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Abstract

To recognize three-dimensional objects bounded by
smooth curved surfaces from monocular image con-
tours, viewpoint-dependent image features must be re-
lated to object geometry. Contour bitangents and in-
flections along with associated parallel tangents points
are the projection of surface points that lie on the oc-
cluding contour for a five-parameter family of scaled
orthographic projection viewpoints. An invariant rep-
resentation can be computed from these image features
and used for modeling and recognizing objects. Mod-
eling ts achieved by moving an object in front of a
camera to obtain a curve of possible invariants. The
relative camera-object motion is not required, and 3D
models are not utilized. At recognition time, invari-
ants computed from a single image are used to index
the model database. Using the matched features, inde-
pendent qualitative and quantitative verification pro-
cedures eliminate potential false matches. Framples
from an implementation are presented.

1 Introduction

One of the primary goals of computer vision is ob-
ject recognition; that is, given image data as input,
determine the identity of objects in a scene. In its
purest form, 3D objects are observed from a single ar-
bitrary viewpoint; the recognition system is given a
database of object models and must determine which
of these models is most compatible with some sub-
set of the image. Ideally, object models are acquired
directly from images rather than being hand coded.

Many approaches to recognition have been pro-
posed. Broadly speaking, there are three classes of
geometric representations: 3D descriptions such as
structural descriptions of volumetric primitives, poly-
hedra, collections of 3D points, and algebraic surfaces
explicitly encode the object’s geometry. Alternatively,
objects are represented by their appearance in the
form of a multiple-view representation such as an as-
pect graph. Finally, it may be represented by a collec-
tion of geometric invariants computed from image fea-
tures. Depending on the representation, only certain
image features (vertices, straight lines, the silhouette,
etc.) can be used for recognition. Specific algorithms
are a consequence of these choices and may tradeoff
computational time, memory, and robustness.

In this paper, we present a new invariant-based rep-
resentation that can be employed to recognize com-
plex curved 3D objects in a single image. Recently,
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invariant-based recognition has received a great deal of
attention [12]. Most of this work deals with 2D (lami-
nar) objects since the perspective projection imageis a
projective transformation of the original shape. More
recently, geometric constructions have been used to
arrive at a projective transformation relating object
to image features for certain restricted classes of 3D
objects (e.g. surfaces of revolution, generalized cylin-
ders, etc.) [15]. One of the advantages of geometric
invariants is that they can be computed without us-
ing any specific object information; hence, they can
index directly into a database of models. Using hash
tables or trees, indexing can occur in time that 1s sub-
linear with respect to database size [10]. However,
some of the enthusiasm for invariant-based recogni-
tion was dampened by the observation that there are
no nontrivial invariants for the image of an arbitrary
3D point set [1, 5, 11]. Consequently, a 3D point set
cannot be represented by a single vector which is in-
variant from all viewpoints.

For smooth curved 3D objects, the line drawing is
the projection of visible points on the occluding con-
tour (surface points where the line of sight lies in the
tangent plane). Because the features themselves de-
pend on viewpoint, it is not surprising that a curved
object cannot be represented by a single vector of in-
variants. In recent work on “HOT curves” [6, 8], it
was shown how a particular collection of 3D surface
curves could be related to image features; taken over
all viewpoints, the coordinates of the corresponding
image features define a surface in some higher dimen-
sional space. Unfortunately, these surfaces cannot be
directly computed from images measurements — a 3D
description of the surface curves is required, and so
a method for reconstructing these curves from an im-
age sequence with known camera-object motion was

developed [8] based on the work of [3, 4].

In this paper, we extend the HOT curve approach
by exploiting some of the same image features (bitan-
gents and inflections) and surface features (bitangent
developable and parabolic curves). For each of these
features, we can define another set of features called
parallel tangent points. Up to occlusion, these fea-
tures are mutually visible over a five-parameter fam-
ily of scaled orthographic projection viewpoints. From
these features, a function can be evaluated which is
invariant over this entire five-parameter family. An
object can be modeled by moving it in front of a cam-
era to reveal new feature points and obtain a curve of



invariants. To completely model an object using these
features, the object only has to be observed from a
trajectory (curve) of viewpoints rather than from all
viewpoints. Objects are then represented as collec-
tions of invariant curves. To recognize an object in
an image, an invariant is computed and used as an
index into a database of curves. Using the same fea-
tures, independent qualitative and quantitative veri-
fication procedures eliminate potential false matches.
Note that 3D object models are never used.

