
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221618430

Learning to Traverse Image Manifolds.

Conference Paper · January 2006

Source: DBLP

CITATIONS

53
READS

409

3 authors, including:

Serge Belongie

Cornell University

338 PUBLICATIONS 143,873 CITATIONS

SEE PROFILE

All content following this page was uploaded by Serge Belongie on 28 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221618430_Learning_to_Traverse_Image_Manifolds?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221618430_Learning_to_Traverse_Image_Manifolds?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Belongie?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Belongie?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cornell_University?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Belongie?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Belongie?enrichId=rgreq-d75a804446f410498fe7e452151df30d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxODQzMDtBUzoxMDE3MjkzMTE5MjAxMjlAMTQwMTI2NTU2NjI1OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Learning to Traverse Image Manifolds
UCSD Technical Report ∗

Piotr Dollár, Vincent Rabaud and Serge Belongie
University of California, San Diego

{pdollar,vrabaud,sjb}@cs.ucsd.edu

Abstract

We present a new algorithm, Locally Smooth Manifold Learning (LSML), that
learns a warping function from a point on an manifold to its neighbors. Important
characteristics of LSML include the ability to recover the structure of the manifold
in sparsely populated regions and beyond the support of the provided data. Appli-
cations of our proposed technique include embedding with a natural out-of-sample
extension and tasks such as tangent distance estimation, frame rate up-conversion,
video compression and motion transfer.

1 Introduction

A number of techniques have been developed for dealing with high dimensional data sets that fall
on or near a smooth low dimensional nonlinear manifold. Such data sets arise whenever the number
of modes of variability of the data are much fewer than the dimension of the input space, as is the
case for image sequences. Unsupervised manifold learning refers to the problem of recovering the
structure of a manifold from a set of unordered sample points. Manifold learning is often equated
with dimensionality reduction, where the goal is to find an embedding or ‘unrolling’ of the manifold
into a lower dimensional space such that certain relationships between points are preserved. Such
embeddings are typically used for visualization, with the projected dimension being 2 or 3.

Image manifolds have also been studied in the context of measuring distance between images un-
dergoing known transformations. For example, the tangent distance [19, 20] between two images is
computed by generating local approximations of a manifold from known transformations and then
computing the distance between these approximated manifolds. In this work, we seek to frame the
problem of recovering the structure of a manifold as that of directly learning the transformations
a point on a manifold may undergo. Our approach, Locally Smooth Manifold Learning (LSML),
attempts to learn a warping function W with d degrees of freedom that can take any point on the
manifold and generate its neighbors. LSML recovers a first order approximation of W , and by mak-
ing smoothness assumptions on W can generalize to unseen points.

We show that LSML can recover the structure of the manifold where data is given, and also in
regions where it is not, including regions beyond the support of the original data. We propose a
number of uses for the recovered warping function W , including embedding with a natural out-of-
sample extension, and in the image domain discuss how it can be used for tasks such as computation
of tangent distance, image sequence interpolation, compression, and motion transfer. We also show
examples where LSML is used to simultaneously learn the structure of multiple “parallel” manifolds,
and even generalize to data on new manifolds. Finally, we show that by exploiting the manifold
smoothness, LSML is robust under conditions where many embedding methods have difficulty.

Related work is presented in Section 2 and the algorithm in Section 3. Experiments on point sets
and results on images are shown in Sections 4 and 5, respectively. We conclude in Section 6.

∗Shortened version to appear in Advances in Neural Information Processing Systems (NIPS) 19,
2006.

2 Related Work

Related work can be divided into two categories. The first is the literature on manifold learning,
which serves as the foundation for this work. The second is work in computer vision and computer
graphics addressing image warping and generative models for image formation.

A number of classic methods exist for recovering the structure of a manifold. Principal component
analysis (PCA) tries to find a linear subspace that best captures the variance of the original data.
Traditional methods for nonlinear manifolds include self organizing maps, principal curves, and
variants of multi-dimensional scaling (MDS) among others, see [10] for a brief introduction to these
techniques. Recently the field has seen a number of interesting developments in nonlinear manifold
learning. [18] introduced a kernelized version of (PCA). A number of related embedding methods
have also been introduced, representatives include LLE [16], ISOMAP [21], and more recently SDE
[23]. Broadly, such methods can be classified as spectral embedding techniques [23]; the embed-
dings they compute are based on an eigenvector decomposition of an n × n matrix that represents
geometrical relationships of some form between the original n points. Out-of-sample extensions
have been proposed [3]. The goal of embedding methods (to find structure preserving embeddings)
differs from the goals of LSML (learn to traverse the manifold).

Four methods that we share inspiration with are [6, 12, 2, 15]. [6] employs a novel charting based
technique to achieve increased robustness to noise and decreased probability of pathological behav-
ior vs. LLE and ISOMAP; we exploit similar ideas in the construction of LSML but differ in motiva-
tion and potential applicability. [2] proposed a method to learn the tangent space of a manifold and
demonstrated a preliminary illustration of rotating a small bitmap image by about 1◦. Work by [12]
is based on the notion of learning a model for class specific variation, the method reduces to com-
puting a linear tangent subspace that models variability of each class. [15] shares one of our goals
as it addresses the problem of learning Lie groups, the infinitesimal generators of certain geometric
transformations.

