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Abstract

This paper proposes a method to recover the embed-
ding of the possible shapes assumed by a deforming non-
rigid object by comparing triplets of frames from an ortho-
graphic video sequence. We assume that we are given fea-
tures tracked with no occlusions and no outliers but possible
noise, an orthographic camera and that any 3D shape of a
deforming object is a linear combination of several canon-
ical shapes. By exploiting any repetition in the object mo-
tion and defining an ordering between triplets of frames in a
Generalized Non-Metric Multi-Dimensional Scaling frame-
work, our approach recovers the shape coefficients of the
linear combination, independently from other structure and
motion parameters. From this point, a good estimate of the
remaining unknowns is obtained for a final optimization to
perform full non-rigid structure from motion. Results are
presented on synthetic and real image sequences and our
method is found to perform better than current state of the
art.

1. Introduction

The problem of reconstructing the 3D structure of a rigid
object from a monocular video sequence has seen signifi-
cant progress in recent literature. In the case where the ob-
ject is non-rigid, however, a few methods perform well but
the problem is still wide open.

It has been shown that for many practical objects (e.g.
faces), it is valid to assume that the deforming object adopts
3D shapes defined by a linear combination of basis shapes
[4]. In this case, the non-rigid structure from motion
(NRSFM) problem is an optimization over the camera pa-
rameters, the shape basis and the shape coefficients. In prior
work (e.g. [21]), this optimization is usually initialized by
assuming that the object has a dominant rigid component,
hence treating the initialization problem as an instance of
rigid structure from motion. The different parameters are
then refined by alternating minimization or via an EM pro-
cedure. Such approaches are known to suffer from two prin-

cipal drawbacks. First, the alternating optimization frame-
work can exhibit instability and second, the underlying as-
sumption is highly restrictive, as an object might not even
exhibit a dominant rigid component at all. In this paper,
we propose an approach to NRSFM that overcomes these
drawbacks.

To motivate the discussion, let us perform a thought ex-
periment. Suppose we put a cat in a room and let it move
and “deform”. If we observe it long enough, we should
capture all its possible 3D shapes from every possible view-
point. The first contribution of this paper is based on this
intuition: we propose to exploit any repetitions in shape
deformation within a video sequence to compare triplets
of frames; by combining these orderings in a Generalized
Non-metric Multi-Dimensional Scaling framework [1], our
method recovers an embedding of the possible shapes that
can be assumed by a non-rigid object. By focusing on this
subspace only, our method appears complementary to more
general manifold-based techniques [3, 20, 16] that recover
the whole 3D shapes and the camera parameters at the same
time. The other main contribution of this paper is a new
NRSFM algorithm that uses this shape embedding as ini-
tialization.

After reviewing the related work in Section 2 and for-
mulating the problem in Section 3, we demonstrate how the
shape embedding can be recovered in Section 4 by using
comparisons of triplets of frames, as described in Section 5.
Finally, Section 6 explains how the final reconstruction can
be obtained and Section 7 presents our experimental results.

2. Previous Work
References are here restricted to the general case where

there is no physical or learned prior on the object.
Modern structure from motion started with the study of

a rigid object under orthographic camera [18]. It was then
extended to the projective case [17], multiple bodies [7] and
articulated bodies [26].

Solving for the structure of a non-rigid object had its first
breakthrough with [4, 21] where it is assumed that an ob-
ject’s 3D shape can be explained by a linear combination



of elements of a shape basis. This helps in formulating the
problem as a factorization problem of the measurement ma-
trix which can be solved by first assuming that the object is
globally rigid [10] or has a dominant rigid component. This
provides an initialization to gradient descent or an EM-type
algorithm [19]. These techniques usually have two prob-
lems: they require a good initialization (which might not be
provided if the object does not comply to their assumptions)
and their optimization usually does not consider all the pa-
rameters at once. Nonetheless, they have been improved by
combining a feature tracker [21, 8], including noise models
[20] and approching the problem in a coarse-to-fine manner
[2]. Finally, while [23] proved some theoretical limitations,
the same formulation was used to extend the analysis to the
projective case [25, 14, 22].

