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1 IntroductionActions have consequences; automatic planning, that is determining a sequence of actions in orderto accomplish a task, is only possible if the consequences can be predicted. In this paper, aprediction problem is considered which has useful application in automatic robot planning and thedesign of parts feeders. When an object statically rests on a supporting plane such as a tabletopor conveyer belt, it generally assumes one of a �nite set of stable con�gurations.1 Simply knowingthe stable poses (also called natural resting aspects (Boothroyd, Redford, Poli & Murch 1972)) isuseful for many tasks in robotic and manufacturing applications, e.g., it may aid sensing decisions,grasp planning, and reorienting maneuvers (Lozano-Perez, Jones, Mazer & O'Donnell 1992; Murase& Nayar 1994; Rao, Kriegman & Goldberg 1995; Tournassoud, Lozano-Perez & Mazer 1987).While the con�guration space, C-space, of a rigid object is generally six dimensional, it can betreated as a two dimensional sphere for the problem considered here. If an accurate and completemodel of the object's dynamics were known, the sphere could be partitioned into a collection of opensets called capture regions (basins of attraction, stability regions, regions of convergence) (Chiang,Hirsch & Wu 1988; Genesio, Tartaglia & Vicino 1985). Starting at rest from any point in acapture region, the object's pose will converge under the force of gravity to the correspondingstable con�guration.Let us consider the application of capture regions in a parts feeding system. Objects entera feeder in an arbitrary pose, and the feeder reorients them so they emerge in the same pose.See (Carlisle, Goldberg, Rao & Wiegley 1994) for a recent overview. When the capture region ofthe desired stable pose is known, the feeder is only required to reorient a part to a con�gurationwithin that region. Gravity will do the rest. Based on the capture regions of a part and a set ofactions that a mechanism can perform, a transition graph can be constructed in which the nodescorrespond to the stable con�gurations of the part. A directed arc exists between two nodes ifthere is a non-empty set of actions that move the part from the stable con�guration of the sourcenode to a con�guration within the capture region of the destination node. For a part with n stablecon�gurations, the size of the graph is O(n2). A path through this transition graph constitutesa plan to move a part between two arbitrary stable con�gurations. Algorithms for constructingthe transition graph are presented in (Rao et al. 1995) for feeding polyhedral parts with a passivepivoting gripper, and the use of capture regions in this application are discussed in Section 6. Thecapture regions can be likened to the backprojections found in the work of (Lozano-P�erez, Mason& Taylor 1982), (Erdmann 1986), and (Donald 1988). (Erdmann, Mason & Van�e�cek 1993) describea related planner for polyhedral parts on a tilting table.As mentioned above, if the object's dynamics were accurately known (and time invariant anddeterministic, etc.), then it would be possible to completely partition the C-space using the methodspresented in (Brost 1992; Chiang et al. 1988). Unfortunately, while some aspects of the dynamicscan be modeled and certain parameters (e.g. mass and inertia) can be measured, it is impracticalto completely model other e�ects such as rolling and sliding friction, bouncing, air viscosity, etc.In situations where a part is sliding on a surface or a 3-D object is moving through a viscousmedium, the quasi-static approximation can be applied (Peshkin & Sanderson 1989); however, thisis unreasonable for an object rolling or tumbling on a table under the in
uence of gravity. Instead,1Exceptions include objects with cylindrical or spherical sections where the center of gravity is located at thegeometric center. 2



we only assume that the object starts at rest and that the dynamics are dissipative (i.e. nothingadds energy to the system); there may be rolling and slipping. Because of these weak assumptionsabout the dynamics, the ultimate stable pose cannot be determined for all initial con�gurations,and so the set of capture regions does not completely cover the C-space.(Boothroyd et al. 1972; Boothroyd & Ho 1977) considered the related problem of computing thestatistical distribution of stable poses for a few simple shapes. (Ngoi, Lim & Lee 1995) proposeda heuristic algorithm for computing the distribution by calculating the solid angle of a face fromthe centroid; they compared the predicted distribution to ones found experimentally. Note thatwhen the prior distribution of initial con�gurations is known the presented approach can be usedto compute a lower bound on the probability of a part resting in each stable pose since the captureregions do not completely cover the sphere. (Wiegley, Rao & Goldberg 1992) consider the problemof computing capture regions of polyhedra assuming a quasi-static model of object motion. (Brost1991a; Brost 1992) presents a method for partitioning the con�guration space (IR2�S1) for a varietyof planar manipulation tasks (e.g. pushing, part �xturing and grasping) involving polygons movingin the plane. Similar energy arguments were applied to determine \puddles" in the con�gurationspace. (Brost 1992) also considered the problem when the dynamics were fully speci�ed and whenthere was a limited amount of parametric uncertainty. This paper extends work in (Kriegman1992) which presented an implemented algorithm for determining stable poses (but not captureregions) of piecewise-smooth objects. Except for preliminary results for smooth surfaces presentedin (Kriegman 1994), computation of capture regions has not been considered for 3-D objects.In the next section the relationship between dissipative dynamics and capture regions are con-sidered; we then show that the con�guration space of an object in contact with a supporting planeis equivalent to a sphere. Simple objects with a smooth (up to third order) convex hull are �rstaddressed, and the problem of computing capture regions can be solved by applying Morse theory.An algorithm has been implemented for computing the capture regions for a part whose convex hullis modelled by an algebraic surface, and a few examples are presented. After having establishedthe essence of the approach for smooth surfaces, objects with piecewise-smooth convex hulls areconsidered using strati�ed Morse theory. An algorithm has been implemented for polyhedra, andresults from the implementation are discussed. We conclude by discussing the application of theseresults to a particular parts feeding paradigm and some other possible future directions.2 Dissipative DynamicsFor a mechanical system with totally dissipative dynamics, the total mechanical energy E alongany trajectory is always decreasing. If q denotes the con�guration of the system, then a system istotally dissipative if _E(q(t)) < 0 for _q 6= 0. While kinetic and potential energy may be traded o�at di�erent points in the state space, no energy is added to the system; instead phenomena such asfriction and viscoelasticity cause a continual loss of mechanical energy as time evolves. While thestudy of such systems dates to the development of the theory of classical mechanics, this work isstrongly motivated by Koditschek's results for robotics applications such as adaptive control andmotion planning using arti�cial potential �elds (Koditschek 1991; Rimon & Koditschek 1992). Inparticular, it was noted that a potential energy function can be de�ned on the space of mechanismcon�gurations, and that the only stable attractors of a totally dissipative system correspond tolocal minima of the potential energy function. Because the total energy is strictly decreasing over3
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u(q)Figure 1: The potential energy u(q) for a dynamical system with one degree of freedom q.time, such a system does not have any limit cycles.In the application considered here, the potential energy of an object under gravity can beexpressed as a function of its location with respect to the supporting plane; the local minima ofthis function correspond to the stable poses. To illustrate the essential ideas, consider a simpli�edexample in Figure 1 of the graph of potential energy u(q) for a dissipative system with one degreeof freedom q. There are three local minima (con�gurations c; e, and h). The question arises,if the system starts at rest in some other con�guration q(t0) = q0 besides c; e or h, then whichone will it converge to? Assuming that the system starts at rest _q(t0) = 0, the total energy willsimply be the potential energy u(q0). Furthermore, since the system is dissipative, the total energywill never exceed u(q0). For the system illustrated in Figure 1, consider the open interval (b; d).Since d is a local maximum of u(q) and u(b) = u(d), 8q 2 (b; d); u(q) < u(d). Because there isonly one minimum c in the interval, the interval (b; d) is a capture region for stable con�gurationc. Furthermore, (b; d) is that largest (maximal) region that is guaranteed to converge to c, andthis can be seen by considering the consequences of expanding the interval. If the interval wereexpanded to (b; d�) where d < d� < f , then for an initial con�guration in q(t0) 2 (d; d�), the systemwould converge to e. Alternatively, if the interval were expanded to (b�; d) where b� < b, then thereexists a dissipative system such that the system would converge to e and not c for some q0 2 (b�; b).Similarly (d; f) and (g; i) are respectively capture regions for e and h. Note that we have not madeany strong assumptions about the system's dynamics; the precise form of the governing di�erentialequations does not need to be known. This observation was also exploited in (Brost 1991a; Brost1992).So what can be concluded about an initial con�guration in the other intervals (�1; b], [f; g],[i;1)? Unfortunately, without additional knowledge (or assumptions) about the actual dynamics,only weaker predictions are possible. By the same energy argument, for any q(t0) 2 (a; g), thesystem will not converge to h, but it will converge to either c or e though we cannot determine whichone. Note that (b; d) � (a; g) and (d; f) � (a; g). These relationships de�ne a tree representing thecontainment or hierarchy of capture regions, and this tree may also be useful for planning.4



