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Abstract—We present a novel approach to localizing parts in images of human faces. The approach combines the output of local

detectors with a nonparametric set of global models for the part locations based on over 1,000 hand-labeled exemplar images. By

assuming that the global models generate the part locations as hidden variables, we derive a Bayesian objective function. This function

is optimized using a consensus of models for these hidden variables. The resulting localizer handles a much wider range of

expression, pose, lighting, and occlusion than prior ones. We show excellent performance on real-world face datasets such as Labeled

Faces in the Wild (LFW) and a new Labeled Face Parts in the Wild (LFPW) and show that our localizer achieves state-of-the-art

performance on the less challenging BioID dataset.

Index Terms—Part localization, faces, biometrics, fiducial points

Ç

1 INTRODUCTION

OVER the last decade, new applications in computer
vision and computational photography have arisen due

to earlier advances in methods for detecting human faces in
images [27], [29]. These applications include face detection-
based autofocus and white balancing in cameras, new
methods for sorting and retrieving images in digital photo
management software, anonymization of facial identity in
digital photos, image editing software tailored for faces, and
systems for automatic face recognition and verification.

Face detectors usually return the image location of a
rectangular bounding box containing a face. This bounding
box serves as the starting point for these applications. Yet,
all of the above-mentioned applications, as well as numer-
ous ones yet to be conceived, would benefit from the
accurate detection and localization of face parts—for
example, eyebrow corners, eye corners, tip of the nose,
mouth corners, chin—within the specified bounding box.
These parts are often referred to as facial feature points or
fiducial points. However, unlike general interest or corner
points, these part locations may not correspond to image
locations with high gradients (e.g., tip of the nose), and their
detection may require larger image support.

In addition, much of nonfrontal face processing has
involved detecting multiple facial feature points (fiducial
points) and using the correspondence between the de-
tected features and stored exemplars. In [30], [32], 60 or
more fiducial points are used to apply a 2D warp of the
image to frontal pose. When using 3D morphable models
for recognition, the fitting process was initialized using
seven manually clicked fiducial points [24]. In [10], the face
image is characterized by affine warped image patches
about detected fiducial points. In [17], six detected fiducial
points are used to compute qualitative attributes and
similes, and these are used for face verification in
unconstrained images demonstrating significant variability
in pose, lighting, expression, facial hair, partial occlusion,
glasses, and so on. Facial expression recognition often
involves detecting facial features and tracking them
through a video sequence [22].

There have been a number of recent works that have
shown great accuracy in localizing parts in mostly frontal
images and often in controlled settings. Our goal is to
localize a large collection of prespecified parts in images
taken under a variety of acquisition conditions. In this
paper, we focus on applying our methodology to images of
faces in which sources of variability include pose, lighting,
expression, hairstyle, subject age, subject ethnicity, partial
occlusion of the face, camera type, image compression,
resolution, and focus.

To do this, we have acquired and labeled a data set
called labeled face parts in the wild (LFPW) from Internet
search sites using simple text queries. We have not
intentionally filtered out faces due to poor image quality,
keeping all faces that were detectable by our commercial,
off-the-shelf (COTS) face detector.1 Unlike datasets that are
acquired systematically in the laboratory, there are few
preconditions in our dataset that might aid detection—the
eyes may be occluded by glasses, sunglasses, or hair; there
may be heavy shadowing across features; the facial
expression may be arbitrary; the face may have no makeup
or be made up theatrically; the image may actually be an
artistic rendering; the pose may be varied; there may be

2930 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, DECEMBER 2013

. P.N. Belhumeur is with the Department of Computer Science, Columbia
University, New York, NY 10027.

. D.W. Jacobs is with the Department of Computer Science and UMIACS,
University of Maryland, A.V. Williams Building, College Park,
MD 20742.

. D.J. Kriegman is with the Department of Computer Science and
Engineering, University of California, San Diego, EBU3B, Room 4120,
9500 Gilman Drive, La Jolla, CA 92093-0404.

. N. Kumar is with the University of Washington, Box 352350, Paul G.
Allen Center 282, Seattle, WA 98195-2350.
E-mail: neeraj@cs.washington.edu.

Manuscript received 6 June 2012; revised 27 Nov. 2012; accepted 31 Dec.
2012; published online 14 Jan. 2013.
Recommended for acceptance by P. Felzenszwalb, D. Forsyth, P. Fua, and
T.E. Boult.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMISI-2012-06-0431.
Digital Object Identifier no. 10.1109/TPAMI.2013.23.

0162-8828/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on March 19,2024 at 21:32:02 UTC from IEEE Xplore.  Restrictions apply. 



facial hair that occludes the fiducial points; and part of the
face may be occluded by a hat, wall, cigarette, hand, or
microphone. See Figs. 1 and 6. This dataset stands in
contrast to datasets such as FERET or BioID that have been
used for evaluating fiducial point detection in that the
images are not restricted to frontal faces or collected in a
controlled manner. Our dataset is more in line with recent
face recognition datasets such as Labeled Faces in the Wild
(LFW) [15] or PubFig [17] that contain images taken in
uncontrolled settings.