In our method, we propose to exploit motion repetitions
for SFM as it was used for action recognition [12], motion
segmentation [11] and sequence alignment [5]. Our method
also shares similarities with [3, 16] where a criterion was
optimized on a locally linear manifold, but we here focus
on a globally linear manifold, differently from probabilistic
PCA [20].

3. Problem Formulation
In our setup, n features are tracked over f frames with no

occluions under an orthographic camera: their 2D projected
positions are known and can be stacked in f 2× n matrices
Wt (t indexes time). The problem consists of recovering
the 3D positions of these features (stacked in a 3× n shape
matrix St at each frame) as well as the camera parameters:
rotation R∗t and translation t∗t . We define Rt and tt as the
respective top two rows of R∗t and t∗t .

In the shape basis assumption, every shape St can be ex-
pressed as a linear combination of a mean shape S0 and s
deformation modes Si (3× n matrices). s is a given param-
eter, works like [2] can estimate it. The measurements can
then be explained as follows:

Wt = Rt

(
S0 +

s∑
i=1

litS
i

)
+ tt1> (1)

where 1 is a n× 1 vector of ones. We choose the notation:
lt =

[
l1t . . . lst

]>
.

As in [18], we can eliminate the tt by subtracting the
mean of the measurements. From now on, we will consider
the centered measurements W i. By imposing the Si to also
be centered, the measurement matrix can be factorized as
follows:

W =

W 1

...
W f

 =


[
1 l>1

]
⊗R1

...[
1 l>f

]
⊗Rf


S

0

...
Ss

 = MS (2)

where ⊗ is the Kronecker product.
We propose to recover the lt’s first, independently from

other coefficients as explained in Section 4 and 5. This will
provide us with a good initialization for our final optimiza-
tion in Section 6.

Algorithm 1 Comparison-based SFM
1: {the a2 functions are known polynomials in lt’s}
2: for every pair of frames (i, j) do
3: compute amin(i, j) such that amin(i, j) ≤ a2(i, j).

(Section 5.1)
4: end for
5: compute pairs ((i, j, k), (i′, j′, k′)) of frame triplets

such that a2(i, j, k) ≤ a2(i′, j′, k′) (Section 5)
6: Use those pairwise and triplet-wise inequalities in a

GNMDS framework to estimate the lt’s (Section 4)
7: Use those lt estimates to have an approximation of the

Si’s and Rt’s (Section 6.1 and Section 6.2 )
8: Optimize the reprojection error in a bundle adjustment

manner (Section 6.3)

4. Outline

The proposed approach assumes that a non-rigid object
deforms in 3D shapes that can be observed several times in
a video sequence. Intuitively, if the 3D reconstruction from
a set of frames has a low reconstruction error, the frames
should probably represent a similar 3D shape (of course,
outliers could be present as depth is removed during cam-
era projection, and our method should account for them).
Similarly a high reconstruction error would be due to a poor
matching of the different views.

As two views have ambiguous rigid 3D reconstructions
(due to Necker reversal and bas-relief ambiguity), we de-
cide to focus on triplets of frames (which only lead to a
sign ambiguity). Also, due to the impossibility of relating
this reconstruction error to a metric, we propose to only get
orderings between triplets of frames and next use those in
a Multi-Dimensional Scaling (MDS) framework. The ap-
proach is detailed in Algorithm 1.

4.1. Ordering Set F

In traditional linear NRSFM methods, the basis ele-
ments Si are only assumed to be centered at the origin. The
Gram-Schmidt process can orthonormalize any basis but it
also preserves the centering. Therefore, if a basis exists, a
centered orthonormal basis can be built from it: the Si’s can
consequently be assumed to be centered and orthonormal.
But, as we use 1 for the first coordinate, we cannot impose∥∥S0
∥∥
F

= 1. Therefore, we can only impose the Si’s to be
orthogonal to each other, and

∥∥Si∥∥
F

= 1,∀i 6= 0



Now, in this basis, every shape St has coordinates [1, l>t ]
and therefore:

‖Si − Sj‖F = ‖li − lj‖2 (3)

Let us consider the function:

aF (i, j, k) =
∑

h∈{i,j,k}

∥∥∥∥Sh − Si + Sj + Sk
3

∥∥∥∥2

F

(4)

Let us assume for now that we can build a set of pairs of
triplets of frames as follow:

F = {((i, j, k) , (i′, j′, k′)) |aF (i, j, k) ≤ aF (i′, j′, k′)}
(5)

Section 5 will focus on the construction of such a set. It will
also demonstrate that not all pairs {(i, j, k), (i′, j′, k′)} can
be compared with aF . Therefore, only certain triplets of
frames have to be considered; this makes Generalized Non-
metric Multi-Dimensional Scaling (GNMDS) from [1] the
appropriate choice to solve for the lt’s.

4.2. Generalized Non-metric Multi-Dimensional
Scaling Overview

Let us consider the positive semi-definite Gram matrix
K = [Kij ]1≤i,j≤f = [l>i lj ]1≤i,j≤f and let us define:

a2 (i, j, k) =
∑

h∈{i,j,k}

∥∥∥∥lh −
li + lj + lk

3

∥∥∥∥2

2

(6)

By using Equation (3), aF (i, j, k) = a2 (i, j, k).
Solving for the lt’s can therefore be reduced to finding a

positive semi-definite matrix K such that:

a2 (i, j, k) ≤ a2 (i′, j′, k′) if ((i, j, k), (i′, j′, k′)) ∈ F
(7)

By introducing slack variables ξi,j,k,i′,j′,k′ , solving for
the lt’s is equivalent to solving the following Semi-Definite
Programming (SDP) problem:

min
K,ξi,j,k,i′,j′,k′

∑
((i,j,k),(i′,j′,k′))∈F

ξi,j,k,i′,j′,k′

subject to a2 (i, j, k) ≤ a2 (i′, j′, k′) + ξi,j,k,i′,j′,k′

ξi,j,k,i′,j′,k′ ≥ 0, K � 0
(8)

Also, the constraints are linear in the elements of K as:

a2 (i, j, k) =
2
3

(Kii +Kjj +Kkk −Kij −Kik −Kjk)
(9)

We can also notice for the future that this is equivalent to:

aF (i, j, k) =
1
3

(
‖Si − Sj‖2F + ‖Si − Sk‖2F + ‖Sj − Sk‖2F

)
(10)

(a) 1× 240 (b) 2× 240

(c) 4× 240 (d) 10× 240

Figure 1. Recovered lt’s. This figure concerns the synthetic data
from [20] where 91 features are tracked from a shark bending its
tail twice during 240 frames. The features were created from a ba-
sis of exact dimensionality 2. The figure illustrates the recovered
lt’s for s = 2, each linked to its previous and next temporal neigh-
bors (in blue) as well as to the same point a period after (in black).
Below each figure is indicated the number of triplet samples cho-
sen to compute the embedding (the number of pairs is chosen to
be the same) and, as expected, the more the better. What we see in
the last case is one path almost overlapping with itself once (hence
the periodicity of the motion). In green are displayed the points
1, 121 and 240, while in red are displayed the points 61 and 181
(these points are important as the video sequence has 240 frames
and a period of 120). The green points should indicate when the
shark returns to its initial state (hence their proximity) while the
red ones indicate the half period (hence the fact they are furthest
from the green points and actually symmetric). While these points
are not perfectly overlapping, they are close and enough for us to
perform full SFM.

4.3. Constraints

Note the Kij’s can be recovered up to a similarity. We
choose to constrain the rotation/translation/scale differently
from [1]:

• Scale. If (lt, Rt, S) is a solution of Equation (2), so
is (αlt, Rt, 1

αS),∀α 6= 0. Therefore, scale ambiguity
is already inherent to our formulation. Nonetheless, to
prevent the lt’s from collapsing to the origin, and as
we have chosen the Si’s to be of norm 1, we choose to
enforce a scale constraint as follows:

‖li − lj‖22 = ‖Si − Sj‖22 ≥ amin(i, j) (11)



where amin(i, j) is defined in Section 5.1.