In [13], Murase and Nayar also use curves defined in
high-dimensional spaces as a basis for object recogni-
tion. In their case, the curves are splines representing
the possible appearances of an object as a function of
viewpoint and illumination. They are embedded in
the space defined by the principal components deter-
mined from a set of images of the object. Matching
is achieved by finding the closest model curve to a
new point computed by projecting the image into this
space. This approach has only been implemented for
a single degree of pose freedom.

In the next section, we introduce the set of im-
age features that are used to construct these invariant
curves and show their relationship to the correspond-
ing 3D surface curves. In Section 2.2, we then present
a simple function of the coordinates of these features
whose result is invariant for all viewpoints where the
features are visible. From a moving camera, a curve
of invariants is obtained and used to model an ob-
ject. From an image, a combination of indexing, con-
strained search and an independent verification proce-
dure is used to recognize an object. The algorithm has
been implemented and examples are presented. More
details can be found in [14].

2 Object Representation

The approach for recognizing curved objects is
based on using feature points of the image contour
extracted from 2D images and computing measures
that are invariant under viewpoint variations. The
process 1s divided into two stages, off-line and on-
line. During the off-line modeling process, a sequence
of images of the object is taken either by moving an
uncalibrated camera about the object or moving the
object in front of a camera. The images are processed
to extract features, invariants are computed, and re-
tained in a model base. During the on-line process,
similar features are extracted from just one 1mage of
the curved object, and the invariants are used to in-
dex model database. Returned matches are then veri-
fied using additional quantitative and qualitative con-
straints. Let us now consider the specific features.
We assume scaled orthographic projection in the sub-
sequent discussion.

2.1 Image Features

Establishing a correspondence between image and
object features is a matter of combinatorics for poly-
hedra because the image features are viewpoint inde-
pendent and correspond to object edges and vertices.
For a smooth curved surface, the occluding contour
is viewpoint-dependent, and so point-to-point corre-
spondences cannot be established. However a point-
to-curve correspondence can be determined for two
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Figure 1. Surface points whose tangent planes are parallel
to the tangent plane at a limiting bitangent project onto
points with parallel image tangents.

sets of surface curves (parabolic curves and limiting
bitangent developables) and their projections (inflec-
tion points and bitangents resp.) [6, 7, 8].

Now, consider parallel projection of a single limit-
ing bitangent developable. This bitangent will fall on
the occluding contour for any viewing direction that
lies in the tangent plane, and the set of such viewing
directions forms a great circle on the view sphere.! In
addition, all surface points whose tangent planes are
parallel to the tangent plane of the limiting bitangent
will also be part of the occluding contour, up to oc-
clusion. Since all of these tangent planes are parallel,
the tangents to the image contour at the projection
of these surface points will also be parallel. (See Fig-
ure 1). We call the image points parallel tangent points
and will use them along with the corresponding image
bitangent as features for recognition. These features
are stable and easy to detect in images. From all view-
points on the great circle, the set of tangent planes of
the feature points project onto a set of parallel lines in
the image; for different viewpoints on the circle, the
set of lines differ merely by a similarity transformation
when the camera i1s calibrated or an affine transfor-
mation otherwise. Such properties of parallel tangent
features in a different context have been exploited by
Kutulakos and Dyer [9]. Parallel tangent points can
also be used as “interest points” in an affine-invariant
based recognition scheme for 2D objects as proposed
by Lambdan et. al. in [10].

When the entire limiting bitangent curve is con-
sidered, the set of parallel tangent points defines a
family of surface curves. When modeling the object,
any camera motion outside of the tangent plane will
reveal a new pair of points on the limiting bitangent
curve, and consequently the entire family of curves can
be observed from a trajectory (a curve) of viewpoints.
The same arguments apply to parallel tangents defined

1This is true up to occlusion by an opaque object. Note that
when the limiting bitangent lies on the convex hull, it is visible
over the entire great circle of viewpoints.



with respect to parabolic points; our subsequent dis-
cussion will concentrate on bitangents, since they can
be measured very accurately in images and computed

efficiently [15].