3 Con�guration Space and Convex HullsTo determine the maximal capture regions of a 3-D object (a bounded, compact set) and a sup-porting plane, we will subsequently consider its con�guration space C-space and de�ne a potentialenergy function on the C-space. Following (Latombe 1991), we note that the C-space of a rigidbody is equivalent to IR3 � SO(3). It can be expressed as the union of two disjoint sets: C-freewhere the object does not intersect the plane, and C-obstacle where the object and plane intersect.C-obstacle is a closed set, and its boundary, denoted by C-contact, is the set of con�gurations wherethe part just touches the plane.Note that an object only contacts a plane on its convex hull H since the hull can be de�ned bythe set of planes which envelop the object. Thus, the partitioning of C-space into C-free[C-obstaclegenerated by an object and its hull are identical; so, it is only necessary to consider computingcapture regions of convex objects. When computing capture regions of a nonconvex part, its hullcan be computed �rst. In general, the convex hull of a nonconvex object is piecewise-smooth;even for a smooth surface with concavities, the hull is only C1. Initially, we are going to be morerestrictive and assume that the surface of the hull is at least thrice di�erentiable C3 allowing usto apply Morse theory in Section 4. These results will be generalized to parts whose hulls are notsmooth in Section 5.The potential energy of an object is proportional to the height of the center of gravity above thehorizontal support plane. In turn, the location of the center is a function of the part's con�gurationq. Now, consider a �xed coordinate system whose origin lies in the supporting plane, and let thecoordinates of the gravity vector g be [0 0 1]t in this frame. Let c denote the coordinates of thecenter of gravity in a frame a�xed to the moving part. The con�guration q = (t;R) 2 IR3�SO(3)of the part with respect to the �xed frame can be represented by t = [tx ty tz ]t and R = [r1jr2jr3]t.Assuming unit mass and taking the potential to be 0 when the center lies in the support plane, thepotential energy can be written as:u(q) = (Rc+ t) � g = r3 � c + tz (1)Thus, the potential energy is a function of only r3 and tz . Since R is an orthonormal matrix,jr3j = 1; in other words r3 lies on the two sphere S2. Rotation about g and translation in adirection parallel to the support plane leaves u(q) unchanged. Furthermore, the components of qspecifying the resting location and orientation in the support plane cannot be predicted withoutprecise knowledge of the dynamics. Since we can only predict the resting values of r3 and tz , we willonly consider the three-dimensional \slice" of the C-space given by IR � S2 when de�ning captureregions.As in (Kriegman 1992), a con�guration is considered stable if it is a local minimum of u(q) overC-free [ C-contact. Since the potential energy decreases monotonically with translation along g,the minimum of u(q) must occur when the hull contacts the support plane, i.e., q 2 C-contact. Fora �xed orientation, contact occurs at a unique height, and so tz and consequently u can be writtenas functions of r3. Taken together, one rotational and all translational degrees of freedom can beignored. Thus, the relevant con�guration space is equivalent (di�eomorphic) to a sphere, and wecan de�ne the potential energy function, which will still be denoted u(q), as a map from the sphereu:S2! IR; S2 will then be partitioned into a set of capture regions.5



4 Smooth Hulls and Morse TheoryIn Section 2, the relationship between the dynamics of dissipative mechanical systems and potentialfunctions was explored. In particular, for a bounded, closed, connected subset S of the con�gurationspace, if u(q) = ub is constant on the boundary of S and if u(q) < ub on the interior, then S isan invariant set. Furthermore, we noted that if u(q) is uniminimal (possessing only one minimum)on S, then for any initial con�guration q(t0) 2 S; _q(t0) = 0, the pose will converge to the localminimum for any totally dissipative system.2 These are the conditions for S to be a capture region.So the question is, \For each minimum, how do we compute the largest (maximal) capture region,its boundary, and the value of ub?" To answer this, we turn to Morse theory (Milnor 1963).Following (Goresky & Macpherson 1980), let X be a compact di�erentiable manifold and f bea smooth, real valued function f :X ! IR. For a given real number r, consider the subset of Xde�ned by X�r � fx 2 X : f(x) � rg. Morse theory considers the topological changes to the setX�r as r varies. Note that X�r is a manifold (with boundary), and it may be composed of a set ofdisjoint, multiply connected components. Now, recall that a point x 2 X where the di�erential dfof f vanishes is called a critical point of f , and the corresponding value of f(x) is called a criticalvalue.Theorem 1 Let f be a di�erentiable function on a compact smooth manifold X. As r varieswithin the open interval between two adjacent critical values, the topological type of X�r remainsconstant. (Goresky & Macpherson 1980)For computing capture regions, X is di�eomorphic to S2 as discussed in Section 3, and thefunction f is simply the potential energy function u(q) de�ned on the sphere. Along the boundaryof S2�u, the value of u(q) is a constant u. If a connected component of S2�u contains only oneminimum, it de�nes a capture region. Since X�r � X�r0 for r < r0 from the de�nition, it maybe possible to expand a capture region by increasing u. However as u is increased, a connectedcomponent may fail to remain a capture region if a second minimum is introduced to the region.It will be shown below that a new minimum can only be introduced to S2�u by introducing a newdisjoint set homeomorphic to a disk that contains the minimum. Thus, two connected componentsof S2�u must merge for a second minimum to be added to an existing capture region. By Theorem 1,this topological change to S2�u only occurs at critical points. Consequently, for a capture regionto be maximal, the potential energy along the boundary must be a critical value of u(q). If not, acapture region could be expanded without introducing a second minimum.We will assume that u(q) is a Morse function (Guillemin & Pollack 1974) (i.e. that the Hessianmatrix of second derivatives of u(q) is nonsingular at all critical points).3 During the process2This is not strictly true when the con�guration space is 2-D or greater. For example, if S is 2-D and punctured,and if the boundary of S is composed of n curves, then S contains n � 1 saddles of u(q) (Koditschek 1991; Rimon& Koditschek 1992). For each saddle h, there is a codimension 1 invariant set S 0 � S; for an initial con�gurationq 2 S 0, q(t) will remain in S 0 and converge to h rather than the minimum. Fortunately, since S 0 is a set of measurezero, the initial con�guration is unlikely (probability zero) to be on S 0. Thus, the presence of saddle points within acapture region will not be of practical concern.3Assuming that u(q) is Morse is not very restrictive since nearly all functions are Morse (i.e. in the space of smoothfunctions, the set of functions with degenerate critical points is of codimension one) (Milnor 1963). Furthermore,even if u(q) were not Morse, the ideas of (strati�ed) Morse Theory can be extended to consider \nondepraved criticalpoints." See (Goresky & Macpherson 1980). 6
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c. d.Figure 2: Changes to a capture region (a subset of S2�u) in the neighborhood of a critical pointas u is increased and crosses a critical value: a. local minimum; b. type I saddle; c. type II saddle;d. local maximum.of computing capture regions, it is easy to determine if u(q) is Morse by computing the Hessianmatrix at each critical point and checking that its determinant is nonzero. A sphere whose center ofgravity is at the geometric center provides an example of an object whose potential energy functionis not Morse; in this case, u(q) is constant. However, any perturbation of c will make u(q) Morse.Thus, only objects with Morse potential energy functions will be considered since perturbing c bysimply adding a small random number to the coordinates of c will make u(q) Morse.Theorem 1 tells us that the topology of X�r only changes at critical points. Furthermore, theMorse index at a critical point (de�ned to be the number of negative eigenvalues of the Hessianmatrix) can be used to determine how the topology of X�r changes when r crosses a critical value.Here, the Morse index can take on a value of 0, 1 or 2 since the Hessian matrix of u(q) is 2�2. Thechange in topology is represented by the Morse Data which is a pair of spaces (A;B) with B � A.The change to X�r as r crosses a critical value can be described by \gluing in" A along B.Theorem 2 Let f be a Morse function on an n-dimensional smooth manifold X. Morse datameasuring the topological change in X�r as r crosses the critical value of a critical point p is givenby the \handle" (D� � Dn��; @D� � Dn��) where � is the Morse index of f at p, Di denotes aclosed i-dimensional disk, and @Di denotes its boundary (an i � 1 dimensional sphere). (Goresky& Macpherson 1980).In our case, when the � = 0, the critical point qc is a local minimum of u(q), and the Morsedata is (D2; ;); the change in the topology of S2�u as u crosses the critical value is to introduce aset homeomorphic to a disk to S2�u. When � = 1, qc is a saddle point, and the topological changeis equivalent to gluing opposite sides of a rectangle to two disjoint boundary segments of S2�u.Finally when � = 2, qc is a local maximum, and the topological change is equivalent to gluing adisk along its boundary to S2�u. Figure 2 illustrates these changes.Now, let us consider the level sets of the potential energy function. By the Implicit FunctionTheorem, the set of equipotential points on S2 for some constant ub (i.e. fq 2 S2 : u(q) = ubg) formcurves (equipotential contours) which are smooth except at isolated critical points. Furthermore7
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b .Figure 3: There are two qualitatively di�erent ways that an equipotential contour through a sad-dle can divide the sphere S2 into three regions. The signs indicate the relative potential energywith respect to the equipotential contour, and the arrows indicate the directions of departure andapproach when tracing an equipotential contour.because S2 is bounded, the graph of potential energy is also bounded. Consequently, so are theequipotential contours. In general, they form simple closed loops. However, there is a transversecrossing at a saddle point, and when the critical values are distinct, the equipotential contour formsa �gure-eight with two closed loops.As shown in Figure 3, the equipotential contour through the saddle point divides the sphereinto three disjoint regions. In the neighborhood of the contour, there are two qualitatively di�erentcases. As in Figure 3.a, the potential energy immediately within the two loops is lower than on theequipotential contour; it is greater outside of the loops. The saddle essentially separates the two\valleys." In contrast, the potential energy is greater within the two loops in Figure 3.b. In thiscase, the saddle separates the two peaks. Note that the two cases cannot be distinguished from thegeometry of u(q) in the neighborhood of the saddle. However, if the two equipotential loops aretraced, the directions of departure and of approach to the saddle can be determined for each loop.These directions are the asymptotic directions of the graph of u(q). Now consider the principaldirection (do Carmo 1976) lying between the approach and departure directions. If the principalcurvature in this direction is negative (respectively positive), the saddle is qualitatively similar tothat shown in Figure 3.a (respectively Figure 3.b).The implications for computing capture regions of Theorem 2 follow: Every connected com-ponent of S2�u must contain a local minimum of u(q) since new components are introduced atcritical points with � = 0 (See Figure 2.a). We now consider what happens to a uniminimal con-nected component of S2�u as u is increased and a critical value is crossed. To visualize these cases,consider the graph of the potential energy function on the sphere which is like a hilly globe. Theset S2�u is the portion of the globe where the altitude of the graph is less than u. There are a fewcases:1. If the critical point is a saddle (� = 1), a handle is \glued" in. There are two subcases:(a) The saddle point is like that shown in Figure 3.a, and the handle joins two disjointconnected components of S2�u. Each component possesses at least one local minimum, andso after joining, u(q) will no longer be uniminimal on the resulting component. Thus, theboundary of the maximal capture region is one of the equipotential contours through thesaddle point. We term this a type I saddle (See Figure 2.b).(b) The saddle point is similar to the one in Figure 3.b, and the handle joins two parts ofthe boundary of the same uniminimal connected component. Since the sphere is orientable,8