• Rotation. The rotation ambiguity is also in-
herent to our formulation as the shape for-
mation equation contains an invertible ma-
trix ambiguity: for every valid (lt, Rt, S),
(Q−1lt, Rt,

[
vec
(
S0
)
vec
(
S1
)
Q · · · vec (Ss)Q

]
)

is also a solution (where vec (·) is the operator that
stacks the columns into a vector).

• Translation. Finally, the translation ambiguity
is also inherent to our formulation, and there-
fore unimportant, as for every valid (lt, Rt, S),

(
[

1
lt + t

]
, Rt,

[
vec
(
S0′
)
· · · vec (Ss)

]
) is also

a solution, with vec
(
S0′
)

= vec
(
S0
)
−[

vec
(
S1
)
· · · vec (Ss)

]
t. Nonetheless, to avoid a

drifting of the lt’s during their computation, we
impose that the lt’s be centered:

f∑
t=1

lt = 0⇐⇒
f∑
t=1

l>t
f∑
t=1

lt = 0⇐⇒
∑
t,t′

Ktt′ = 0

(12)

We also add a regularization term to impose a smooth
deformation of the object over time: λ

∑f−1
t=2 ∆′′(lt), where

λ weighs the regularization and ∆′′ is a finite difference
approximation of the second derivative of lt at t (and can
be expressed in terms of Ktt′ ). We therefore have the new
SDP formulation:

min
∑

((i,j,k),(i′,j′,k′))∈F

ξi,j,k,i′,j′,k′ + λ

f−1∑
t=2

∆′′(lt)

subject to constraints of Equation (8)

‖li − lj‖22 ≥ amin(i, j), ∀(i, j)∑
t,t′

Ktt′ = 0

(13)

The lt’s are then obtained from K by using its rS-rank
SVD decomposition (where rS = rank (S) = rank (W )), as
shown on Figure 1.

5. Ordering Set F
We have shown in the previous section how the coordi-

nates of every shape St in the basis S can be computed by
using an ordering set F between triplets of frames. This
section focuses on the computation of such a set. To this
end, we need to define the 3D measurement matrix W ∗i
whose first two rows are Wi, but whose third row is what
would be obtained if the depth could be measured. If there

is no noise,W ∗i = R∗i Si. For the sake of simplicity, we will
assume that there is no noise, but what follows would hold
by adding an extra term of lower order.

5.1. Triplet Distance Infimum

Considering two frames i and j, we have:

‖Si − Sj‖2F =
∥∥∥R∗i>W ∗i −R∗j>W ∗j ∥∥∥2

F
(14)

=
∥∥∥W ∗i −R∗iR∗j>W ∗j ∥∥∥2

F
(15)

Therefore:

‖Si − Sj‖2F ≥ minR∗,x,y

∥∥∥∥[Wi

x>

]
−R∗

[
Wj

y>

]∥∥∥∥2

F
subject to R∗ is a rotation matrix

mean(x) = mean(y) = 0

(16)

We name this minimum: amin(i, j). Its definition can be
interpreted as a pose estimation problem where the third co-
ordinates/depths are unknown. x and y can be computed in
closed form with respect to R∗ and the problem then boils
down to a simple optimization over the quaternion of R∗.

We can now define an infimum for aF (i, j, k), that we
name amin(i, j, k), as follows:

aF (i, j, k) ≥ 1
3

(amin(i, j) + amin(j, k) + amin(k, i))
(17)

5.2. Triplet Distance Supremum

For the supremum, we can notice that:

aF (i, j, k) = min
S

1
3

(
‖Si − S‖2F + ‖Sj − S‖2F + ‖Sk − S‖2F

)
(18)

Therefore:

aF (i, j, k) ≤ 1
3

(
‖Si − Sijk‖2F + ‖Sj − Sijk‖2F + ‖Sk − Sijk‖2F

)
(19)

where Sijk is the optimal reconstruction for the 3 frames i, j
and k. We define R′i, R

′
j , R

′
k are the corresponding optimal

rotation matrices (different from Ri, Rj , Rk but close for
frames representing close-by shapes).