2.2 Invariants from Parallel Tangents

We now derive a simple affine invariant from a mea-
sured bitangent and corresponding parallel tangent
points. Consider a bitangent and two parallel tan-
gent points. These points and the common tangent
direction define three parallel lines in the image which
can be expressed as n-x +d; = 0, 1=1,2,3, where n
is the common unit normal direction, and d; is the
distance of line ¢ from the origin. Define the distance
vector to be d = (dy — dy, ds— dy). We now show that
the projective coordinates of d are invariant under an
affine transformation of the image plane.

Let an affine image transformation be given by: x =
Ax' + b where A is a nonsingular 2x2 matrix and
b € IR?. After applying this transformation, the lines
can be written as:

1 b4+ d;
n/~x—|—n + =0

o[ o]

nb+d;
. = ©
of the i-th transformed line from the origin. The
transformed vector of distances between the lines 1s

d r(de — dy,d3 — dy). Since d’ = Ad with A

-
being a non-zero scalar, the direction of the vectors
d’ and d are unaffected by an affine transformation.
Equivalently, treating d and d’ as homogeneous coor-
dinates, both d and d’ represent the same point in a
one-dimensional projective space IP'. Thus the pro-
jective coordinates of distances, (dy — dy,ds — dy) are
invariant up to an affine transformation of image coor-
dinates. Another perspective on this invariant is that

the ratio of the distances given by %%% is also in-
variant under an affine transformation.

The implications of affine invariance follow. Since
image plane rotation, scaling and translations are a
subgroup of affine transformations, the distance vector
d is also a similarity invariant. The invariance prop-
erty holds even if the camera is uncalibrated (that 1s,
when the aspect ratio of the pixels are unknown).

In general, a single image bitangent and the n cor-
responding parallel tangent points at distances d;,
¢t = 1,---,n from the developable define a point
(di,---,dp) in an n — 1 dimensional projective space,
P"~!. To visualize a point in IP"~!, it can be seen
as a point on an n — 1 dimensional sphere embed-
ded in an n dimensional Euclidean space given by

m(dl, -+, dp). The invariance of this measure-

ment with respect to 3D rotation of the object about

an axis aligned with the surface normal is the basis for

modeling 3D curved objects.

2.3 Representing Objects with a Curve of
Invariants

In the previous section, we considered a measure-
ment which is invariant over 3D rotations about the

1s the distance

where n’ = An, and d} =

Figure 2. The geometry of parallel tangent curves.

surface normal. We now show how a curve of invari-
ants can be obtained from a sequence of images.

A camera measures a feature point Py (bitangent
endpoint or inflection) of the silhouette and n other
silhouette points F;, 82 = 1,---,n) with parallel tan-
gents. If t and n are the unit tangent and normal
vectors to the image contour at Py, (t,n) form a basis
of the image plane. We can then construct a right-
handed orthonormal coordinate frame (t,n,v), where
v is the viewing direction. Let (v, t) form a basis of
the tangent plane Tp that contains the limiting bi-
tangent. For : = 1, n, we write

P—Py=xt+yn+zv (1)

where P; — Py denotes the vector joining P; and Fp.
z; and y; are the image coordinates of the i-th feature
written in the (t,n) basis. In (1) the quantities z;, y;
can be computed from image measurements. On the
other hand z;, and the coordinates of t,n, v in a world
coordinate system are unknown.

So far, we have considered invariants extracted from
a single image. For a camera or object moving along
a trajectory parameterized by time ¢, the bitangent
developable curve and family of surface points with
parallel tangent planes will be observed. From the ob-
served feature point Py(t) and parallel tangent points
Pi(t)(i =1, --,n), we define a curve I (¢) as the trace
of (x1(t), y1(t), -, ¥, (1), yn (1)) € R?™ and the invari-
ant curve, U (t) as the projection of T"(¢) defined by
(y(t), - (1)) € P71

An object can now be simply modeled. It is moved
in front of an uncalibrated camera or equivalently an
uncalibrated camera around a stationary object. The
bitangents and corresponding parallel tangents are de-
tected in each image. To expose a new point on the
limiting bitangent developable or parabolic curve, the
camera is moved by a small amount in any direction
except where the change in viewing direction lies in the
common tangent plane of the features. In this manner,
the limiting bitangent curves are fully revealed; the set
of measured feature points are tracked through the se-
quence of images yielding the curve T (¢) where n is



the number of parallel tangent points that are tracked
through a temporal sequence. The projection of I' (%)

then defines the invariant curve ¥?(¢) € P"~* and
a collection of such curves can be used to model an
object. Note that this representation is built without
knowing the actual camera motion or reconstructing
the 3D surface.