the resulting region is homeomorphic to a punctured disk. Note that this implies that acapture region may not be simply connected. We call this a type II saddle (See Figure 2.c).Subsequent type II saddles introduce additional punctures.2. If u passes a critical value corresponding to a local maxima (� = 2), a disk is \glued" in alongits boundary, and there are two possibilities:(a) If S2�u is a disk, the result of the gluing operation is S2; there is only one stable pose.(b) Alternatively, the uniminimal component may be punctured, and the gluing operationwill eliminate a puncture (See Figure 2.d).This completely enumerates the possible changes to the topology of a uniminimal connected com-ponent of S2�u as u increases and crosses a critical value. From this catalogue, we can concludethat a type I saddle point determines the potential energy ub along the boundary of a maximalcapture region (except in the trivial case where the region is all of S2).We also note that a uniminimal capture region may contain critical points (maxima and saddles)besides the single minimum; however, these critical points are not stable. For an initial con�gurationalong a particular collection of curves in the region called the stable manifold of a saddle point,the dynamical system will converge to one of the saddle points. However, the stable manifold is aset of measure zero, and these other critical points are unstable, so including these critical pointswithin the capture region should not cause any trouble in practice. For each capture region, thereare at least two critical points (the minimum and a saddle on the boundary). A capture region willcontain more than two critical points only when the second critical point (ordered by increasingcritical value) is a type II saddle, and the capture region is equivalent to a punctured disk.A useful fact to note is that because u:S2! IR is a mapping from a surface of genus zero whoseEuler characteristic � is two, a consequence of the Poincar�e-Hopf Theorem (Guillemin & Pollack1974) is: Nmin + Nmax � Nsad = � where Nmin; Nmax and Nsad are respectively the number ofminima, maxima and saddles. In practice, this serves as a check when computing and characterizingthe critical points of u(q) for a particular object.4.1 Algorithm for Determining Capture RegionsThe above discussion suggests the following algorithm for computing the maximal capture regionsof an object with a smooth convex hull H given the location of its center of gravity c. Details willbe provided subsequently.4.1.1 An Outline of the AlgorithmA uniminimal region of S2 is represented by a minimum qm and a discrete approximation to theset of closed equipotential contours bounding the region; the potential energy is constant ub onthese contours. The output of the algorithm is a list of maximal capture regions.1. Set the region-list to empty;2. Compute all critical points qc using global methods and determine their Morse indices;3. Sort the critical points by increasing critical value uc = u(qc);9



4. Looping through the critical points, if qc is a:Minimum: Create a new region with qm = qc and ub = uc, and add it to the region-list.Saddle: Trace the two closed equipotential contours L1;L2 through qc. For each Li, integratea dissipative system starting from some q(0) 2 Li until q(t) converges upon a minimum qmi .The type of the saddle is determined as follows:When qm1 6= qm2 , qc is a type I saddle. For each qmi , if it lies within a region on theregion-list, then Li encloses qmi , and Li forms a boundary of the maximal capture region ofqmi . If this region is punctured, Li replaces an existing boundary, and the other boundariesare smoothly deformed by increasing the energy from ub to uc. This completely de�nes amaximal capture region; delete it from the region-list.When qm1 = qm2 , qc is a type II saddle. L1 and L2 both become boundaries of the region(introducing a puncture). One of these replaces an existing boundary while the other is new.Smoothly deform any other contours by increasing the energy from ub to uc.Maximum: Determine if a punctured uniminimal region surrounds the maximum. Eliminatethe corresponding contour, and smoothly deform the remaining contours by increasing theenergy from ub to uc.4.1.2 Speci�cs for Implicit SurfacesMany of the steps described above are involved; we now provide details for the case when H isde�ned implicitly. Except for one step, determining the critical points, the approach is general. Inthat one step, the surface must be algebraic. Consider H to be represented as the zero set of a C3function: f(p) = 0 (2)where p 2 IR3. The Gauss map n:H ! S2, yielding the outward pointing unit surface normal, isn(p) = 1jrf(p)jrf(p) (3)where r denotes @=@p.Since H is convex and bounded, and n(p) is de�ned everywhere on H, the Gaussian imageof H covers the sphere S2. Thus, the Gauss map is surjective. For convenience, we also assumethat it is injective; this allows us to invert the Gauss map, n�1:S2 ! H. Note that when H isa bounded convex algebraic surface, it can be shown that the Gauss map is necessarily injective.Furthermore, we can identify the surface normal with a con�guration of the object in contact withthe supporting plane. Thus, we arrive at the following pair of maps.S2 n � H u�! IRSince the Gauss map is assumed to be invertible, all of the necessary calculations can be calculatedon H rather than on S2. This is much more convenient because while the Gauss map is explicitlygiven by (3), there is no explicit expression for its inverse. The algorithm outlined above can berecast in terms of points on the surface of the hull rather than over points in the con�gurationspace. The equations in the rest of this section will be expressed in terms of the coordinates of the10



point of contact p on H; the coordinates of c are then constant. As a map u:H ! IR, the potentialenergy is given by: u(p) = (p� c) � n(p) (4)4.1.3 Computing Critical PointsThe critical points of (4) are given by du = 0; di�erentiating (4) and (2) and eliminating dp, weobtain: (p� c)� n(p) = 0 (5)which is a system with two linearly independent equations. Equation 5 simply states that p� c isaligned with the surface normal at the critical points (Kriegman 1992). Along with f(p) = 0, thisyields a system of three equations in three unknowns which can be solved for p.As shown in (Kriegman 1992), the classi�cation of a critical point can be determined fromthe principal curvatures k1; k2 of the surface at p. Let us assign principal directions so k1 � k2.Because H is convex, the contact point must be either elliptic or parabolic, and so k1 and k2 mustbe non-negative. De�ne kc = 1=jp� cj to be the curvature of a sphere centered at c and makingsecond order contact with H at p (i.e., the tangent planes of the sphere and H are identical at p).If kc < k1, the critical point is a local maximum of u(p). If k1 < kc < k2, the point is a saddle, andif kc > k2, then the point is a local minimum. Note that when kc = k1 or kc = k2, u(q) is not aMorse function; for a smooth hull, these are the only conditions where u(q) is not Morse.To actually compute the principal curvatures for a surface de�ned implicitly, we follow (do Carmo1976) and note that the di�erential of the Gauss Map evaluated at a point p dn:Tp! Tp is givenby dn(v) = DNv where DN is a 3� 3 matrix evaluated at p with elements DN ij = @ni=@pj; i; jdenote coordinates of n and p. For a surface given implicitly, DN is expressed as:DN = 1jrf j(I � nnt)Hwhere H is the Hessian matrix of f(p). The normal curvature at p in the direction v is given bysecond fundamental form or kn(p;v) = �vtDNv. Note that DN is a rank two matrix. Two of theeigenvectors of DN lie in the tangent plane and are the principal directions of the surface; theircorresponding eigenvalues are the principal curvatures k1 and k2.4.1.4 Tracing Equipotential ContoursThe algorithm outlined above requires tracing an equipotential contour from some initial point p0on the contour whose potential energy is ub = u(p0). While a general algebraic curve tracing routinesuch as (Kriegman & Ponce 1991) could be employed, this is unnecessary since we have assumedthat u(q) is a Morse function. As noted in Section 4, the equipotential contours form closed curveswhose only singularities occur at saddle points where a transverse crossing occurs. Starting at p0,a sequence of points on the curve is found using a traditional curve marching technique composedof prediction and correction steps.Along the equipotential contour, _u(p) = 0. So if p is a regular point of the contour, the tangentt to the equipotential contour can be determined by di�erentiating (2) and (4) and solving fort = _p. This yields t = rf �DN t(p� c) (6)11