In image analysis, the number of dimensions is usually reduced via approaches like PCA [14], epit-
omic representation [11], or generative models like in the realMOVES system developed by Di
Bernardo et al. [1]. Sometimes, a precise model of the data, like for faces [4] or eyes [13], is even
used to reduce the complexity of the data. Another common approach is simply to have instances of
an object in different conditions: [5] start by estimating feature correspondences between a novel in-
put with unknown pose and lighting and a stored labeled example in order to apply an arbitrary warp
between pictures. The applications range from video texture synthesis [17] and facial expression
extrapolation [8, 22] to face recognition [9] and video rewrite [7].

3 Algorithm

Let D be the dimension of the input space, and assume the data lies on a smooth d-dimensional
manifold (d � D). For simplicity assume that the manifold is diffeomorphic with a subset of Rd,
meaning that it can be endowed with a global coordinate system (this requirement can easily be
relaxed) and that there exists a continuous bijective mapping M that converts coordinates y ∈ Rd

to points x ∈ RD on the manifold. The goal of most dimensionality reduction techniques given a
set of data points xi is to find an embedding yi = M−1(xi) that preserves certain properties of the
original data like the distances between all points (classical MDS) or the distances or angles between
nearby points (e.g. spectral embedding methods).

Instead, we seek to learn a warping function W that can take a point on the manifold and return
any neighboring point on the manifold, capturing all the modes of variation of the data. Let us use
W(x, ε) to denote the warping of x, with ε ∈ Rd acting on the degrees of freedom of the warp
according to the formula M: W(x, ε) = M(y + ε), where y = M−1(x). Taking the first order
approximation of the above gives: W(x, ε) ≈ x+H(x)ε, where each columnH·k(x) of the matrix
H(x) is the partial derivative of M w.r.t. yk: H·k(x) = ∂/∂ykM(y). This approximation is valid
given ε small enough, hence we speak of W being an infinitesimal warping function.

We can restate our goal of learning to warp in terms of learning a function Hθ : RD → RD×d

parameterized by a variable θ. Only data points xi sampled from one or several manifolds are given.
For each xi, the set N i of neighbors is then computed (e.g. using variants of nearest neighbor such

(a) (b) (c) (d) (e) (f)

Figure 1: Overview. Twenty points (n=20) that lie on 1D curve (d=1) in a 2D space (D=2) are shown in (a).
Black lines denote neighbors, in this case the neighborhood graph is not connected. We apply LSML to train H
(with f = 4 RBFs). H maps points in R2 to tangent vectors; in (b) tangent vectors computed over a regularly
spaced grid are displayed, with original points (blue) and curve (gray) overlayed. Tangent vectors near original
points align with the curve, but note the seam through the middle. Regularization fixes this problem (c), the
resulting tangents roughly align to the curve along its entirety. We can traverse the manifold by taking small
steps in the direction of the tangent; (d) shows two such paths, generated starting at the red plus and traversing
outward in large steps (outer curve) and finer steps (inner curve). This generates a coordinate system for the
curve resulting in a 1D embedding shown in (e). In (f) two parallel curves are shown, with n=8 samples each.
Training a common H results in a vector field that more accurately fits each curve than training a separate H
for each (if the structure of the two manifolds was very different this need not be the case).

as kNN or εNN), with the constraint that two points can be neighbors only if they come from the
same manifold. To proceed, we assume that if xj is a neighbor of xi, there then exists an unknown
εij such thatW(xi, εij) = xj to within a good approximation. Equivalently: Hθ(xi)εij ≈ xj−xi.
We wish to find the best θ in the squared error sense (the εij being additional free parameters that
must be optimized over). The expression of the error we need to minimize is therefore:

error1(θ) = min
{εij}

n∑
i=1

∑
j∈N i

∥∥Hθ(xi)εij − (xj − xi)
∥∥2

2
(1)

Minimizing the above error function can be interpreted as trying to find a warping function that can
transform a point into its neighbors. Note, however, that the warping function has only d degrees of
freedom while a point may have many more neighbors. This intuition allows us to rewrite the error
in an alternate form. Let ∆i be the matrix where each column is of the form (xj − xi) for each
neighbor of xi. Let ∆i = U iΣiV i> be the thin singular value decomposition of ∆i. Then, one can
show (see appendix) that error1 is equivalent to the following:

error2(θ) = min
{Ei}

n∑
i=1

∥∥Hθ(xi)Ei − U iΣi
∥∥2

F
(2)

Here, the matrices Ei are the additional free parameters. Minimizing the above can be interpreted
as searching for a warping function that directly explains the modes of variation at each point. This
form is convenient since we no longer have to keep track of neighbors. Furthermore, if there is no
noise and the linearity assumption holds there are at most d non-zero singular values. In practice we
use the truncated SVD, keeping at most 2d singular values, allowing for significant computational
savings.