Until now, we have largely neglected occlusion; we
now show how this representation methodology can
be extended to allow for both self-occlusion during
the model building procedure as well as occlusion (or
missing features) during object recognition.

To account for occlusion during modeling and on-
line recognition, we represent the invariant curve mod-
els in multiple dimensions of the projective space.
Consider for example, an invariant curve ¥§ con-
structed from four parallel tangent points. An im-
age with three corresponding parallel tangents must be
matched to invariant curves in IP? defined from three
of the four parallel tangents tracks. There are (g) =4
such combinations corresponding to projecting from
four homogeneous coordinates to three coordinates. In

general, from an invariant curve W7 (t) € P" ™! we can
define n invariant curves, \I!?_l(t)(i =1,..,n)cP"?
which are the projections of ¥ (¢) along the n homoge-

neous coordinate axes of IP" 1. This interdependence
of invariant curves across the various dimensions of
projective space can be exploited in implementing an
efficient and fast indexing scheme during the recog-
nition phase as will be explained in Section 3. The
relationship of invariant curves across dimensions can
be visualized as a tree structure with a node indicat-
ing a specific invariant curve (i.e., for a specific j)

\I!; (t) € P! its parents representing curves in IP’
whose projections onto IP"~! in one of the & directions
is Wi (?) and its children being the i—1 curves in P2
which \I!; (t) projects onto.

Note that for each bitangent, the corresponding
parallel tangents can be uniquely ordered by increas-
ing signed distance during both modeling and on-line
recognition. Thus, there is no need to consider all per-
mutations of the parallel tangents during recognition.

In summary, an object is modeled as a collection
of invariant curves, W;(t) € P~ = 3,---,n) and
=1 (”)) where n is the maximum number of

K3
parallel tangent features extracted in a single image.

3 Object Recognition

The computed invariant curves can be used for on-
line recognition, and here we present a simple algo-
rithm. Given an arbitrary image, some edge detection
and linking method is used to compute a line draw-
ing. From the image contours, first bitangents (or in-
flections) and then the corresponding parallel tangents
are determined.

From a bitangent and its n corresponding parallel
tangents extracted on-line, the recognition process be-
gins by indexing into the database with all (g) combi-

nations of invariants in IP?. The indexing procedure

Image plane

Figure 3. An illustration of motion in the tangent plane.
Note that the point pj corresponding to the viewing direc-
tion v’ has been omitted deliberately because such points
are good candidates for self-occlusion.

in PP? returns all invariant curves \I!?(t) that intersect

a ball about the measured invariant whose radius is
determined from measurement uncertainty. Note that
we only need to consider indexing into a 2-dimensional
space. Using the tree structure of invariant curves con-
structed during the modeling stage, all valid matches

in IP? are tallied to determine the invariant curve in
IP? that could have given rise to a specific combina-

tion of matches in IP?. For example, if a match to
a point on \I!;»l(t) € IP? is expected, it is necessary
and sufficient to have matches to 4 invariant curves,
U3(t) € P? (i = 1,---,4). In general, for a measure-
ment to match a curve W7 (t) € P"~ 1 it is necessary

n
3

sponding curves ¥3(¢) € IP?. The tallying process is
recursively applied to increasing dimensions.

There 18 no guarantee that the result of a single
match will be correct. Some matches may be missed
and there may be false positives. In particular due
to the combinatorics of matching, there will be many
attempts to match sets of features which are not in
the database. In order to reduce the number of false
positives, all returned matches are subjected to two
independent verification procedures described below.

When individual objects can be segmented in an
image, each object in the image may have multiple
bitangents or inflections. For each feature and corre-
sponding parallel tangent points, the result of indexing
and verification will provide the identity of the object.
Over all features for a segmented object, a simple vot-
ing scheme can be used to select the object model from
the matched features.

3.1 Verification

We now consider verification procedures that can
eliminate false matches returned from indexing.