where DN t denotes the transpose of DN . To predict the next point pi+1 along the equipotentialcontour from a point pi, a step of length � is taken in the direction t by pi+1 = pi + (�=jtj)t.In general, the predicted point pi+1 will be near the equipotential contour, and an improved(corrected) estimate can be obtained by applying Newton's method in a direction orthogonal to t;pi+1 is repeatedly corrected according to pi+1  pi+1 +� where the correction � is found bysolving the following linear system:264 pti+1(pi+1 � c)tDNrf t(pi+1) 375� = �264 0u(pi+1)� ubf(pi+1) 375 (7)For nearly all points on the contour, this tracing procedure works well in practice. The onlydi�culty arises when pi is a saddle point and (6) vanishes. At these points, the equipotentialcontour is singular and forms a regular crossing. The tangent directions of the two branches at thecrossing are given by the asymptotic directions of the graph of the potential energy function. Thiscan be expressed as the solution to the following two homogeneous equations in t = (tx; ty ; tz).(rf(p) � t = 0(p� c)t[txDNx + tyDNy + tzDNz ]t+ ttDNt = 0where DNx denotes the matrix of partial derivatives of DN with respect to x evaluated at p.4.1.5 Associating MinimaTo determine if a minimum pmi is enclosed by an equipotential contour Li passing through a saddlepoint in Step 4 of the algorithm, a di�erential equation describing some dissipative system can beintegrated starting at zero velocity _p(t0) = 0. Since u(p) is singular at a saddle point, a point oneach traced loop is used as the initial con�guration p(t0). Now what form should the di�erentialequations take? If Li delimits a uniminimal region, then any dissipative system will converge tothe minimum of that region. For simplicity, we choose the gradient of the potential energy function_p(t) = ru(p(t)) (8)restricted to the tangent plane of H at p(t). While this system will not converge within �nite time,it is integrated until the distance of p(t) to some minimum is less than some �. Recall that the set ofminima have been computed already, so it is easy to determine when to terminate. If the minimumlies within a region on the region-list, Li becomes a new boundary of that region. If the systemconverges to the same minimum on region-list for both initial points, the saddle point must bea type II saddle, and both L1 and L2 become bounding contours of the capture region.To determine if a maximum p closes a puncture of a uniminimal region, p is perturbed from themaximum in any direction, and the gradient system (8) is integrated starting from the perturbedp. If the system converges to within � of a minimum on the region-list, the maximum closes apuncture of that region. Since u(p(t)) decreases monotonically, the trajectory p(t) can only crossone of the boundary contours of the uniminimal region; this contour can be eliminated from theuniminimal region. 12



a. b. c.d. e.Figure 4: Capture regions of a superellipsoid whose center of gravity is o�-center: The criticalpoints and equipotential contours are drawn on the surface in (a), are seen in two views of thesphere in (b and c), and are drawn spherical coordinates in (d). The triangles, circles and x'srespectively indicate maxima, minima and saddles; e. The capture regions are drawn in sphericalcoordinates.4.1.6 Pushing up equipotential contoursWhen a uniminimal region on the region-list is punctured, a subsequent saddle or maximumleads to a change in the region's connectivity. The new boundary curves are determined by theequipotential contours at energy uc through the critical point. While the potential energy of thecontours were ub, these boundaries need to be \lifted" to have potential, uc. Since Theorem 1states that the connectivity of a region and hence the boundaries only changes at a critical point,the boundaries that do not pass through the critical point can be smoothly deformed. Rather thancontinuously deforming the contour, a single point p0 on each contour is \deformed" by integratingthe negative gradient system _p(t) = �ru(p(t)) restricted to the tangent plane at p(t) from p0until u(p(tf )) = uc. After integration, the equipotential contour can be traced using the algorithmof Section 4.1.4 starting at p(tf).4.2 Implementation and ExamplesThe algorithm for computing the maximal capture regions described in Section 4.1 has been im-plemented for a convex hull H represented by an algebraic surface. Below, examples of applyingthe algorithm to two objects (superellipsoids) are presented. In both cases, the center of gravity c13
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b. c.Figure 5: Capture regions of another superellipsoid: a. the superellipse; b. critical points andequipotential contours; c. the capture regions. Note that the central region is homeomorphic to anannulus.does not lie at the geometric center of the object; this ensures that u(q) is a Morse function. Byapplying the algorithm to algebraic surfaces, the global method of homotopy continuation can beused to determine the coordinates of the critical points (Morgan 1987). This is the only part ofthe algorithm that requires H to be an algebraic surface. In the presented examples, a distributedimplementation of homotopy continuation running on a network of four workstations is used tosolve these systems; the polynomial systems have a total degree ranging up to 64 and are solved inless than thirty seconds. The rest of the implementation is written in Common Lisp, and the twoexamples presented below ran on a Sun SPARC Station I in a total 8.5 minutes and 4.5 minutes.The �rst example shown in Figure 4.a is a superellipsoid whose equation is x4+y4+z4�16 = 0and whose center of gravity is c = (:45; :25; :35). There are 26 critical points (6 minima, 12 saddles,and 8 maxima). This agrees with the Euler characteristic. Figure 4.a shows the critical pointsalong with the equipotential contours drawn on the surface. Each capture region corresponds to aportion of the surface containing a minimum (a circle) and the innermost equipotential contour. Foran initial point of contact within this region, the part will settle to the corresponding stable pose.Note that in practice, it is unnecessary to trace all of these contours when computing the captureregions; while looping through the critical points, if the region-list is empty, the equipotentialcontours emanating from a saddle point cannot delineate a uniminimal region. From antipodal14



viewpoints, Figures 4.b and 4.c portray the critical points and equipotential contours on the spherewhile Figure 4.d shows them in spherical coordinates. Be aware that this grossly distorts thegeometry in the neighborhood of the two poles (top and bottom) and that the left and right sidesof the �gure are identi�ed | so, the contours wrap around this boundary. Finally, Figure 4.e showsthe capture regions; each one is homeomorphic to a disk.As discussed in Section 4 and illustrated in Figure 5, a capture region may contain punctures.The superellipsoid de�ned by (x2 + y2)2 + (z=1:4)4 = 1 with center c = (:2; :05; :05) has a circularcross section in the x-y plane and a superelliptic cross section in the x-z plane. It is easy to visualizethe three stables poses: two of them involve contact on the 
at ends; since c is o�-center, there isalso another stable pose where the point of contact lies on the \cylindrical" portion of the surface.As shown along with the equipotential contours in Figure 5.b, there are only 8 critical points(three minima, three saddles and two maxima). The numbers in Figure 5.b indicate the increasingpotential of the three saddles. Saddle 1 is a type II saddle; the two smooth contours surroundthe central minimum. Saddle 2 is a type I saddle, and the two equipotential contours individuallysurround the central and upper minima. As shown by the capture regions in Figure 5.c, the contourthrough Saddle 2 replaces the upper contour through Saddle 1. The lower contour in Figure 5.bthrough Saddle 1 is pushed up to the same potential as Saddle 2 using the method of Section 4.1.6and does not pass through a critical point as seen in Figure 5.c. Thus, the capture region of thecentral minimum is a band that wraps around the equator.5 Piecewise-smooth ObjectsUntil this point, we have restricted our attention to objects whose convex hulls are at least thricedi�erentiable; this allowed us to apply Morse theory to study the changes in topology of thecon�guration space under the potential energy function. Here we turn toward more realistic modelsof objects, and allow a part to have a convex hull H composed of smooth surface patches that joinalong intersection curves which meet at vertices. This includes the important subclass of polyhedra.The discussion will follow the one presented for smooth hulls. We will consider the potentialenergy function de�ned on the object's con�guration space and construct maximal uniminimalregions of the C-space. Again, we will consider the changes to the connectivity of the regionsas potential energy increases. We will be particularly interested in those events that create newuniminimal regions, that join two regions together, and that close punctures.There are a few points to note about this extended class of objects. First, since the convex hullis not smooth, the potential energy function is not smooth, and so Morse theory cannot be directlyapplied. Fortunately, recent extensions called strati�ed Morse theory can be used to generate acatalogue of generic topological changes. The second point to note concerns the use of the Gaussmap between H and S2. When presenting the algorithm for algebraic surfaces in Section 4.1.2,we assumed that the Gauss map was injective, and so it could be de�ned in terms of points on Hrather than on S2. Here, we no longer have that luxury. Consider a polyhedron. A face restingon the supporting plane (a single con�guration) has many points of contact. Alternatively, when avertex (a single point) remains in contact with the plane, the object's con�guration has two degreesof freedom. So, we will be forced to consider the map u:S2! IR directly.In this section, we �rst present some de�nitions and results from strati�ed Morse theory andthen apply these to computing capture regions. Unfortunately we will run into a problem imme-15