Now, if we assume that the reconstruction error in depth
is similar to the reprojection errors in abscissa and ordinate,
each term ‖Si − Sijk‖F can be approximated by:

‖Si − Sijk‖F ' ‖W
∗
i −R′iSijk‖F '

3
2

∥∥Wi −R′i
∗
Sijk

∥∥
F

(20)
The terms on the right in the expression above can be

computed as part of the 3D reconstruction of frames i, j, k
and therefore, we obtain a supremum for aF (i, j, k):

aF (i, j, k) ≤ amax(i, j, k) (21)



Figure 2. This figure is also based on the shark sequence. Frame
Triplet Selection Procedure. The sampling is performed as fol-
lows: for every frame i in the vertical axis, two frames j and k
leading to a low reconstruction error are chosen: these two are
plotted in green on the line number i. Then, two views j′ and k′

are chosen so that amax(i, j, k) ≤ amin(i, j′, k′): they are plotted
in red on the same line. If no such pair (j′, k′) exists, the pair
(j, k) is not considered. As we can see, the green couples are al-
most only present on the diagonals and sub-diagonals while the red
are located anywhere. 2000 triplets are sampled and represented
on this figure. This amount was chosen with respect to limitations
of the SDP solver.

5.3. Computing the Ordering Set F

Now, given two triplets of pairs (i, j, k) and (i′, j′, k′),
we can compute:

amin(i, j, k) ≤ aF (i, j, k) ≤ amax(i, j, k)
amin(i′, j′, k′) ≤ aF (i′, j′, k′) ≤ amax(i′, j′, k′)

(22)

Therefore, if amax(i, j, k) ≤ amin(i′, j′, k′), we
have ((i, j, k), (i′, j′, k′)) ∈ F (and respectively with
amax(i′, j′, k′) ≤ amin(i, j, k)). Such triplets exist as
amax(i, j, k) = 0 for pairs representing the same shape.
Similarly, amin(i, j, k) � 0, usually, for frames represent-
ing very different shapes.

5.4. Practicality

In practice, the amin(i, j, k) and amax(i, j, k) are com-
puted for several triplets and if an ordering exists, it is used
in the SDP problem.

While we could compute amax(i, j, k) for every triplet,
the task is computationally very expensive (it is O(f3)).
Therefore, to speed up the process and obtain low
amax(i, j, k), we first compute all the amin(i, j)’s, and,
given a frame i, we draw j and k from a distribution based
on this error, leading to i, j and k more likely to be views of
the same shape. Figure 2 illustrates this procedure.

6. Locally Optimal Shape Basis and Rotation
Now that we have obtained a good approximation of the

lt’s, we are going to use them to first find a good estimate of
the optimal shape basis S and then obtain the Rt’s. We will
then use these parameters as an initialization to a gradient
descent procedure.

The proposed full structure from motion method now de-
tailed does not suffer from the rank problems from [23] and
that were approached but not clearly solved in [24]. It also
does not face problems when some shape coefficients are
small when trying to recover the rotation matrices (like in
[24]).

In the following, we will assume that S is of rank rS
(rS ≤ 3(s + 1); it was assumed that rS = 3(s + 1) in
[23]) and that it is given by the user or guessed from W
(as rank (S) = rank

(
W
)
). Now, let us consider an op-

timal rank decomposition of W (e.g. provided by SVD):
W = AB with A and B full rank (of rank rS). As the rows
of B and S span the same spaces, we have S = GB where
G is a 3(s+ 1)× rS ambiguity matrices.

The goal is now to recover G first, and then the Rt’s.