Consider two qualitative constraints. First, the sign
of the curvature of the image contour at a feature
point is invariant under changes of viewpoint in the
common tangent plane as well as affine image trans-

and sufficient to have matches on all the ( ) corre-
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Figure 4. Image processing for modeling and testing. (a) Image of a mallard decoy. (b) a pintail decoy. (c,d) Extracted
bitangents and a sample set of parallel tangents of (a). (e) Invariant curves, \Ifi’ (t) of both decoys drawn on a unit sphere

embedded in R?. (f) Invariant curves on a portion of the unit sphere obtained from three non-overlapping trajectories for
the same bitangent; they are labeled with “0”, “A” and “0.” (g,h) A test image of the pintail and mallard decoys along

with the bitangents extracted.

formations [3, 7]. Second, the direction toward or away
from the bitangent of the outward pointing normal at
a point on the image contour is also invariant.

An additional quantitative constraint can also be
derived from trajectory of feature tracks used to model
an object. Reconsider Figure 2. Differentiating (1)
with respect to time and taking the dot product of the
result with n yields after some simple manipulation:?

Ui+ zit-n+zv-on=0 (2)

A match between measured and modeled points
implies that the viewing directions for the two im-
ages must lie in the tangent plane of the matched
feature; they differ by a rotation about the surface
normal of the feature. This is the situation illustrated
in Figure 3. Let the second viewing direction be v’
and construct as before the corresponding coordinate
system(t’,n’,v'). Since the camera has remained in
Tp, n =n’. All of the feature point P;i(¢ =0, --,n)
will be visible in both images up to self occlusion.

Let 8 be the angle of rotation about n which maps
v onto v’. The change of coordinates between the two
frames can be written as

x' = xcosf — zsinb,
v =y, (3)
2/ = wsinf + zcos .

Combining (2) and the first row of (3) yields
(v -n)(z' — z;cos0) —sin 0(y; + zit - n)=0 (4

2 We take advantage of two facts to simplify the expression of
the dot product: since the points Py and P; lie on the occluding
contour, the tangents to the corresponding surface curves given
by Py and P lie in the tangent planei.e., P;n=0and secondly,
the vector n is a unit vector and is therefore orthogonal to its
derivative.

For every triplet of parallel tangent features Py, Ps,
Ps to Py, we define vectors x = (z1,22,23)7, x' =
(z, 25, 25) and ¥ = (y1,Y2,¥3). Equation (4) can be

rewritten 1n vector form as
(v -n)(x’ — cosfx) —sinf(y + (t -m)x) =0  (5)

This implies that vectors x’ —cos x and y—l—(t ‘n)xX are
linearly dependent or equivalently their cross-product
is zero, 1.e.,

(t-n)xxx' +coslxxy+yxx =0 (6)

In turn, (6) admits a solution in cos@ and t - n if and
only if the vectors x x x’, x x y, and y xx" are linearly
dependent, or equivalently, if the vectors x, x’, and y
are linearly dependent. Algebraically, this condition
can be written as

Det(x,x',y) = 0. (7)

Vector x’ is formed from triplets of components of
measured feature points in the tangent direction t’
written in the appropriate (t',n’,v') coordinate sys-
tem, and the vectors x and y correspond to the hy-
pothesized matches. Only matches satisfying the zero-
determinant condition are retained, and the rest are
discarded. In practice, the determinant will not eval-
uate to precisely zero for a correct match due to mea-
surement noise. One approach is to simply check if
determinant is within some interval about zero. How-
ever, because the entries of the matrix can have a large
range of values, a single threshold is inappropriate.
Because of noise, the true coordinates (x,y) are re-
lated to the measured feature coordinates (#,9) by
(%,9) = (x,y) + (ny, ny) where (ny,ny) is the image
noise. Assuming only that n, and n, are within some
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Figure 5. Recognition results: (a-d) Test bitangent and parallel tangent features. (e-h) corresponding matches from the
model base after indexing and verifications. Filled circles in the test images indicate all of the parallel tangent features
extracted for the indicated bitangent. The triangles in corresponding drawings show the features that were matched.

interval about zero (e.g. plus or minus one pixel), the
determinant can evaluate to some interval. If zero lies
within the interval, the match is considered to pass
the verification test.