diately. The author is not aware of a complete classi�cation of the points on the convex hull ofa general piecewise-smooth object. However, such catalogues exist for polyhedra, generic smoothsurfaces (with concavities), and generic space curves. In this paper, only the �rst two cases willbe considered. The development can be extended to the most general case { presently, the missinglink is a complete catalogue of points on the convex hull.5.1 Strati�ed Morse TheoryWhereas Morse theory is concerned with the change in topology of the set X�r for a di�erentiablefunction f :X ! IR where X is a compact smooth manifold, strati�ed Morse theory (Goresky &Macpherson 1980) can be applied when X is a singular set, in particular a Whitney strati�ed set.Any closed subset X of some d-dimensional manifold X � M (e.g. M = IRd) which can bedecomposed into the �nite union of disjoint manifolds (strata) of dimension ranging from 0 to d iscalled a strati�ed set. For example, a polyhedron can be decomposed into the union of its interior(a 3-manifold), its faces (2-manifolds), its edges (1-manifolds), and its vertices (points which are 0-manifolds). If it satis�es the Whitney conditions, then it is called a Whitney strati�ed set. We leavethese conditions unstated because as noted in (Canny 1988), all semi-algebraic sets can be strati�edin a manner which satis�es the Whitney conditions (Whitney 1957); algorithms such as cylindri-cal algebraic decomposition (Collins 1975) or Canny's roadmap are available for decomposing asemialgebraic set into strata. The importance of semialgebraic sets is that nearly all object modelscreated by CAD systems are semialgebraic since they are composed of Boolean combinations ofsolids bounded by algebraic surfaces (e.g. planes, quadric surfaces, B-splines, NURBS, etc.). Notethat the convex hull of a semialgebraic set is also semialgebraic. This can be seen by noting thatthe convex hull can be considered a C-space obstacle for the object interacting with a plane, andcon�guration space obstacles of semialgebraic sets are themselves semialgebraic (Latombe 1991).Consider the restriction to a Whitney strati�ed set X of a smooth real valued function on M ,f :M ! IR. A point x 2 X is considered a critical point of f if it is a critical point of the restrictionof f to any stratum. Note that all zero dimensional strata are critical points. The correspondingcritical value is then given by v = f(x). Analogous to Theorem 1, we haveTheorem 3 As r varies within the open interval between two adjacent critical values, the topolog-ical type of X�r remains constant (Goresky & Macpherson 1980).As with Theorem 1, the primary implication of this theorem is that we only need to considerthe critical points to determine the capture regions. This theorem has recently been applied inRimon and Canny's incremental motion planning algorithm (Rimon & Canny 1994).Analogous to Theorem 2, the change in the topology of X�r as r crosses a critical value can bedetermined by applying the following theorem (the terms will be de�ned below):Theorem 4 Let f be a Morse function on a compact Whitney strati�ed space X. Then, Morsedata measuring the change in the topological type of X�r as r crosses the critical value of a criticalpoint p is the product of the normal Morse data at p and the tangential Morse data at p (Goresky& Macpherson 1980).The tangential Morse data at p is de�ned to be the Morse data for the restriction of f to thestratum S of X containing p, and from Theorem 2, it is equivalent to (D� �Dn��; @D� �Dn��)16



a. b. c.Figure 6: a. A polyhedron; b. its convex hull; c. the strati�cation of the spherical con�gurationspace. Under the generalized normal, faces of the hull map to vertices, edges map to arcs of greatcircles, and vertices map to regions of the sphere.where n is the dimension of S and � is the Morse index. To de�ne the normal Morse data at p, let N 0be a smooth submanifold ofM which is transverse to S at p such that dim(S)+dim(N 0) = dim(M).The normal slice is then given by: N(p) = N 0 \ X \ B(p) where B(p) is a small ball in Maround p. The normal Morse data at a critical point p with critical value v = f(p) is thende�ned to be the pair of spaces (A;B) where A = fx 2 N(p) : v � � � f(x) < v + �g andB = fx 2 N(p) : f(x) = v� �g for some small �. Finally, the product of a pair of topological spacesis given by (A;B)� (A0; B0) = (A� A0; A� B0 [ B � A0). In Sections 5.3 and 5.4, tangential andnormal Morse data will be explicitly computed. Theorem 4 has recently been used to compute thestable con�gurations of a part that is supported by multiple non-coplanar contacts (Mason, Rimon& Burdick 1995). These con�gurations correspond to local minima of potential energy and haveMorse data of the form (A; ;) where A is nonempty.Theorems 3 and 4 apply to a function f on M which is said to be Morse if (1) the criticalvalues of the restriction of f to X are distinct; (2) for each stratum S of X , the critical points of frestricted to S are nondegenerate (nonsingular Hessian matrix); (3) rf(p) is not orthogonal to anyof the other strata meeting at p. As with the classical de�nition of Morse functions, most smoothfunctions on a Whitney strati�ed set are Morse.5.2 Convex Hulls and Con�guration Space RevisitedAn object contacts the supporting plane on its convex hull, and so we only need to considercomputing capture regions of convex objects. It is well known that the convex hull of an arbitrarypolyhedron is a polyhedron, and numerous implemented algorithms are available for constructingthe hull (Preparata & Shamos 1985). Figure 6.a shows a polyhedral part while Figure 6.b showsits hull.As discussed in (Arnol'd 1984; Koenderink 1990; Zakalyukin 1978), a catalogue of the regularand singular points on the convex hull of a generic smooth surface has been developed. Figure 7presents this catalogue, and the example shown in Figure 8 will be considered below. The hullis composed of three types of regular points: points on the actual surface (Fig. 7.a), points ona bitangent developable surface for which each ruling has second order contact with the surface17



a. b. c. d.

e. f. g.Figure 7: A catalogue of surface points on the convex hull of a generic smooth surface (adaptedfrom (Koenderink 1990)).at two points (Fig. 7.b), and points on a planar patch which makes second order contact withthe surface at three points (Fig. 7.c). This catalogue of regular points holds for both the hullof smooth and piecewise-smooth objects. Patches of regular points meet along singular curveswhich join or terminate at singular points. For the convex hull of a smooth surface, there aretwo types of singular curves: points of contact between the bitangent developable surface and thepart illustrated in Figure 7.d, and the line where the bitangent developable meets the tritangentplane shown in Figure 7.e. The singular points on the hull are either the vertices of a tritangentplane (Fig. 7.f) or an endpoint of a bitangent developable (Fig. 7.g). The later points, known asgodrons (French for ru�e) (Koenderink 1990), are parabolic points which are cusps of the Gaussmap (Bancho�, Ga�ney & McCrory 1982); the direction of the bitangent developable is the soleasymptotic direction at the godron. The left side of Figure 8 shows a three humped object and itsconvex hull overlaid. In addition to points on the original surface, the hull includes one tritangentplane and three bitangent developable surfaces, each terminating at a godron.Beyond smooth surfaces, (Sedykh 1977; Sedykh 1986) presented a catalogue of the normal formsof points on the convex hull of a generic space curve. There are two classes of regular points onthe boundary of the hull: First, the regular point may lie on a developable surface where eachdevelopable contacts the space curve at two points. Second, a regular point may lie on a planethat contacts the curve at three points. The singular points of the hull include sections of thespace curve as well as points where the two types of regular points meet. In fact, the developablegenerated by two edge curves may itself be singular (Arnol'd 1984).Now consider a general piecewise-smooth part composed of vertices, edges (space curves), andregular surface points. The convex hull includes portions of the original part. Additionally, itincludes planar patches and developable surfaces; the points of contact may be some combinationof vertices, edge points or regular surface points. The various regular hull points meet at singularcurves. Unfortunately, to the best of the author's knowledge, there is no complete catalogue ofthe singular points on the hull. Though Hung and Ierardi have recently presented a method forconstructing the hull of piecewise-smooth objects, an explicit catalog of surface points does notemerge (Hung & Ierardi 1994). Subsequently, we will restrict our attention to polyhedra and18