We now give the remaining details of LSML for the general case (see appendix). For the case of
images, we present an efficient version in Section 5 which uses some basic domain knowledge to
avoid solving a large regression. Although potentially any regression technique is applicable, a
linear model is particularly easy to work with. Let f i be f features computed over xi. We can then
define Hθ(xi) = [Θ1f i · · ·ΘDf i]>, where each Θk is a d× f matrix. Re-arranging error2 gives:

errorlin(θ) = min
{Ei}

n∑
i=1

D∑
k=1

∥∥∥f i>Θk>Ei − U i
k·Σ

i
∥∥∥2

2
(3)

Solving simultaneously for E and Θ is complex, but if either E or Θ is fixed, solving for the
remaining variable becomes a least squares problem (an equation of the form AXB = C can be
rewritten as B> ⊗ A · vec(X) = vec(C), where ⊗ denotes the Kronecker product and vec the

(a) (b) (c) (d)

Figure 2: Robustness. LSML used to recover the embedding of the S-curve under a number of sampling
conditions. In each plot we show the original points along with the computed embedding (rotated to align
vertically), correspondence is indicated by coloring/shading (color was determined by the y-coordinate of the
embedding). In each case LSML was run with f = 8, d = 2, and neighbors computed by εNN with ε = 1
(the height of the curve is 4). The embeddings shown were recovered from data that was: (a) densely sampled
(n=500) (b) sparsely sampled (n=100), (c) highly structured (n=190), and (d) noisy (n=500, random Gaussian
noise with σ = .1). In each case LSML recovered the correct embedding. For comparison, LLE recovered good
embeddings for (a) and (c) and ISOMAP for (a),(b), and (c). The experiments were repeated a number of times
yielding similar results. For a discussion see the text.

matrix vectorization function). To solve for θ, we use an alternating minimization procedure. In all
experiments in this paper we perform 30 iterations of the above procedure, and while local minima
do not seem to be to prevalent, we randomly restart the procedure 5 times. Finally, nowhere in
the construction have we enforced that the learned tangent vectors be orthogonal (such a constraint
would only be appropriate if the manifold was isometric to a plane). To avoid numerically unstable
solutions we regularize the error:

error′lin(θ) = errorlin(θ) + λE

n∑
i=1

∥∥Ei
∥∥2

F
+ λθ

D∑
k=1

∥∥Θk
∥∥2

F
(4)

For the features we use radial basis functions (RBFs) [10], the number of basis functions, f , being an
additional parameter. Each basis function is of the form f j(x) = exp(−‖x−µj‖22/2σ2) where the
centers µj are obtained using K-means clustering on the original data with f clusters and the width
parameter σ is set to be twice the average of the minimum distance between each cluster and its
nearest neighbor center. The feature vectors are then simply defined as f i = [f1(xi) · · · fp(xi)]>.
The parameter f controls the smoothness of the final mapping Hθ; larger values result in mappings
that better fit local variations of the data, but whose generalization abilities to other points on the
manifold may be weaker. This is exactly analogous to the standard supervised setting and techniques
like cross validation could be used to optimize over f .

4 Experiments on Point Sets

We begin with a discussion on the intuition behind various aspects of LSML. We then show exper-
iments demonstrating the robustness of the method, followed by a number of applications. In the
figures that follow we make use of color/shading to indicate point correspondences, for example
when we show the original point set and its embedding.

LSML learns a functionH from points in RD to tangent directions that agree, up to a linear combina-
tion, with estimated tangent directions at the original training points of the manifold. By constraining
H to be smooth (through use of a limited number of RBFs), we can compute tangents at points not
seen during training, including points that may not lie on the underlying manifold. This general-
ization ability of H will be central to the types of applications considered. Finally, given multiple
non-overlapping manifolds with similar structure, we can train a single H to correctly predict the
tangents of each, allowing information to be shared. Fig. 1 gives a visual tutorial of these different
concepts.

LSML appears quite robust. Fig. 2 shows LSML successfully applied for recovering the embedding of
the “S-curve” under a number of sampling conditions (similar results were obtained on the “Swiss-
roll”). After H is learned, the embedding is computed by choosing a random point on the manifold

(a) (b) (c) (d)

Figure 3: Reconstruction. Reconstruction examples are used to demonstrate quality and generalization of
H. (a) Points sampled from the Swiss-roll manifold (middle), some recovered tangent vectors in a zoomed-
in region (left) and embedding found by LSML (right). Here n = 500 f = 20, d = 2, and neighbors were
computed by εNN with ε = 4 (height of roll is 20). Reconstruction of Swiss-roll (b), created by a backprojection
from regularly spaced grid points in the embedding (traversal was done from a single original point located at
the base of the roll, see text for details). Another reconstruction (c), this time using all points and extending
the grid well beyond the support of the original data. The Swiss-roll is extended in a reasonable manner both
inward (occluded) and outward. (d) Reconstruction of unit hemisphere (LSML trained with n = 100 f = 6,
d = 2, εNN with ε = .3) by traversing outward from topmost point, note reconstruction in regions with no
points.

