitangents andparallel tangent features obtained are then trackedthrough the image sequence to construct the invari-ant curves. Figure 4.e. shows the invariant curvesin IP2 for all of the bitangents of the two decoys; theyare drawn on a portion of the unit sphere embeddedin IR3. The maximumdimension represented for bothdecoys was 5 and the minimum 3. The mallard decoywas represented by 4, 27 and 72 curves in dimensions5, 4 and 3 respectively and the pintail by 1, 15 and 57curves in dimensions 5, 4 and 3 respectively.As an interesting experiment, three di�erent se-quences of the pintail duck were obtained by panningthe duck at three di�erent tilt angles. The image ofthe same bitangent developable surface was trackedin all three sequences, and an invariant curve in IP2was computed for each sequence. According to ourdevelopment in Section 2, the three curves should co-incide and lie on a common curve rather than de�ningthree disjoint curves. This is demonstrated in Fig-ure 4.f. The three overlapping curves were generated

using 3 non-overlapping trajectories over a 81� of panand 36� of tilt. This experiment demonstrates the sta-bility with which these features can be computed andhints at their usefulness for recognition.Figure 4.g shows an image of both decoys with par-tial occlusion taken on-line. 33 bitangents were ex-tracted from this test image and are shown along withthe detected silhouette in Figure 4.h. Of these 33 bi-tangents, only six correspond to the projection of bi-tangent developables used to model the pintail decoyand four to model the mallard decoy. The other bi-tangents were either not included in the model or havean end-point on each duck. With a model databasecontaining both decoys, the recognition algorithm wasapplied to all 33 bitangents and their correspondingparallel tangent features. Figure 5 shows all of thematches that were returned. Note that for each entryin the database, we included a pointer to the imageused to de�ne the entry, and so the image can be dis-played; obviously, neither the pointers nor the actualimages need to be retained in an actual recognitionsystem. Figures 5 a,b,c and d, show the matched bi-tangents along with all of the parallel tangents thatwere considered for matching. After indexing and sub-sequent veri�cations, the model images along with thematched features are shown in Figures 5 e, f, g and hrespectively. Note that the four features matched thepintail decoy. The mallard could not be recognizedeven though four bitangents were detected and arepart of the model sequence. Using simple threshold-ing, the mallard's head was not segmented where itoccluded the pintail duck, and so there were insu�-cient parallel tangents to recognize the mallard.In contrast to the previous example, a second ex-ample in Figure 6 shows an image of the pintail ducktaken from a viewpoint which was drastically di�er-ent than any viewpoint used to model it. Figure 6.cshows a match when indexing the model database us-ing the features de�ned by the bitangent between thebeak and head. Note the signi�cant rotation aboutthe surface normal between the two images. Addi-tional examples have been presented in [14].6



a. b. c. d.Figure 6. A second recognition example with the test image signi�cantly di�erent from the images used for modeling.(a) Test image. (b) Feature for which match was found. (c-d) Returned match and image used for modeling.5 DiscussionThough only parallel tangents were considered inthis paper, it is easy to show that any viewpoint de-pendent feature such as a vertex can be used in exactlythe same manner; in fact, some of the parallel tangentsarise from the image of surface creases. Except for asimply voting on an object's identity, each of the bi-tangents is treated independently. We are hoping to�nd a mechanism for determining if a set of matches ismutually feasible; this will o�er greater discriminatingpower than simply voting.Recognition will only be reliable if the stored repre-sentation of a model is complete. Therefore, one needsto extract as much information as possible during themodeling process. Here, this means complete invari-ant curves. By moving the camera along a trajectorythat fully reveals each limiting bitangent curve, entirelengths of the associated parallel tangent curves willalso be exposed. During modeling, it will be possibleto automatically select the next camera position usingimage data. Presently, we have used �xed image se-quences to model the object and not actively selectednew camera positions.Determining the surface geometry of objects fromimages is a fundamental problem in computer vision.Methods are available for reconstructing a 3D surfacefrom the image pro�le when the camera motion isknown [4, 2]. Now consider moving an object withunknown motion, perhaps by simply manually turn-ing it in front of a camera. When two viewpoints di�erby a rotation about the normal of some bitangent de-velopable, they can be identi�ed using the presentedinvariant and veri�cation procedure. From this corre-spondence, constraints on the camera velocity can bedetermined. It may be possible to fully determine thecamera motion from these constraints; existing meth-ods can then be applied to reconstruct the surface.Finally, the presented method clearly only works forobjects which are complicated enough to actually havea bitangent developable and parabolic curves with thecorresponding parallel tangents. Thus, the presentedinvariant should only be considered a component of acomplete recognition system.Acknowledgments: This work was supported in partby the National Science Foundation under Grant IRI-9224815. D. Kriegman was supported in part by a Na-tional Science Foundation NYI Grant IRI-9257990. JeanPonce was supported in part by the Center for AdvancedStudy of the University of Illinois at Urbana-Champaign.We gratefully acknowledge Tanuja Joshi for some very use-ful comments.
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