6.1. Kronecker Constraint

By using the definition of S in Equation (2), Smust verify
for every t: ([

1 l>t
]
⊗Rt

)
S = W t

⇒Rt
([

1 l>t
]
⊗ I3

)
G = W tB

+ (23)

as B has full row rank. By dropping, for now, the rota-
tion constraint on the Rt’s, we obtain the following bilinear
problem:

min
Rt,G

f∑
t=1

∥∥Rt ([1 l>t
]
⊗ I3

)
G−W tB

+
∥∥2

F
(24)

We also add a regularization term so that the ro-
tations do not change much from frame to frame:
λR
∑f
t=2 ‖Rt −Rt−1‖2F . In order not to have the Rt’s

shrink to 0 and G diverge to infinity (as for any (Rt, G),
(αRt, 1

αG) is also a solution), we also need a counter-
balancing regularization term: λG ‖G‖2F . In practice, we
choose λR = λG = 1. Hence the new bilinear problem:

min
Rt,G

f∑
t=1

∥∥Rt ([1 l>t
]
⊗ I3

)
G−W tB

+
∥∥2

F

+λR
f∑
t=2

‖Rt −Rt−1‖2F + λG ‖G‖2F

(25)

While recent work like [6] improves the solving of bilin-
ear problems if one of the two sets of variables as a much



lower dimensionality, it is impractical in our case as the di-
mensions of G are too high. We therefore solve it by gener-
ating several random initializations forG and proceed by al-
ternate optimization between the Rt’s and G (a closed form
can easily be obtained for one, if the other is fixed). In
practice, we use 10 random initializations and 50 alternate
optimization iterations.

It is worth noting that after this optimization, an approx-
imation to the best solution is obtained up to an ambiguity
matrix Q as:

Rt
([

1 l>t
]
⊗ I3

)
G = RtQ

([
1 l>t

]
⊗ I3

) (
Is+1 ⊗Q−1

)
G

(26)

6.2. Rotation Constraint

So far, theRt’s have not been imposed to be rotation ma-
trices. We now seek the ambiguity matrix Q such that the
Rt’s are as close to rotation matrices as possible by opti-
mizing the simple SDP problem:

min
Q

f∑
t=1

∥∥RtQQ>R>t − I2
∥∥2

F
(27)

6.3. Final Optimization

G is first recovered using the Kronecker and the rotation
constraints. From there, S is recovered and therefore all
the St. Recovering an initial estimate of Rt’s is then solv-
ing multiple instances of pose estimation. While we could
perform the full computation for every frame, we first only
perform it for a few frames, but very accurately (we had
little chance with EPnP from [13] so we used our own im-
plementation relying on a simple polynomial formulation
and a solving by [9]). We then compute the optimal Rt’s
by performing gradient descent on ‖RtS −Wt‖2F with an
initial estimate of Rt−1 and Rt+1.

Once an initial estimate of all the parameters lt, Rt and
S is obtained, what follows is an optimization over all the
parameters at once to minimize the reprojection error. To
take advantage of the sparsity of the problem, we interpret
it as a sparse bundle-adjustment with points of dimensional-
ity 3(s+ 1) instead of 3 in the normal 3D-case (the camera
parameters being extended to (Rt, tt, lt)) and then use the
sprase Levenberg-Marquardt of [15] to obtain a fast and ac-
curate solution.

7. Experiments
We tested our approach on two synthetic datasets: the

classical Shark Data from [19] and the Roller Coaster from
[16]. We also experimented with real data.

The reconstruction error considered in these experiments
is computed in percentage points: the average distance of
the reconstructed point to the correct point divided by the

(a) Camera Positions
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Figure 3. Shark Dataset from from [19]. Figure (a) shows the
camera positions used in our experiment: the camera has a smooth
random path over a sphere. Figure (b) shows the reconstruction
error produced by Xiao-Chai-Kanade CVPR04 (XCK), Torresani-
Hertzmann-Bregler PAMI08 (THB) and our algorithm (CSFM),
with and without the final gradient descent.

span of the shape, as defined in [21]. We also compare our
approach (named CSFM for Comparison-based Structure
From Motion) to two standard algorithms: [20] (with 100
EM steps if not specified) and [24]. For the latter, we have
our own implementation of the code which uses an SDP
formulation and does reach an error of 0 (as it is a closed-
form solution) in the assumptions of the paper (that actually
do not fit the shark data). We ran 10 trials for each experi-
ment.