4 Implementation and Results

We have implemented the invariant-based model-
ing and recognition algorithm described in Sections 2
and 3, and will demonstrate it with two duck decoys
(a mallard in Fig. 4.a and a pintail in Fig.4.b). The
decoys were placed on a pan-tilt stage, and image se-
quences were acquired by a fixed camera with a 50mm
lens under scaled orthographic projection conditions.
Sequences of about 100 images were taken of each ob-
ject. Fach image was passed to an image process-
ing routine: The edges were first detected via sim-
ple thresholding, the image bitangents were tracked
through scale space as in [8], and the corresponding
parallel tangent points were detected from zero cross-
ings of the angle between the image contour tangent
and the given bitangent. For each decoy, we retained
only 9 bitangents some of which are shown in Fig-
ure 4.c. Parallel tangent features for a sample bitan-
gent are shown in Figure 4.d. The bitangents and
parallel tangent features obtained are then tracked
through the image sequence to construct the invari-
ant curves. Figure 4.e. shows the invariant curves

in IP? for all of the bitangents of the two decoys; they
are drawn on a portion of the unit sphere embedded

in IR?. The maximum dimension represented for both
decoys was 5 and the minimum 3. The mallard decoy
was represented by 4, 27 and 72 curves in dimensions
5, 4 and 3 respectively and the pintail by 1, 15 and 57
curves in dimensions 5, 4 and 3 respectively.

As an interesting experiment, three different se-
quences of the pintail duck were obtained by panning
the duck at three different tilt angles. The image of
the same bitangent developable surface was tracked
in all three sequences, and an invariant curve in IP?
was computed for each sequence. According to our
development in Section 2, the three curves should co-
incide and lie on a common curve rather than defining
three disjoint curves. This is demonstrated in Fig-
ure 4.f. The three overlapping curves were generated

using 3 non-overlapping trajectories over a 81° of pan
and 36° of tilt. This experiment demonstrates the sta-
bility with which these features can be computed and
hints at their usefulness for recognition.

Figure 4.g shows an image of both decoys with par-
tial occlusion taken on-line. 33 bitangents were ex-
tracted from this test image and are shown along with
the detected silhouette in Figure 4.h. Of these 33 bi-
tangents, only six correspond to the projection of bi-
tangent developables used to model the pintail decoy
and four to model the mallard decoy. The other bi-
tangents were either not included in the model or have
an end-point on each duck. With a model database
containing both decoys, the recognition algorithm was
applied to all 33 bitangents and their corresponding
parallel tangent features. Figure b shows all of the
matches that were returned. Note that for each entry
in the database, we included a pointer to the image
used to define the entry, and so the image can be dis-
played; obviously, neither the pointers nor the actual
images need to be retained in an actual recognition
system. Figures 5 a,b,c and d, show the matched bi-
tangents along with all of the parallel tangents that
were considered for matching. After indexing and sub-
sequent verifications, the model images along with the
matched features are shown in Figures 5 e, f, g and h
respectively. Note that the four features matched the
pintail decoy. The mallard could not be recognized
even though four bitangents were detected and are
part of the model sequence. Using simple threshold-
ing, the mallard’s head was not segmented where it
occluded the pintail duck, and so there were insuffi-
cient parallel tangents to recognize the mallard.

In contrast to the previous example, a second ex-
ample in Figure 6 shows an image of the pintail duck
taken from a viewpoint which was drastically differ-
ent than any viewpoint used to model it. Figure 6.c
shows a match when indexing the model database us-
ing the features defined by the bitangent between the
beak and head. Note the significant rotation about
the surface normal between the two images. Addi-
tional examples have been presented in [14].
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Figure 6. A second recognition example with the test image significantly different from the images used for modeling.
(a) Test image. (b) Feature for which match was found. (c-d) Returned match and image used for modeling.

5 Discussion

Though only parallel tangents were considered in
this paper, it i1s easy to show that any viewpoint de-
pendent feature such as a vertex can be used in exactly
the same manner; in fact, some of the parallel tangents
arise from the image of surface creases. Except for a
simply voting on an object’s identity, each of the bi-
tangents is treated independently. We are hoping to
find a mechanism for determining if a set of matches is
mutually feasible; this will offer greater discriminating
power than simply voting.

Recognition will only be reliable if the stored repre-
sentation of a model is complete. Therefore, one needs
to extract as much information as possible during the
modeling process. Here, this means complete invari-
ant curves. By moving the camera along a trajectory
that fully reveals each limiting bitangent curve, entire
lengths of the associated parallel tangent curves will
also be exposed. During modeling, it will be possible
to automatically select the next camera position using
image data. Presently, we have used fixed image se-
quences to model the object and not actively selected
new camera positions.