and establishing a coordinate system by traversing outward (the same procedure can be used to
embed novel points, providing a natural out-of-sample extension). Here we compare only to LLE
and ISOMAP using published code. The densely sampled case, Fig. 2(a), is comparatively easy and
a number of methods have been shown to successfully recover an embedding. On sparsely sampled
data, Fig. 2(b), the problem is more challenging; LLE had problems for n < 250 (lowering LLE’s
regularization parameter helped somewhat). Real data need not be uniformly sampled, see Fig. 2(c).
In the presence of noise Fig. 2(d), ISOMAP and LLE performed poorly. A single outlier can distort
the shortest path computed by ISOMAP, and LLE does not directly use global information necessary
to disambiguate noise. Other methods are known to be robust [6], and in [24] the authors propose a
method to “smooth” a manifold as a preprocessing step for manifold learning algorithms; however
a full comparison is outside the scope of this work.

Having learned H and computed an embedding, we can also backproject from a point y ∈ Rd to a
point x on the manifold by first finding the coordinate of the closest point yi in the original data,
then traversing from xi by εj = yj − yi

j along each tangent direction j (see Fig. 1(d)). Fig. 3(a)
shows tangents and an embedding recovered by LSML on the Swiss-roll. In Fig. 3(b) we backpro-
ject from a grid of points in R2; by linking adjacent sets of points to form quadrilaterals we can
display the resulting backprojected points as a surface. In Fig. 3(c), we likewise do a backprojection
(this time keeping all the original points), however we backproject grid points well below and above
the support of the original data. Although there is no ground truth here, the resulting extension of
the surface seems “natural”. Fig. 3(d) shows the reconstruction of a unit hemisphere by traversing
outward from the topmost point. There is no isometric mapping (preserving distance) between a
hemisphere and a plane, and given a sphere there is actually not even a conformal mapping (pre-
serving angles). In the latter case an embedding is not possible, however, we can still easily recover
H for both (only hemisphere results are shown).

5 Results on Images

Before continuing, we consider potential applications of H in the image domain, including tangent
distance estimation, nonlinear interpolation, extrapolation, compression, and motion transfer. We re-
fer to results on point-sets to aid visualization. Tangent distance estimation: H computes the tangent
and can be used directly in invariant recognition schemes such as [20]. Compression: Fig. 3(b,d)
suggest how given a reference point and H nearby points can be reconstructed using d numbers
(with distortion increasing with distance). Nonlinear interpolation and extrapolation: points can be
generated within and beyond the support of given data (cf . Fig. 3); of potential use in tasks such as
frame rate up-conversion, reconstructing dropped frames and view synthesis. Motion transfer: for
certain classes of manifolds with “parallel” structure (cf . Fig. 1(f)), a recovered warp may be used
on an entirely novel image. These applications will depend not only on the accuracy of the learned
H but also on how close a set of images is to a smooth manifold.

-

-

-

(a) (b) (c) (d)

Figure 4: The translation manifold. Here F i = Xi; s = 17, d = 2 and 9 sets of 6 translated images each
were used (not including the cameraman). (a) Zero padded, smoothed test image x. (b) Visualization of learned
Θ, see text for details. (c)Hθ(x) computed via convolution. (d) Several transformations obtained after multiple
steps along manifold for different linear combinations of Hθ(x). Some artifacts due to error propagation start
to appear in the top figures.

The key insight to working with images is that although images can live in very high dimensional
spaces (with D ≈ 106 quite common), we do not have to learn a transformation with that many
parameters. Let x be an image and H·k(x), k ∈ [1, d], be the d tangent images. Here we assume
that each pixel in H·k(x) can be computed based only on the information in s × s patch centered
on the corresponding pixel in x. Thus, instead of learning a function RD → RD×d we learn a
function Rs2 → Rd, and to compute H we apply the per patch function at each of the D locations
in the image. The resulting technique scales independently of D, in fact different sized images can
be used. The per patch assumption is not always suitable, most notably for transformations that are
based only on image coordinate and are independent of appearance.

The approach of Section 3 needs to be slightly modified to accommodate patches. We rewrite each
image xi ∈ RD as a s2 × D matrix Xi where each row contains pixels from one patch in xi (in
training we sub-sample patches). Patches from all the images are clustered to obtain the f RBFs;
each Xi is then transformed to a f × D matrix F i that contains the features computed for each
patch. The per patch linear model can now be written as Hθ(xi) = (ΘF i)>, where Θ is a d × f
matrix (compare with the D Θs needed without the patch assumption). The error function, which is
minimized in a similar way (see appendix), becomes:

errorimg(Θ) = min
{Ei}

n∑
i=1

∥∥∥F i>Θ>Ei − U iΣi
∥∥∥2

F
(5)

We begin with the illustrative example of translation (Fig. 4). Here, RBFs were not used, instead
F i = Xi. The learned Θ is a 2× s2 matrix, which can be visualized as two s× s images as in Fig.
4(b). These resemble derivative of Gaussian filters, which are in fact the infinitesimal generates for
translation [15]. Computing the dot product of each column of Θ with each patch can be done using
a convolution. Fig. 4 shows applications of the learned transformations, which resemble translations
with some artifacts.

