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Abstract. In the world of autonomous underwater vehicles (AUV) the
prominent form of sensing is sonar due to cloudy water conditions and
dispersion of light. Although underwater conditions are highly suitable
for sonar, this does not mean that optical sensors should be completely
ignored. There are situations where visibility is high, such as in calm
waters, and where light dispersion is not significant, such as in shallow
water or near the surface. In addition, even when visibility is low, once
a certain proximity to an object exists, visibility can increase. The fo-
cus of this paper is this gap in capability for AUVs, with an emphasis
on computer-aided detection through classifier optimization via machine
learning. This paper describes the development of color-based classifi-
cation algorithm and its application as a cost-sensitive alternative for
navigation on the small Stingray AUV.
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1 Introduction

The goal of this paper is to use the Stingray platform to investigate object de-
tection and classification as a basis for navigation. Reliable navigation on small
AUVs is challenging in the absence of large and expensive sensors for estimating
position. Using vision to detect and classify objects in the environment can be
a source for estimating relative position. The target object can be used as a
destination or could act as a path for the vehicle to follow [1]. The focus of this
research is on developing robust object classifiers for specific targets based on
color. The movement of the water and changes in lighting due to refraction and
light dispersion cause colors to blur and change. In order to overcome these diffi-
culties, we use a boosting algorithm to optimize the color classifier and improve
the detector capability.

The target destination objects are three different colored buoys, anchored
with relatively close proximity and varying depth. The buoy colors, chosen for
their contrast with an underwater environment, are orange, yellow, and green
in decreasing order of contrast. The green buoy should be more difficult to de-
tect since it is most similar in color to the background. Once the algorithm
can correctly detect and classify the target buoy, the vehicle demonstrates the



navigation capability by approaching and touching the buoy. The path or bear-
ing objects are orange pipes, which are anchored to the bottom. In some cases
there are two pipes with different orientations in the same location. The vision
algorithms detect and classify the pipe and then estimate the orientation. The
vehicle demonstrates the vision-based navigation capability by centering over the
pipe and altering its heading based on the estimated orientation. When there
are multiple pipes, the vehicle must decide which direction to navigate. The two
target types are shown in Figure 1 below.

(a) (b) (c)

Fig. 1. (a) Stingray AUV. (b) Destination buoy objects. (c) Bearing pipe objects.

It turns out that the boosting of the classifiers for the buoys and pipes greatly
improves the detectors. For the pipe, we show that the bearing estimation be-
comes extremely accurate as well. We implement the optimized detectors and
bearing estimator on the Stingray, which is able to navigate to the correct buoy
and change bearing based on the pipe with high reliability.

The remainder of this paper is organized as follows. In Section 2 we discuss
related work, while in Section 3 we describe our process for developing a clas-
sification algorithm. In Sections 4 and 5 we focus on the specific targets of the
buoy and pipe, providing results from the final algorithms for each. Finally, in
Section 6 we conclude by discussing the aspects of this research that are novel
and the promising directions for future work.

2 Related Work

There has been an increase of research in vision-based navigation for underwater
vehicles in recent years. Most of the research focuses on avenues that do not
parallel the work in this paper, but there are some similar efforts.

The papers that use landmarks as reference points for underwater navigation
are most similar. The work of Yu et al. [7] uses yellow markers and colored
cables for AUV navigation by thresholding the UV components of the YUV color
space, which is similar to the baseline methods for this paper. Another method
thresholds on the RG components of the RGB color space to detect yellow sensor
nodes, as presented by Dunbabin et al. [3]. In the research by Soriano et al. [6]



an average histogram is created for each target, which is compared to a region
of interest for classification.

Cable or pipe tracking is another task, which is heavily researched in terms
of vision-based systems. The work of Balasuriya et al. [1] shows a method of
using Laplacian of Gaussian (LoG) filters to detect the edges of the pipe. Foresti
et al. [4] use a trained neural network to recognize the pipeline borders, while
Zingaretti and Zanoli [8] use vertical edge detection in horizontal strips and
contour density within the strips to detect the pipe.

These papers avoid much of the underwater difficulties, which cause colors
to change based on light absorption, by attaining proximity to the target. We
show that without boosting, a simple color classifier is not sufficient on our test
data set, which includes images of the targets at substantial distances and under
varying lighting conditions.

3 Developing a Classification Algorithm

The process of developing the classification algorithm generally starts with choos-
ing a feature set to describe the target. The feature chosen for these targets is
color. The Hue-Saturation-Value (HSV) color model is used for its separation
of brightness from the hue and saturation pair. Because of this isolation of the
brightness element of a color, a single object is more reliably detectable under
different lighting conditions. The more common Red-Green-Blue (RGB) color
model is an additive model, which makes it difficult to identify the same color
under different lighting conditions [2].

The boosting algorithm requires a large number of examples in order to
optimize the decision tree. For the HSV color classifier, we labeled individual
pixels as positive or negative in terms of the target. The examples, which number
in the hundreds of thousands, are then inputs into the boosting algorithm.