Tritangent plane

Bitangent line

Bitangent developable

Godron

Surface point on hullFigure 8: A smooth three-humped object with its convex hull and the corresponding strati�cationof the con�guration space (adapted from (Koenderink 1990)).smooth surfaces for which the catalogues are complete. The methodology described below can bereadily applied to piecewise-smooth parts given a complete catalogue.As in Section 4, the con�guration space of a piecewise-smooth surface in contact with a supportplane can be reduced to S2, and the potential energy u can be de�ned on S2. Since H is not smooth,the surface normal is not well de�ned at every point. However, from nonsmooth analysis (Clarke1990), a generalization of the surface normal called the normal coneNc at a point x can be employedand is de�ned as Nc(x) = cofn = limxi!x �n(xi) : xi 2 F; � 2 IR+g (9)where n(xi) is the surface normal at xi, F is the set of two dimensional strata of H (the faces), coindicates the convex hull, and the limit is taken from all xi 2 F . Note that in this de�nition, thenormal n(xi) is only computed on the 2-D strata where it is well de�ned. The set of unit vectorswithin Nc, which will be termed the generalized normal, corresponds to the set of con�gurationsfor which the point x can contact the supporting plane. The generalized normal provides therelationship between the convex hull and the con�guration space.Under the generalized normal, a regular point on the hull maps to a single point on S2 accordingto the Gauss map. In general a region of exposed regular points on H such as those in Fig 7.amaps to a region of S2. Developable surfaces including planes are exceptional since all points alonga single developable map to the same con�guration on S2. The intersection of two surfaces F1 andF2 de�nes a space curve x(s). The generalized normal at a single edge point is an arc on S2 givenby the convex combination of the surface normals n1(s) and n2(s) of F1 and F2 at x(s). Whentaken over the entire edge, the generalized normal sweeps a region of S2 given by:n(s; �) = cos � n1(s) + sin � n2(s) (10)where � ranges between 0 and �=2, and n(s; �) is unnormalized. In the special case when the edge islinear, n1(s) and n2(s) are constant vectors and n(s; �) collapses to a curve which can be written asn(�). From (9), the generalized normal at a vertex can be computed from the convex combinationof the normals of all faces incident to the vertex. Thus, a vertex also maps to a region of S2.19



For the convex hull of the smooth surface shown in Figure 8, consider the con�guration spaceillustrated by the sphere on the right side of the �gure. The three developable surfaces map to thethree curves, and they meet at a common point corresponding to contact of the tritangent plane.The endpoints of these curves correspond to the surface normal at the godrons. Note that the 2-Dstratum of S2 is not a regular set.5.3 Capture Regions of PolyhedraPolyhedra are perhaps the most important class of models of manufactured objects. As discussedabove, contact between a point x 2 H and the supporting plane occurs for con�gurations q 2 S2that lie in the normal cone Nc(x) (Clarke 1990). Thus, the con�guration space S2 can be strati�edaccording to the generalized normal. Because the faces of a polyhedron are planar and the edgesare linear, the generalized normal of faces and edges do not subtend regions of S2 as they do forpiecewise-smooth curved objects. In particular, each face of the polyhedral hull maps to a singlecon�guration de�ned by the normal to the face. An edge between two faces maps to an arc of agreat circle on the sphere; this can be seen by considering equation (10) and noting that n1 and n2are constant along the edge. The endpoints of these arcs are the surface normals of the two facesincident to the edge. Finally, vertices correspond to regions of the sphere delimited by the image ofthe edges incident to the vertex. Figure 6.c shows the strati�cation of the con�guration space forthe convex hull in Figure 6.b. The vertex at the north pole is the image of the top face while thelines of latitude correspond to the edges surrounding this face. The vertices along the equator arethe image of the vertical faces while the edges along the equator correspond to the vertical edgesof the hull.The vertices of H correspond to 2-D strata on the sphere, the edges de�ne 1-D strata, and thefaces lead to 0-D strata. Let us now characterize the critical points of the potential energy functionon this strati�ed set and show how the normal and tangential Morse data are computed.First, consider the critical points of the potential energy function restricted to the 2-D stratumassociated with contact at a vertex v. The potential energy u(q) is given by:u(q) = (v� c) � q (11)where q lies in the generalized normal of v. Di�erentiating (11), the critical points occur whenv� c is parallel to q (i.e. when the center of gravity lies above the vertex). Evaluating the Hessianmatrix of (11) at the critical points reveals that the Morse index is � = 2. Thus from Theorem 2,the tangential Morse data is (D2; @D2). Since the stratum is two dimensional which equals thedimension of S2, the normal Morse data is (D0; ;). Thus, the Morse data characterizing thetopological change is simply (D2; @D2) which is identical to a classical local maximum. Figure 9.ashows a pictorial representation of the Morse data.Now, consider the one dimensional stratum associated with an edge formed by the intersectionof two planar faces whose unit normals are n1 and n2. Let the two vertices v1 and v2 be theendpoints of the edge. Since the normals are constant along the edge and from (10), the potentialenergy can expressed as: u(�) = (vi � c) � q(�) (12)where the con�guration is given byq(�) = cos � n1 + sin �j(n1 � n2)� n1j (n1 � n2)� n1:20
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v2 v2Figure 10: In the critical con�guration with the center of gravity c above the edge, there are twopossible relationships of c with respect to the vertices v1 and v2. If c lies above either v1 or v2,u(q) is not a Morse function.Di�erentiating (12) with respect to �, the critical points of u(q) restricted to the 1-D stratumoccur when the center of gravity c lies directly above or directly below the edge. However, c mustalways lie above the supporting plane as shown in Figure 10; thus, the critical point qe must be alocal maximum (� = 1) of u(q) when restricted to the stratum, and so the tangential Morse datais (D1; @D1). The normal slice corresponds to a curve (a one dimensional disk) through qe whichis transverse to q(�). A trajectory along the normal slice corresponds to rolling the object fromcontact at vertex v1 to contact along the edge to contact at vertex v2. Since the normal Morsedata is de�ned by the limiting behavior, the normal Morse data can be represented as piecewise-linear. Furthermore, since the u(q) is assumed to be Morse in the sense of strati�ed Morse theory,Condition (3) of Section 5.1 implies that the potential energy must be either strictly increasing orstrictly decreasing for a trajectory along the normal slice while in contact with either v1 or v2. Upto interchanging v1 and v2, the normal Morse data can only take the three forms illustrated inFigure 9.b-d.A further geometric analysis of the normal slice reveals that the situation shown in �gure 9.b isimpossible. Consider in Figure 10 the relationship between c and the edge in the critical con�gura-tion. In Fig. 10.a, the potential energy increases when rolling onto either v1 or v2. In Fig. 10.b, thepotential energy increases when rolling onto v1 and decreases when rolling onto v2. Up to inter-changing v1 and v2 in Fig. 10.b, these are the only two generic situations for an edge contact, andso the normal Morse data shown in Figure 9.b cannot occur. Note that if c were to lie directly abovevertex vi during an edge contact, u(q) would not be a Morse function since limq!qe ru(q) = 0 forq restricted to the 2-D stratum associated with vi.The connectivity of the set S2�u does not change for the critical point type shown in Figure 9.c.However for the critical point shown in Figure 9.d, the connectivity change is like a classical saddlepoint; two points on the boundary of S2�u are merged at these nonsmooth saddles. As with theType I and Type II saddles of Section 4, a nonsmooth saddle can either join two disjoint componentsof S2�u, or it can introduce a puncture into a single component.All zero dimensional strata (contact with a face) are critical points of u(q), and the tangential22
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cFigure 11: For contact with a triangular face, there are three distinct (generic) relationships betweenthe projection of the center of gravity c in the direction of g and the edges of the triangle: a. Theprojection of c lies within the triangle; b. The projection of c is outside of one edge; c. Theprojection of c is outside of two edges. When c lies above an edge or vertex of the triangle, u(q) isnot a Morse function.Morse data is (D0; ;). The form of the normal Morse data depends on the number of edgessurrounding the face. For simplicity of presentation, only triangular faces will be considered here.Since the normal slice is de�ned locally (i.e., by a small ball around the critical con�guration), wecan consider a �rst order approximation of u(q). Also because u(q) is assumed to be Morse, ru(q)must be nonzero along the 1-D and 2-D stratum incident to the critical point. Thus, the normalMorse data can assume four possible forms shown in Figure 9.e-h. However as seen in Figure 11,there are only three qualitatively di�erent relationships between c and the triangular face; fromthese relationships, it can be seen that the Morse data in Figure 9.h is impossible. That is, contacton a face cannot be a local maximum of potential energy. The Morse data shown in Figure 9.e is anonsmooth local minimum and corresponds to the center of gravity lying above the supporting faceas illustrated in Figure 11.a. A new region is introduced to S2�u when the corresponding criticalvalue is crossed. The other two critical points shown in Figures 9.f and 9.g respectively correspondto the situations shown in Figures 11.b and 11.c where the center of gravity lies outside one ortwo of the edges of the triangular face. Crossing one of these critical points does not lead to aconnectivity change of S2�u. Finally, if c lies above an edge or vertex of the face, u(q) is not aMorse function.5.3.1 Algorithmic and Implementation DetailsThe algorithm for computing the capture regions of an object with a polyhedral convex hull hasthe same structure as the one for smooth objects outlined in Section 4.1.1. Here, we detail thedi�erences and show that the computational complexity for computing the capture regions of aconvex polyhedron with n faces is O(n2). For nonconvex polyhedra, the hull can be precomputed.As discussed above, there are a total of six di�erent types of critical points shown in Figures 9.a,9.c, 9.d, 9.e, 9.f and 9.g. Of these, only three lead to changes in connectivity of the set S2�u:the nonsmooth minimum (Fig. 9.e) introduces a new region, the nonsmooth saddle (Fig. 9.d)leads to a change in connectivity, and the smooth maximum (Fig. 9.a) closes a puncture. Basedon the characterization presented above, the relevant critical points can be computed easily andcharacterized from a CAD model using simple geometric tests. Note that determining the criticalpoints is much simpler than for algebraic surfaces since only linear or quadratic equations are23