Fig. 5 shows the application of LSML for learning out-of-plane rotation of a teapot. On this size
problem training LSML (in MATLAB) takes a few minutes; convergence occurs within about 10
iterations of the minimization procedure. Hθ(x) for novel x can be computed with f convolutions
(to compute cross correlation) and is also fast. The outer frames in Fig. 5 highlight a limitation
of the approach: with every successive step error is introduced; eventually significant error can
accumulate. Here, we used a step size which gives roughly 10 interpolated frames between each
pair of original frames. With out-of-plane rotation, information must be created and the problem
becomes ambiguous (multiple manifolds can intersect at a single point), hence generalization across
images is not expected to be good.

In Fig. 6, results are shown on an eye manifold with 2 degrees of freedom. LSML was trained on
sparse data from video of a single eye;Hθ was used to synthesize views within and also well outside
the support of the original data (cf . Fig. 6(c)). In Fig. 6(d), we applied the transformation learned
from one person’s eye to a single image of another person’s eye (taken under the same imaging
conditions). LSML was able to start from the novel test image and generate a convincing series of

~~· · · ~~· · ·
(a) (b) (c) (d) (e)

Figure 5: Manifold generated by out-of-plane rotation of a teapot (data from [23], sub-sampled and smoothed).
Here, d = 1, f = 400 and roughly 3000 patches of width s = 13 were sampled from 30 frames. Bottom row shows the
ground truth images; dashed box contains 3 of 30 training images, representing ∼ 8◦ of physical rotation. The top row
shows the learned transformation applied to the central image. By observing the tip, handle and the two white blobs on
the teapot, and comparing to ground truth data, we can observe the quality of the learned transformation on seen data (b)
and unseen data (d), both starting from a single frame (c). The outmost figures (a)(e) shows failure for large rotations.

Fig. 5 shows the application of LSML for learning out-of-plane rotation of a teapot. On this size problem
training LSML (in MATLAB) takes a few minutes; convergence occurs within about 10 iterations of the mini-
mization procedure. Hθ(x) for novel x can be computed with f convolutions (to compute cross correlation)
and is also fast. The outer frames in Fig. 5 highlight a limitation of the approach: with every successive
step error is introduced; eventually significant error can accumulate. Here, we used a step size which gives
roughly 10 interpolated frames between each pair of original frames. With out-of-plane rotation, information
must be created and the problem becomes ambiguous (multiple manifolds can intersect at a single point),
hence generalization across images is not expected to be good.

�
�

�
�

�
�

�
�

�
�

��

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��+

� Q
Q

Q
Q

Q
Q

QQk

?

6

Q
Q

Q
Q

Q
Q

QQs

-�
�

�
�

�
�

��3

(a) (b) (c) (d)

Figure 6: Traversing the eye manifold. LSML trained on one eye moving along five different lines (3 vertical and 2
horizontal). Here d = 2, f = 600, s = 19 and around 5000 patches were sampled; 2 frames were considered neighbors
if they were adjacent in time. Figure (a) shows images generated from the central image. The inner 8 frames lie just
outside the support of the training data (not shown), the outer 8 are extrapolated beyond its support. Figure (b) details
Hθ(x) for two images in a warping sequence: a linear combination can lead the iris/eyelid to move in different directions
(e.g. the sum would make the iris go up). Figure (c) shows extrapolation far beyond the training data, i.e. an eye wide
open and fully closed. Finally, Figure(d) shows how the eye manifold we learned on one eye can be applied on a novel
eye not seen during training.

Figure 5: Manifold generated by out-of-plane rotation of a teapot (data from [23], sub-sampled and
smoothed). Here, d = 1, f = 400 and roughly 3000 patches of width s = 13 were sampled from 30 frames.
Bottom row shows the ground truth images; dashed box contains 3 of 30 training images, representing ∼ 8◦

of physical rotation. The top row shows the learned transformation applied to the central image. By observing
the tip, handle and the two white blobs on the teapot, and comparing to ground truth data, we can observe the
quality of the learned transformation on seen data (b) and unseen data (d), both starting from a single frame (c).
The outmost figures (a)(e) shows failure for large rotations.

�
�

�
�

�
�

�
�

�
�

��

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��+

� Q
Q

Q
Q

Q
Q

QQk

?