Determining the surface geometry of objects from
images is a fundamental problem in computer vision.
Methods are available for reconstructing a 3D surface
from the image profile when the camera motion is
known [4, 2]. Now consider moving an object with
unknown motion, perhaps by simply manually turn-
ing it in front of a camera. When two viewpoints differ
by a rotation about the normal of some bitangent de-
velopable, they can be identified using the presented
invariant and verification procedure. From this corre-
spondence, constraints on the camera velocity can be
determined. It may be possible to fully determine the
camera motion from these constraints; existing meth-
ods can then be applied to reconstruct the surface.

Finally, the presented method clearly only works for
objects which are complicated enough to actually have
a bitangent developable and parabolic curves with the
corresponding parallel tangents. Thus, the presented
invariant should only be considered a component of a
complete recognition system.

Acknowledgments: This work was supported in part
by the National Science Foundation under Grant IRI-
9224815. D. Kriegman was supported in part by a Na-

tional Science Foundation NYI Grant TRI-9257990. Jean
Ponce was supported in part by the Center for Advanced

Study of the University of Illinois at Urbana-Champaign.
We gratefully acknowledge Tanuja Joshi for some very use-
ful comments.

References

(1]

(2]

[10]

[11]

[12]

[13]

[14]

[15]

B. Burns, R. Weiss, and E. Riseman. The non-
existence of general-case view-invariants. In Geomet-
ric Invariance in Computer Vision, pages 120-131.
MIT Press, 1992.

R. Cipolla and A. Blake. Surface shape from the de-
formation of the apparent contour. Int. J. Computer
Vision, 9(2):83-112, November 1992.

R. Cipolla and A. Zisserman. Qualitative surface
shape from deformation of image curves. Int. J. Com-
puter Vision, 8(1):53-69, 1992.

P. Giblin and R. Weiss. Reconstruction of surfaces
from profiles. In Int. Conf. on Computer Vision,
pages 136-144, London, U.K., 1987.

D. W. Jacobs. Space efficient 3D model indexing. In
Proc. IEEE Conf. on Comp. Vision and Patt. Recog.,
pages 439-444, 1992.

T. Joshi, J. Ponce, B. Vijayakumar, and D. Kriegman.
HOT curves for modelling and recognition of smooth
curved 3D shapes. In Proc. IEFEE Conf. on Comp.
Vision and Patt. Recog., June 1994. In Press.

J. J. Koenderink. Solid Shape. MIT Press, Cambridge,
MA, 1990.

D. Kriegman, B. Vijayakumar, and J. Ponce. Recon-
struction of HOT curves from images sequences. In
Proc. IEEE Conf. on Comp. Vision and Patt. Recog.,
pages 2026, June 1993.

K. Kutulakos and C. Dyer. Occluding contour detec-
tion using affine invariants and purposive viewpoint
adjustment. In Proc. IEEE Conf. on Comp. Vision
and Patt. Recog., pages 323-329, 1994.

Y. Lambdan, J. Schwartz, and H. Wolfson. Affine in-
variant model-based object recognition. ITEFE Trans.
on Robotics and Automation, 6:578-589, 1990.

Y. Moses and S. Ullman. Limitations of non model-
based recognition schemes. In Furopean Conf. on
Computer Vision, pages 820828, 1992.

J. Mundy and A. Zisserman. Geometric Invartance
in Computer Vision. MIT Press, Cambridge, Mass.,
1992.

H. Murase and S. Nayar. [llumination planning for ob-
ject recognition in structured environments. In /EFFE
Conference on Computer Vision and Pattern Recog-
nition, pages 31-38, Seattle, WA, 1994.

B. Vijayakumar, D. Kriegman, and J. Ponce.
Invariant-based recognition of complex 3D curved ob-
jects from image contours. Technical Report 9411,
Yale Center for Systems Science, 1994. Available via
anonymous ftp on daneel.eng.yale.edu.

A. Zisserman, D. Forsyth, J. Mundy, and C. Roth-
well. Recognizing general curved objects efficiently.
In Mundy and Zisserman, editors, Geometric Invari-
ance in Computer Vision, pages 228-251. MIT Press,
1992.