For this research, the LogitBoost form of boosting is used via the JBoost
software package. The JBoost application expects the input examples in a stan-
dard format with classifier data and a label. JBoost can output the resulting
decision tree visually as well as in Java or C code.

4 Buoy Detection

The buoy targets have the same size and shape, only differing by color. To
develop the algorithm, we focus first on the orange buoy. Once an algorithm is
developed, including the pixel level optimized decision tree and post processing,
we can train the classifier for the other buoys. The final algorithm will have a
pixel decision tree for each color to create a binary image. The binary image
will be post processed in the same way for each color. The goal is to accurately
estimate the location of the designated buoy in the image and use the distance
from the buoy to the center of the image as a heading offset for the Stingray
vehicle.



4.1 Baseline

There must be a baseline algorithm in order to determine the improvements
provided by using boosting to optimize the decision tree for the HSV classifier.
The baseline in this research is a simple HSV thresholding, which was previously
implemented on the Stingray. An HSV estimation of the color orange in the buoy
is extended to provide a range for each of hue, saturation and value, which was
tuned over many iterations to achieve the best possible threshold range. The
range is used to determine if a pixel is positive or negative, thus creating a
binary image, which is used without post processing to estimate the center of
the buoy based on the centroid of the positive pixels.

The metrics used to compare algorithms are the true positive rate (TPR)
and false positive rate (FPR). There are two sets of images from two different
environments. The first environment is a large anechoic pool, which is 300 ft by
200 ft by 38 ft deep. The other is a small above ground pool, which is 10 ft in
diameter and 4 ft deep. Both pools are situated outside in natural lighting. For
each environment there is a set of images for training the classifier and a set
of images for testing the resulting classifier. Both image sets have examples of
the buoy from different distances as well as images with no buoy present. To
determine TPR and FPR, we label the center of the buoy in each test image,
as well as the edge of the buoy. The distance between these points provides a
threshold for the correctness of a center estimation. The baseline TPR is 0.45
and 0.18 for the Tank and the Pool respectively, while the FPR is 0.55 and 0.45.

4.2 Post Processing

Since the boosted classification algorithm is for individual pixels, the output is
a binary image without clearly defined object boundaries and with extraneous
positive or negative pixel noise. The goal of the post processing techniques used
in this research is to prepare the binary image for the best possible estimation
of the location of the buoy.

We start by using one iteration of opening, which is erosion followed by
dilation, to remove noise in the binary image. Next we use two iterations of
closing, which is two dilations followed by two erosions, to fill binary objects
containing gaps. Then the smoothing algorithm via Median blur with a 7x7
kernel creates smooth edges of binary objects in the image. Finally, we use the
convex hull algorithm to approximate the shape of the binary object with only
convex corners, which provides more complete binary objects in situations where
part of the target is not correctly classified.

4.3 Boosting HSV

As described in Section 3, the first step to boosting the HSV classifier is labeling
examples. The pixel examples are given as input to JBoost, which outputs a
complex decision tree in a C code function. The function provides a score for a
given pixel, which is labeled as a one or zero based on a threshold.
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Fig. 2. (a) The ROC curves for four versions of the buoy classifier on the test image set
from the tank environment. (b) Example of classifying specifically for different color
buoys independently. The green circles show the estimated centers for each buoy.

In order to determine the threshold that provides the best output, we look
at the receiver operating characteristic (ROC) curve for thresholds from -2.0 to
5.0 over 0.1 increments. Since the threshold determines the status of a pixel and
the performance of the classifier is determined by the accuracy of the center
estimation, the generated ROC curve is not a smooth curve. The tank is large
and representative of an ocean environment in terms of acoustics and reflectivity,
while the pool is small with reflective walls and bottom. The two environments
are distinct enough that when we label extra examples for the pool, we ultimately
overfit causing reduced performance for tank images. The simple solution is to
develop target classifiers for the environments independently.

We start with the tank environment by generating a decision tree, which
we use on our test image set to produce the ROC curve and choose the best
threshold value. Based on the results at this threshold, additional labeling may
improve the classifier. Figure 2 shows the ROC curves from four such iterations
of the decision tree. The best results are at the threshold of 3.6, which gives a
TPR of 0.98 and a FPR of 0.18, and the threshold of 4.2, which gives a TPR of
0.92 and a FPR of 0.0.

We follow the same iterative sequence for the pool environment, which is
much more challenging because of its small size and shallow depth. The two
best thresholds are 0.7, which gives a TPR of 0.68 and a FPR of 0.26, and the
threshold 1.7, which gives a TPR of 0.61 and FPR of 0.05. These results are not
as reliable as the tank results, but they are still a substantial improvement over
the baseline.

4.4 Results

The same technique described in Section 4.3 can be applied to the other two
buoy colors to create decision trees for classifying the pixels. The post processing



techniques are the same for each color buoy. This means that the algorithm will
switch between the decision trees based on the target buoy. Figure 2 shows the
processing of the same image while looking for each of the different color buoys.