6

Q
Q

Q
Q

Q
Q

QQs

-�
�

�
�

�
�

��3

(a) (b) (c) (d)

Figure 1: Traversing the eye manifold. LSML trained on one eye moving along five different lines (3 vertical
and 2 horizontal). Here d = 2, f = 600, s = 19 and around 5000 patches were sampled; 2 frames were
considered neighbors if they were adjacent in time. Figure (a) shows images generated from the central image.
The inner 8 frames lie just outside the support of the training data (not shown), the outer 8 are extrapolated
beyond its support. Figure (b) details Hθ(x) for two images in a warping sequence: a linear combination can
lead the iris/eyelid to move in different directions (e.g. the sum would make the iris go up). Figure (c) shows
extrapolation far beyond the training data, i.e. an eye wide open and fully closed. Finally, Figure(d) shows how
the eye manifold we learned on one eye can be applied on a novel eye not seen during training.

Figure 6: Traversing the eye manifold. LSML trained on one eye moving along five different lines (3 vertical
and 2 horizontal). Here d = 2, f = 600, s = 19 and around 5000 patches were sampled; 2 frames were
considered neighbors if they were adjacent in time. Figure (a) shows images generated from the central image.
The inner 8 frames lie just outside the support of the training data (not shown), the outer 8 are extrapolated
beyond its support. Figure (b) details Hθ(x) for two images in a warping sequence: a linear combination can
lead the iris/eyelid to move in different directions (e.g. the sum would make the iris go up). Figure (c) shows
extrapolation far beyond the training data, i.e. an eye wide open and fully closed. Finally, Figure(d) shows how
the eye manifold we learned on one eye can be applied on a novel eye not seen during training.

transformations. Thus, motion transfer was possible -Hθ trained on one series of images generalized
to a different set of images.

6 Conclusion

In this work we presented an algorithm, Locally Smooth Manifold Learning, for learning the struc-
ture of a manifold. Rather than pose manifold learning as the problem of recovering an embedding,
we posed the problem in terms of learning a warping function for traversing the manifold. Smooth-
ness assumptions on W allowed us to generalize to unseen data. Proposed uses of LSML include
tangent distance estimation, frame rate up-conversion, video compression and motion transfer.

We are currently engaged in scaling the implementation to handle large datasets; the goal is to
integrate LSML into recognition systems to provide increased invariance to transformations.

Acknowledgements

This work was funded by the following grants and organizations: NSF Career Grant #0448615,
Alfred P. Sloan Research Fellowship, NSF IGERT Grant DGE-0333451, and UCSD Division of
Calit2. We would like to thank Sameer Agarwal, Kristin Branson, Matt Tong, and Neel Joshi for
valuable input and Anna Shemorry for helping us make it through the deadline.

References

[1] E. Di Bernardo, L. Goncalves and P. Perona.US Patent 6,552,729: Automatic generation of animation of
synthetic characters., 2003.

[2] Y. Bengio and M. Monperrus. Non-local manifold tangent learning. In NIPS. 2005.

[3] Y. Bengio, J.F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-of-sample extensions
for LLE, isomap, MDS, eigenmaps, and spectral clustering. In NIPS, 2004.

[4] D. Beymer and T. Poggio. Face recognition from one example view. In ICCV, page 500, Washington,
DC, USA, 1995. IEEE Computer Society.

[5] Volker Blanz and Thomas Vetter. Face recognition based on fitting a 3D morphable model. PAMI,
25(9):1063–1074, 2003.

[6] M. Brand. Charting a manifold. In NIPS, 2003.

[7] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite: driving visual speech with audio.
In SIGGRAPH, pages 353–360, 1997.

[8] E. Chuang, H. Deshpande, and C. Bregler. Facial expression space learning. In Pacific Graphics, 2002.

[9] G. J. Edwards, T. F. Cootes, and C. J. Taylor. Face recognition using active appearance models. ECCV,
1998.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.

[11] N. Jojic, B. Frey, and A. Kannan. Epitomic analysis of appearance and shape. In ICCV, 2003.

[12] D. Keysers, W. Macherey, J. Dahmen, and H. Ney. Learning of variability for invariant statistical pattern
recognition. ECML, 2001.

[13] T. Moriyama, T. Kanade, J. Xiao, and J. F. Cohn. Meticulously detailed eye region model. PAMI, 2006.

[14] H. Murase and S.K. Nayar. Visual learning and recognition of 3D objects from appearance. IJCV, 1995.

[15] R. Rao and D. Ruderman. Learning Lie groups for invariant visual perception. In NIPS, 1999.

[16] L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional
manifolds. JMLR, 2003.

[17] A. Schödl, R. Szeliski, D.H. Salesin, and I. Essa. Video textures. In SIGGRAPH, 2000.

[18] B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as a kernel eigenvalue problem.
Neur. Comp., 1998.

[19] P. Simard, Y. LeCun, and J. S. Denker. Efficient pattern recognition using a new transformation distance.
In NIPS, 1993.

[20] P. Simard, Y. LeCun, J. S. Denker, and B. Victorri. Transformation invariance in pattern recognition-
tangent distance and tangent propagation. In Neural Networks: Tricks of the Trade, 1998.

[21] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290, 2000.