solved. Because there are O(n) edges and vertices for a convex polyhedron with n faces (Preparata& Shamos 1985) and since there can be at most one critical con�guration per face, edge or vertex,there are only O(n) critical points.The two equipotential contours through a nonsmooth saddle point are easy characterized as well.In particular, they are given by a sequence of circular arcs whose endpoints lie on a one dimensionalstratum. Each arc corresponds to rolling about a vertex while the center of gravity maintainsconstant height above the supporting plane. While the contours of constant potential energy ubwere de�ned implicitly for algebraic surfaces and had to be traced numerically in Section 4.1.4,they are given explicitly for contact with a vertex v as:q(t) = cos t i+ sin t j+ k; t 2 [tmin; tmax] (13)where i; j and k are orthogonal, jij = jjj = r1� � ubjv�cj�2 and k = ubjv�cj(v � c). The limitsof the interval [tmin; tmax] correspond to the con�gurations where one of the edges incident to vcontacts the supporting plane. This con�guration can be computed by equating (13) with the edgeequation (10). Starting at a saddle point, a sequence of arcs are found by marching from vertex tovertex until an arc returns to the original saddle point. As shown in the examples in Figures 12and 13, both equipotential contours are tangent to the 1D edge strata at the saddle points. Becausethe contour equations are given explicitly, tangency does not lead to numerical di�culties. It iseasy to show that there are at most two intersections between an equipotential contour and thestratum corresponding to an edge. Since an equipotential contour may cross all of the 1-D strata,an equipotential contour may be composed of at most O(n) circular arcs which can be computedin O(n) time. Figure 13 shows an object whose equipotential contours are composed of many arcs.After computing the two equipotential contours through a saddle point, the next step of thealgorithm is to determine if one of the two loops surrounds a minimum on the region-list. Fora smooth surface, this was accomplished by integrating the �rst order system given by (8). Forpolyhedra, graph search can be used. On S2, the 0-D strata (faces) are connected by 1-D strata (theedges), and this de�nes a graph with the faces as nodes and the edges as vertices. Elimination of theedges that intersect the equipotential contour will partition this graph into two disjoint subgraphs;one of the subgraphs contains faces with lower potential energy than the nonsmooth saddle point.This subgraph can be searched for a minimum (face) on the region-list starting at a face withinthe subgraph which is adjacent to the edge containing the saddle. Since the graph has O(n) nodesand edges, it can be searched in O(n) time. Consequently, the total running time and maximumsize of the capture regions is O(n2) since there are O(n) saddle points and the equipotential contourthrough each saddle point can cross at most O(n) edges.5.3.2 Some ExamplesThe algorithm for computing the capture regions of polyhedral objects has been completely imple-mented in Common Lisp, and we will now consider two examples. The capture regions for bothexamples are computed in under three seconds.Figure 6.a shows a model of an insulator cap while Figure 6.b shows its convex hull. Thecon�guration space is strati�ed according to the generalized normal of the hull and shown inFigure 6.c. Note that because the hull is a generalized cylinder, the top and bottom faces correspondto the poles of the sphere. In spherical coordinates, the poles are the entire top and bottom edges24



a.b. c.
d. e.Figure 12: The capture region of the insulator cap shown in Figure 6: a. The six stable poses of theinsulator cap ordered by increasing potential energy. b. The critical points and all equipotentialcontours through the saddles in spherical coordinates. Solid circles indicate nonsmooth minima,triangles indicate smooth maxima, X's indicate nonsmooth saddle points, and the empty circlesare other types of nonsmooth critical points. In this and subsequent drawings, the thicker curvesrepresent one dimensional strata of the con�guration space while the thinner lines are equipotentialcontours; c. For each stable pose numbered according to Figure 12.a, the capture regions are drawnin spherical coordinates; d, e. Antipodal views of the capture regions drawn on the sphere.25



Capture Energy of Energy ofRegion Minimum Saddle1 35.54 43.552 42.41 43.553 44.90 45.184 44.95 55.645 45.53 50.836 45.75 50.587 49.17 50.458 53.05 53.179 54.85 55.1610 55.05 55.06Table 1: For each capture region of the clamp in Figure 13, this table shows the relative potentialenergy of the corresponding minima and saddle points.of the drawing; the edges surrounding these faces become lines of longitude (meridians), and thevertical edges map to the equator. With c = (:02;�:2; 0:0), there are 38 critical points shownin Figure 12.b of which six are nonsmooth minima (stable faces), twelve are nonsmooth saddles,and eight are smooth maxima. This agrees with the Euler characteristic. Figure 12.a shows thesix stable con�guration numbered by increasing potential energy. Figure 12.c shows the captureregions. Note that while the part's hull has ten faces, only six are stable. Figures 12.d,e show thecapture regions drawn on the sphere which does not distort their size as drastically. As seen inFigures 12.c,e, Capture Region 4 contains an unstable face; consequently, if the part starts at restin contact with that face, it will topple onto the adjacent stable face.Finally, consider the chemistry clamp shown in Figure 13.a and the convex hull of a polyhe-dral approximation drawn in Figure 13.b. This hull contains 33 faces, 33 edges and 64 vertices.Figure 13.c shows the 10 local minima (stable poses) and 12 local maxima along with the equipo-tential contours through the 20 nonsmooth saddle points. Note that the forty closed equipotentialcontours cross the 1-D strata many times and are composed of many circular arcs. At the 41 othercritical points, the connectivity of the capture regions does not change. Figures 13.d-f show theten capture regions drawn in both spherical coordinates and on the sphere. Observe that only 10of the 33 faces are stable. Of the ten stable faces, only four capture regions (numbers 1, 4, 5 and6) cover a signi�cant area of the sphere. It would seem that the six smaller regions might only bemarginally stable in the sense that the addition of a small amount of kinetic energy would allowthe object to move out of the capture region. As shown in Table 1, the relative potential energy ofthe local minimum and corresponding saddle point is much greater for the four larger regions.
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a. b.c. d.
e. f.Figure 13: The capture regions for a chemistry clamp: a. A line drawing of the clamp; b. Theconvex hull of a polyhedral approximation with hidden lines removed; c. The equipotential contoursthrough all 20 nonsmooth saddles. d. The capture regions in spherical coordinates; e, f. Antipodalviews of the capture regions drawn on the sphere.27