The running time for these experiments is usually 25
minutes on a 3GHz machine with the following bottlenecks:

• The computation of the amin takes 10 minutes. It is
optimized Matlab code and results in an average of 3
steps of gradient descent for every of the O(f2) pairs.

• The SDP problem is solved in 10 minutes. SDP is a
very active area of research and faster algorithms are
to be expected.

• The final gradient descent takes a few minutes. The
efficient Sparse Bundle Adjustment code from [15] is
used. The computation time seems hard to improve
but it is worth noticing that 50 iterations are used while
much fewer could be used (cf .Figure 4(a)).
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Figure 5. Pedestrian Dataset. This figure shows the 3D recon-
struction errors for THB and CSFM on the pedestrian dataset
from [20]. Our method achieves a lower error and seems to scale
with higher orders of deformation.

7.1. Shark Data

The shark data was first introduced in [19]. It features a
synthetic shark created from a basis where s = 2 rotating
its tail twice over 240 frames. In terms of performance,
our method reaches 0.00% (actually 10−27%) of error while
[20]’s with 100 EM iterations reaches 2%. Details are given
in Figure 3 and more insight is given in Figure 4.

7.2. Pedestrian Data

We also ran CSFM on the pedestrian dataset from [20]
to compare with THB and also see how our method deals
with more modes of deformation. The results are shown in
Figure 5

7.3. Bending Sheet

The final experiment is a video of a sheet of paper
twisted laterally back and forth. 51 features are tracked dur-
ing the 190 frames of the sequence. The motion is repetitive
but not circular: the sheet is bent to an extreme before be-
ing bent to normal. Figure 6 illustrates how this impacts the
reconstruction of the shape embedding.

This deformation seems fairly easy to explain with the
shape basis and choosing s = 2 was enough to reproduce
equivalent 3D deformations.

8. Conclusion
In this paper, we have presented a novel approach to re-

cover the basis coefficients of a shape deforming in an or-
thographic video sequence, independently from the other
parameters. Using triplets of frames, we are able to de-
fine proximities between 3D shapes which can be used in a
semi-definite programming formulation to recover the lin-
ear embedding of the shapes.

While these embeddings are interesting in themselves,
we showed they can provide a very good initialization for
further 3D-reconstruction which competes with the current

(a) Sampling (b) Recovered Embedding

Figure 6. Bending Sheet Dataset Figure (a) illustrates the sam-
pling as described in Figure 2. We can notice the repetition of
the motion with the different green descending diagonals. On the
other hand, the ascending green diagonals illustrates the fact that
when reaching an end, it looks equivalent to having the sequence
going forward or backward in time. This is even more obvious
when looking at the recovered manifold in Figure (b): he sheet is
twisted between two extremes. It is worth noting that the black
point and its neighbor do not belong to an end of the manifold as
the sheet was not twisted fully then.

(a) Sample Frames from the Sheet video sequence

(b) Reconstructions corresponding to the above frames, rendered from
novel view points

Figure 7. Figure (a) shows 3 frames from the original sequence
where the sheet is twisted. In Figure (b), three reconstructed views
are presented under a novel view point: a quadratic surface was fit
through the points and illuminated so as to highlight the bending.

state of the art. Further improvement includes the study of
a regularization term in the final optimization to conserve
the shape deformation smoothness recovered in the shape
embedding.
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Figure 4. Importance of the Number of Iterations. In Figure (a), the reprojection error (full line) and the 3D reconstruction error (dashed)
are represented for the THB algorithm and our approach. The iterations for THB correspond to the EM iterations while the ones for CSFM
are the ones for the gradient descent. CSFM converges very quickly to the best solution. Robustness to Noise Figure (b) displays the 3D
reconstruction error of THB and CSFM with respect to noise ( XCK was excluded because of its poor performance). The amount of noise
(in percentage) is ‖err‖ / ‖W‖. As an example of how much noise is 10%, we display a frame in Figure (c).
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