[22] Joshua B. Tenenbaum and William T. Freeman. Separating style and content with bilinear models. Neural
Computation, 12(6):1247–1283, 2000.

[23] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite program-
ming. In CVPR04.

[24] Z. Zhang and Zha. Local linear smoothing for nonlinear manifold learning. Technical report, 2003.

Appendix

Notation:
a Scalar
a Vector
ai Vector indexed for some purpose
ai ith element of the vector a
A Matrix
Ai Matrix indexed for some purpose
A·j j th column of the matrix A
Ai· ith row of the matrix A
vec (A) vector version of the matrix A
A+ Pseudo-inverse of A
‖x‖22 squared L2 norm of x
‖A‖2F squared Frobenius norm of A

Variables:
D dim. of original space
d dim. of projected space
n number of data points
f number features per point
xi [D × 1] i ∈ [n], data point
f i [f × 1] i ∈ [n], features of xi

Ni indices of neighbors of xi

Hθ Hθ : RD → RD×d

Hi [D × d] Hi = Hθ(x
i)(θ fixed)

εij , Ei free parameters
∆i [D × |Ni|] ∆i

·j = xj − xi

U iΣiV i> SVD of ∆i

Appendix A: Equivalence of error1(θ) and error2(θ)

error1(θ) = min
{εij}

nX
i=1

X
j∈N i

Hθ(x
i)εij − (xj − xi)

2

2

error2(θ) = min
{Ei}

nX
i=1

Hθ(x
i)Ei − U iΣi

2

F

Fixing θ we can solve for each εij and Ei and rewrite error1(θ) and error2(θ) as:

error1(θ) = min
{εij}

nX
i=1

X
j∈N i

Hiεij −∆i
·j

2

2
=

nX
i=1

X
j∈N i

�HiHi+ − I
�

∆i
·j

2

2

error2(θ) = min
{Ei}

nX
i=1

HiEi − U iΣi
2

F
=

nX
i=1

�HiHi+ − I
�

U iΣi
2

F

We show the equivalence of these two forms, using the facts that ‖A‖2F = tr(A ·A>), ‖x‖22 = tr(xx>), and
for any unitary matrix V the following holds:

P
j

�
Vj·

> · Vj·
�

= I . Proof:

error1(θ) =

nX
i=1

X
j∈N i

�HiHi+ − I
�

∆i
·j

2

2
=
X

i

X
j∈Ni

tr

��
HiHi+ − I

�
∆i
·j∆

i
·j>

�
HiHi+ − I

�>�

=
X

i

X
j∈Ni

tr

��
HiHi+ − I

�
· U iΣiV i

·j
> · V i

·jΣ
i>U i> ·

�
HiHi+ − I

�>�

=
X

i

tr

0
@�HiHi+ − I

�
· U iΣi ·

X
j∈Ni

�
V i
·j
> · V i

·j

�
· Σi>U i> ·

�
HiHi+ − I

�>1A
=
X

i

tr

��
HiHi+ − I

�
· U iΣi · Σi>U i> ·

�
HiHi+ − I

�>�
as V i is unitary

=
X

i

�HiHi+ − I
�

U iΣi
2

F
= error2(θ)

Appendix B: Minimization for General Manifolds

Here we use the linear parametrization of HΘ: HΘ is parameterized by Θ = (Θ1, · · · , ΘD), where each Θk

is a d× f matrix. The total number of parameters is thus Ddf . HΘ has the following form:

HΘ(xi) =
h
Θ1f i · · ·ΘDf i

i>

Plugging HΘ into error2(θ) gives the new error function errorlin(θ):

errorlin(θ) = min
{Ei}

nX
i=1

HΘ(xi)Ei − U iΣi
2

F

= min
{Ei}

nX
i=1

DX
k=1

f i>Θk>Ei − U i
k·Σ

i
2

2

Minimize with respect to Θ:

1. Initialize Θ randomly.

2. Loop:

(a) For each i, solve for the best Ei given the Θk’s:

Ei = arg min
{Ei}

DX
k=1

f i>Θk>Ei − U i
k·Σ

i
2

2

= arg min
{Ei}

HiEi − U iΣi
2

F

= Hi+U iΣi

(b) For each k, solve for the best Θk given the Ei’s:

Θk = arg min
Θk

nX
i=1

f i>Θk>Ei − U i
k·Σ

i
2

2

= arg min
Θk

nX
i=1

�Ei> ⊗ f i>
�

vec
�
Θk>

�
− vec

�
U i

k·Σ
i
�2

2

Since vec
�
U i

k·Σ
i
�

= ΣiU i
k·
>, the least squares solution for Θk becomes:

vec
�
Θk>

�
=

2
64

E1> ⊗ f1>

...
En> ⊗ fn>

3
75

+ 2
64

Σ1U1
k·
>

...
ΣnUn

k·
>

3
75

Adding a regularization term on the Eis and Θks is important for achieving good solutions. The error function
becomes:

error′lin(θ) = errorlin(θ) + λE

nX
i=1

Ei
2

F
+ λθ

DX
k=1

Θk
2

F

When computing the optimal Θk and Ei, the above equations needs to be modified only slightly. The scheme
is similar to solving for x = arg minx ‖Ax− b‖22 + λ ‖x‖22, in which case the solution is simply obtained by
taking the derivative and setting to 0: x = (A>A + λI)−1A>b. The above equations are adjusted similarly.