When combining the results of the three buoy classification algorithms on the
test image set, we can calculate the total TPR and FPR for the overall algorithm
as 0.84 and 0.16 respectively. The relatively low quality of the classifier for the
green buoy reduces the overall result.

In practice the Stingray is able to reliably detect the designated target buoy
at approximately six frames per second and the detection becomes more reliable
as the Stingray approaches the buoy.

5 Pipe Detection

The pipe is an interesting target because it provides a bearing for navigation.
There can be two pipes leading to different destinations, as shown in Figure
1, which means the algorithm needs to be able to classify multiple pipes in a
single image. After determining that a binary object is a pipe, the algorithm
must calculate the orientation. The goal is to use the orientation of the pipe as
a target heading for the Stingray vehicle.

5.1 Baseline

The baseline for the pipe, similar to the buoy, is a simple HSV threshold used
to create a binary image on which a custom algorithm, using least squares es-
timation, attempts to determine the orientation. This orientation estimation
technique is not dependable and is only used in the baseline algorithm.

The same metrics are used for the pipe results as are used for the buoys. The
main difference is that there are no examples from a secondary environment.
This makes the classification problem slightly easier, so that the problem of
estimating orientation can take focus. The baseline for the Tank is a TPR of
0.74 and a FPR of 0.16.

5.2 Classification

The pipe, like the buoy, has a unique color which makes for a useful classifier.
The same process of labeling images and inputting the examples into JBoost
to optimize a decision tree ultimately outputs a function for scoring individual
pixels of the image. The same post processing techniques from Section 4.2 are
applied to the pipe binary images to create smooth and closed binary objects.

The version of the decision tree that produces the best ROC results has two
thresholds with a trade off between TPR and FPR. Both of these thresholds
provide very reliable rates, -0.3 give a TPR of 0.97 and a FPR of 0.02, while the
threshold 0.7 gives a TPR of 0.95 and a FPR of 0.01.



5.3 Bearing Estimation

The overall goal of the pipe detection is to determine the orientation of the pipe
to be used as a bearing for navigation purposes. Therefore, with a binary object
found, only the edges of the object are actually pertinent. The Canny edge
detector, with threshold values of 50 and 150 pixels, is applied to the binary
image and the output contains only the edges of all binary objects.

With only edges remaining, the Hough Transform can be used to easily esti-
mate the straight lines in the image. We use the Probabilistic Hough Transform
(PHT) due to its ability to combine similar lines with a gap between them [5].
We use a ρ of one pixel and a θ of π

120 or 1.5 degrees. Our threshold is set at
30 pixels, with an acceptable line segment length of 20 pixels and an acceptable
gap of 20 pixels.

Often times the output from the PHT has extraneous line segments. The goal
of the pruning portion of the algorithm is to reduce all the line segments from
the Hough Transform down to the two per pipe that represent the long edges of
the pipe. This is broken into two steps, starting with merging all line segments
that are close to collinear. The next step is using the property of parallelism to
remove extraneous line segments. Figure 3 shows three scenarios where different
tests of parallelism remove extraneous line segments.

Fig. 3. Examples of the three algorithms of the pruning stage. The blue and red circles
with lines show the estimated centers and orientations of the pipes.

5.4 Results

The important result of the pipe detection is the ability to estimate the orienta-
tion of the pipe with great precision, in order to provide the vehicle with useful
bearing. Of course, detecting the location of the pipe is necessary to allow for
the bearing estimation, which we have shown to be very reliable.

In order to quantify the accuracy of the bearing estimation, the edges of the
pipes are labeled in the test image set and then compared to the algorithm’s
estimate. The average error with standard deviation for the baseline algorithm
is 9.0◦±14.6◦ compared to 0.7◦±0.8◦ for the hough transform based algorithm.



In practice the Stingray is able to process the images at five frames per
second, allowing the vehicle to center itself over the pipe and estimate the ori-
entation. The vehicle then rotates to match its heading with the orientation of
the pipe, and navigates in that direction.

6 Conclusion

This paper presents a method for using object detection and classification of
target objects to aid in navigation for AUVs. The color classifier is one unique
element of this research, as it is not common in underwater applications. Also,
the use of boosting algorithms to optimize the classifier greatly improves on
previous work. We incorporated the use of post processing techniques to make
identifying the center of the target objects more reliable. We also showed a
technique for calculating the orientation of up to two pipes simultaneously, and
with high precision.

The result is two classification algorithms that are more efficient than the
baseline algorithms of simple thresholding. We demonstrated these algorithms
on the Stingray AUV, which navigates towards and touches a specific color of
buoy and changes heading based on the pipe.

The process we presented for creating an optimized classifier via boosting can
be applied to other targets and with classifiers other than color. The complex
and dynamic properties of underwater environments cause these classifiers to be
very specialized, which naturally leads this research towards efforts in adaptive
learning to improve a classifier in real time for changing environments.
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