5.4 Capture Regions of parts with C1 HullsWe now consider the capture regions of smooth parts with concavities. As discussed in Section 5.2,the convex hull H of such a part is C1. The hull's surface is continuous and has a continuoustangent plane; however, higher order derivatives may be discontinuous. The con�guration space ofthe part in contact with a support plane is strati�ed according the generalized normal. We �rstdevelop a catalogue of the types of critical points of u(q). Some of these were considered earlier,and additional ones will be presented in Figures 15 and 16.The two dimensional strata of S2 correspond to points of H that also lie on the original smoothpart as shown in Figure 7.a. Consequently, for q restricted to the 2-D strata, the critical pointsof u(q) are the same as for smooth parts with C3 hulls. As in Section 4, they can be classi�ed assmooth minima, saddles or maxima.As discussed in Section 5.2 and shown in Figure 7.b, the one dimensional strata of S2 correspondto contact with the supporting plane along a bitangent developable surface of H. We now considerthe critical points of u(q) for q restricted to a 1-D stratum. Let a ruled surface be parameterizedby x(t; v) = �(t) + vw(t) where �(t) and w(t) are vector valued functions. The ruled surface issaid to be developable when w � _w � � = 0 in which case the Gaussian curvature is identicallyzero (do Carmo 1976). Furthermore, it is easy to show that the surface normal n is constant alonga ruling and can be expressed as a function of t only.n(t) = _�(t)�w(t)The potential energy for contact along the developable surface can be written asu(t) = (�(t)� c) � n̂(t)where the unit normal is n̂ = 1jnjn. Di�erentiating u(t), the critical points are found by solving thefollowing for t: (�� c) � _̂n = 0 (14)It is easy to show that this condition is equivalent to the center of gravity being above thedevelopable line that is in contact with the support plane. The critical point may either be a localmaximum or minimum of u(t), and so the tangential Morse data along this 1D stratum can bedepicted as (j ; :) or (j ; ;).To determine the normal Morse data, we study u(q) restricted to the normal slice (a curve thatintersects the 1-D stratum transversally at the critical point). Rather than expressing the potentialenergy as a function of q, it will more intuitive to de�ne it on the hull. Consider the plane formedby c and the supporting developable in the critical con�guration. As depicted in Figure 14, theintersection of this plane with H de�nes a curve that bends toward c in the neighborhood of thedevelopable. Note that the curve's tangent is continuous at the end points of the developable. Upto an interchange of v1 and v2, the center of gravity can assume two qualitatively di�erent locationsas shown in �gure 14.a and 14.b. Because u(q) is assumed to be Morse, c cannot lie above v1 orv2 since ru would vanish, and this would violate the third requirement of a Morse function givenin Section 5.1. In the case of Figure 14.a which is similar that shown in Figure 10.a, the potentialincreases as the point of contact rolls past either v1 or v2 since the length of vi� c is greater thanthe minimum distance from c to the developable. Thus, the critical point is a nonsmooth localminimum in the normal slice and has normal Morse data as in Figures 15.b or 15.d.28
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2Figure 14: Within a plane de�ned by the center of gravity c and the critical developable, there aretwo possible relationships between c and the endpoints of the developable.On the other hand, consider the situation shown in �gure 14.b; when the object rolls along v1,u will increase as in Fig. 14.a. When the object rolls along v2, it is not obvious whether u willincrease or decrease, so we will consider this case in more detail. Let the planar intersection curvex(s) be parameterized by arc length s with s increasing from left to right. The curve normal isupward pointing, and the curvature k(s) is non-negative. We can write the potential energy as:u(s) = (x(s)� c) � (�n(s))For a plane curve we have that _n(s) = �k(s)t(s) from the Frenet equations (do Carmo 1976),and so duds = (c� x) � _n(s) = k(s)(x� c) � t(s):Considering the limit as x(s) approaches v2 from the right; we have that k(s) > 0 and that(x � c) � t(s) < 0. Thus, duds is negative, and so u(s) is monotonic in s; consequently, the normalMorse data has the same form as shown Figures 15.a and 15.c which is identical to the form inFigure 9.cIn summary, the tangential Morse data can assume two forms (smooth minimum or maximum),and the normal Morse data can either be a nonsmooth minimum or is monotonic. This leads tofour possible forms for the local Morse data shown in Figure 15. The connectivity changes to S2�ufollow: the critical point shown in Figure 15.d is a nonsmooth local minimum and introduces a newcomponent; this is similar to the stable con�guration of a rocking horse. The critical point typeshown in Figure 15.b is a nonsmooth saddle which joins together two components of S2�u. Theother two critical point types do not change the connectivity of S2�u.Recall from Section 5.1 that all zero dimensional strata are critical points and from Section 5.2that there are two types of 0-D strata on S2; they correspond to the surface normal at the endpointof a bitangent developable (godron) shown in �gure 7.g or to the Gaussian image of the tritangentplanes where the image of three developables meet on S2 (e.g. Figure 7.c). For both types of zerodimensional strata, the tangential Morse data is the identity ( : ; ;), and so the Morse data is givenby the normal Morse data.Consider �rst the godrons. Since the tangent plane of the graph (q; u(q)) is discontinuous acrossthe Gaussian image of the bitangent developable, (q; u(q)) has a crease that ends at the criticalpoint. By the assumption that u(q) is Morse, the limit of ru(q) as q approaches the critical point29
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( , )( ),a. b.Figure 16: For an object with a C1 convex hull, the end points of the bitangent developables (thegodrons) de�ne the 0-D strata, and the Morse data can assume two forms.must be nonzero when q is restricted to either the 1-D or 2-D strata. So, the normal Morse datacan take on the two forms shown in �gure 16. Neither of these two types of critical points leads toa change in the connectivity of S2�u, and so godrons do not play a role in de�ning capture regions.Analysis of the zero dimensional strata corresponding to contact with a tritangent planes is com-pletely analogous to the 0-D strata for polyhedra with triangular faces described using Figure 11,and the Morse data will be as in Figure 9.e{g. When the projection of c onto the tritangent planelies within the triangle de�ned by the three contact points, the critical point is a local minimum ofu(q) as in Figure 9.e, and a new region S2�u is created.In summary, there are three types of local minima which introduce new regions into S2�u:the smooth minimum on a 2-D stratum, the nonsmooth minimum on a 1-D stratum shown inFigure 15.d, and the nonsmooth minimum corresponding to contact of the tritangent plane shownin Figure 9.e. There are two types of saddle points which either join two connected componentsof S2�u or introduce a puncture into one component: the smooth saddle on a 2D stratum andthe nonsmooth saddle on a 1-D stratum illustrated in Figure 15.b. The algorithm outlined inSection 4.1.1 for computing capture regions can be extended to objects with this class of hulls using30



the critical points described above. The only complications that arise are tracing the equipotentialcontours and following the gradient ru(q) since the trajectory q(t) may cross a 1-D strata whereu(q) is not smooth. However, it is a simple matter to consider the limits of ru(q) as q approachesthe 1-D stratum during these operations. The algorithm for constructing the capture regions ofthis class of hulls has not yet been implemented.6 ConclusionsThis paper analyzed the problem of computing capture regions of a 3-D object under dissipativedynamics using the tools of strati�ed Morse theory. An implemented algorithm demonstrates thecomputability of these regions for polyhedral parts and algebraic surfaces with a C3 convex hull. Theapproach can be extended to handle objects with a piecewise-smooth hull, and this includes mostobjects modelled using CAD systems. The two things that are lacking for this class of objects area complete catalogue of convex hull points and an implemented algorithm for actually constructingthe hull; however, see (Hung & Ierardi 1994) for recent progress. We noted in Section 2 that thereis a hierarchy of capture regions; the presented algorithms can be easily extended to construct thiscontainment graph. The presented approach only applies to parts whose potential energy functionsare Morse. It would be interesting to classify the types of non-generic critical points that mightoccur for symmetric objects.One assumption in this paper has been that the object remains in contact with the supportplane (i.e. it does not bounce). Strati�ed Morse theory can also be used to show that the captureregions hold even under bouncing. De�ne the potential energy over both orientation and the height(i.e. u: IR � S2 ! IR) as given by r3 and tz in (1). From Theorem 3, we note that the topologyonly changes at critical points. Since u is monotonic in the height of c, there are no critical pointson the 3-D strata of S2� IR. Thus, the critical points given in this paper will be the critical pointswhen the object is free to break contact with the support plane. Thus, the method holds evenwhen the object bounces.Other applications of the capture region idea which would take advantage of strati�ed Morsetheory are �xturing and grasping. Conditions for an object's pose to be stable in a �xture wereaddressed in (Brost 1991b) for polygons in 2-D and more generally in (Mason et al. 1995). Brostalso presented methods for computing capture regions for a polygonal object and a polygonal�xture. To extend this to 3-D objects (possibly with curved surfaces), the �ve dimensional contactcon�guration space should be partitioned, and strati�ed Morse theory can be used to develop acatalogue of critical points. Now, consider grasping an object with two or more �ngers. For somestable grasps, if the �ngers contact the object near the stable grasp, the object will move in amanner whereby the �ngers converge to this grasp. The set of initial contact con�gurations fromwhich the object will converge to the desired grasp can be determined using the approach presentedin this paper when the control law for the �ngers leads to dissipative dynamics.Finally, in recent work with K. Goldberg and A. Rao, we have used capture regions within apart feeding application based on an arm with only four active degrees of freedom plus a passivepivoting axis between the parallel jaws of a gripper (Carlisle et al. 1994; Rao et al. 1995). Theidea is to grasp a part with 2 hard �nger contacts such that it pivots, under gravity, into a desiredorientation when lifted and replaced on the table. Given a polyhedral part shape, coe�cient offriction and a pair of stable con�gurations as input, an algorithm was presented for �nding pairs31
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