Appendix C: Minimization for Image Manifolds

K ≤ D patches of size s× s are extracted from each image. After clustering the patches to obtain f clusters,
for each patch a length f feature vector is computed, and for each image i the feature vectors for each patch are
stacked in a matrix F i (of size f ×K). For images, there is a single Θ (of size d× f). The error, again derived
from error2(θ) is:

errorimg(θ) = min
{Ei}

nX
i=1

HΘ(xi)Ei − U iΣi
2

F

= min
{Ei}

nX
i=1

F i>Θ>Ei − U iΣi
2

F

Minimize with respect to Θ:

1. Initialize Θ randomly.

2. Loop:

(a) For each i, solve for the best Ei given Θ:

Ei =
�
F i>Θ>

�+

U iΣi

(b) Solve for the best Θ given the Ei’s:

Θ = arg min
Θ

nX
i=1

F i>Θ>Ei − U iΣi
2

F

= arg min
Θ

nX
i=1

�Ei> ⊗ F i>
�

vec
�
Θ>
�
− vec

�
U iΣi

�2

F

Hence, vec
�
Θ>� is the least square solution of:2

64
A11

...
AnD

3
75 vec

�
Θ>
�

=

2
64

vec
�
U1Σ1

�
...

vec (UnΣn)

3
75 =

2
64

U1
·1Σ

1
11

...
Un
·DΣn

DD

3
75

where Aij = Ei
·j
> ⊗ F i>. As the left matrix is of size nDK × df , we do not solve this least

squares problem directly, but rather transform the equation to:2
64

A11

...
AnD

3
75
> 2
64

A11

...
AnD

3
75 vec

�
Θ>
�

=

2
64

A11

...
AnD

3
75
> 2
64

U1
·1Σ

1
11

...
Un
·DΣn

DD

3
75

nX

i=1

DX
j=1

Aij>Aij

!
vec
�
Θ>
�

=

nX
i=1

DX
j=1

Σi
jjA

ij>U i
·j

This equation is simpler to solve as the left matrix is only df × df and typically full rank.

Adding a regularization term is similar to the case for general manifolds.

Appendix D: Summary of the Algorithms

LSML for General Manifolds

INPUT

xi: input data points (1 ≤ i ≤ n) in RD

N i: neighbors of xi (e.g. using kNN)
d: manifold dimensionality
f : number of RBFs (controls smoothness)

PRECOMPUTATIONS

µj , σ: Run K-means on the xi with f clus-
ters; set µj to the cluster centers. Set
σ to twice the average distance be-
tween a cluster and its nearest neigh-
bor.

f i: Features: f i
j =

exp(
xi − µj

2

2
/2σ2)

U i, Σi: For each xi, compute the difference
to neighbor matrix ∆i and apply the
SVD to get: ∆i = U iΣiV i>

MINIMIZATION

∀k, initialize Θk to a random d× f matrix.
while errorlin(θ) still decreases do

∀i, solve for the best Ei given the Θks:

Hi =
h
Θ1f i · · ·ΘDf i

i>
Ei = Hi+U iΣi

∀k, solve for the best Θk given the Ei’s:

vec
�
Θk>

�
=

2
64

E1> ⊗ f1>

...
En> ⊗ fn>

3
75

+ 2
64

Σ1U1
k·
>

...
ΣnUn

k·
>

3
75

end while

LSML for Image Manifolds

INPUT

xi: input images (1 ≤ i ≤ n) in RD

N i: neighbors of xi (e.g. from proximity in
video)

d: manifold dimensionality
f : number of RBFs (controls smoothness)
s: patch width/height

PRECOMPUTATIONS

µj , σ: Run K-means on large number of
flattened s × s image patches. Set
µj , σ as in general case.

F i: Ftrs: F i
jk =

exp(
pik − µj

2

2
/2σ2) where

pik is the kth patch in image i.
U i, Σi: For each xi, compute the difference

to neighbor matrix ∆i and apply the
SVD to get: ∆i = U iΣiV i>

MINIMIZATION

Initialize Θ to a random d× f matrix.
while errorimg(θ) still decreases do

∀i, solve for the best Ei given Θ:

Ei =
�
F i>Θ>

�+

U iΣi

solve for the best Θ given the Ei’s:

Aij = Ei
·j
> ⊗ F i>

A =

nX

i=1

DX
j=1

Aij>Aij

!

vec
�
Θ>
�

= A+
nX

i=1

DX
j=1

Σi
jjA

ij>U i
·j

end while

View publication stats

https://www.researchgate.net/publication/221618430