We formulate part localization as a Bayesian inference
that combines the output of local detectors with a prior
model of face shape. Unlike previous work, our prior on the
configuration of face parts is nonparametric, making use of
our large collection of diverse, labeled exemplars. We then
introduce hidden variables for the particular exemplar
image and the similarity transformation applied to it that
are assumed to generate fiducial locations in a new image.
We marginalize out these hidden variables, but in doing so
they provide us with valuable conditional independencies
between different parts. To marginalize efficiently, we use a
RANdom SAmple Consensus (RANSAC)-like process to
sample likely values of the hidden variables. This ultimately
leads to part localization as a combination of local detector
output and the consensus of a variety of exemplars and
poses that fit this data well.

Our process starts with an offline training phase, much
of which is mirrored during online detection and captures
the local appearance of the fiducials and models the global
relationship of the fiducials. Faces are first detected with an
off-the-shelf face detector. From the face box returned by
the detector and our training data, we have bounds on the
locations of each fiducial relative to the face box. Note that
for datasets with only frontal images, the bounds are
tighter than for datasets with large variations in in-plane
and out-of-plane rotation. For each fiducial, a previously
trained two-class classifier is scanned across the fiducial’s
corresponding bounding box, and at each location it
returns a score that is proportional to the likelihood that
the feature is at that location. Because this is multimodal
and the highest mode of the local detector response may
not correspond to the actual fiducial location, we also

consider the global configuration of all the fiducials, which
is a prior of the joint probability of fiducial locations. While
it is well recognized in the literature that the geometric
relationships of the fiducial location are important for
robust fiducial detection, prior work generally modeled the
constraints in an ad hoc manner by assuming indepen-
dence or using a multivariate Gaussian distribution. In
contrast, we model this nonparametrically using the
labeled location of the fiducials in the training images. By
formulating detection as a Bayesian estimation problem,
the local appearance of each fiducial is naturally balanced
with the nonparametric global prior on the configuration;
the estimate is found with a Monte Carlo optimization
procedure, based on RANSAC.

The method is evaluated on three datasets that are
independent of the training set: The BioID dataset has been
used to evaluate a number of existing methods, and it
contains frontal, upright images of 35 people with a range of
facial expressions taken with a single camera. In contrast,
the Labeled Faces in the Wild (LFW) [15] dataset consists of
13,233 images of 5,749 public figures taken in unconstrained
settings and downloaded from online news sources. We
also introduce the new Labeled Face Parts in the Wild
(LFPW) dataset in this paper, which is also unconstrained
but contains a greater mix of image qualities. Experimental
results demonstrate that our method is more accurate than
existing methods on BioID and is just as accurate on the
harder LFW and LFPW datasets. Furthermore, accuracy is
comparable to that of human labeling, twice as accurate as a
commercial detector and the detector of [10], and almost
three times as accurate as the more recent method of Zhu
and Ramanan [33]. This paper is based on work that was
first described in [2].

2 RELATED WORK

Early work on facial feature detection was often described
as a component of a larger face processing task. For
example, Burl et al. [4] take a bottom up approach to face
detection and first detect candidate facial features over the
whole image and then select the most face-like constellation
using a statistical model of the distances between pairs of
features. Other works detect large-scale facial parts such as
each eye, the nose, and the mouth and return a contour or
bounding box around these components [8], [12].

There is a long history of part-based object descriptions
in computer vision and perceptual psychology. Recent
approaches have shown a renewed emphasis on parts-
based descriptions and attributes because one can learn
descriptions of individual parts and then compose them,
generalizing to an exponential number of combinations
(e.g., [17], [1], [18]). In an influential example of such work,
Felzenszwalb et al. [11] train a part-based model for object
detection. As in our work, parts’ appearance is modeled
using trained, discriminative models. The configuration of
parts is represented using a star model, in which a
deformation cost penalizes deviations from the expected
relative location of parts. This is quite unlike our approach,
which uses a large number of exemplars nonparametrically
to model possible part configurations. The recent Poselets
work is especially related to our approach in its data-driven
search for object parts [3]. They model human body shape
as a configuration of parts in which each part is a cluster of
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examples that share a common appearance and configura-
tion. By clustering examples of body parts that are nearby in
configuration space, they create a nonparametric descrip-
tion of parts and their configurations across poses, which is
related to our own nonparametric approach. We use
RANSAC to apply our nonparametric shape model. While
using a Gaussian shape model, Li et al. [19] use RANSAC to
robustly initialize this model to find automobiles in
cluttered environments.

In this paper, we provide a method for localizing parts by
detecting finer scale fiducial points or microfeatures [23], as
shown in Fig. 2. Many fiducial point detectors include
classifiers that are trained to respond to a specific fiducial
(e.g., left corner of the left eye). These classifiers take as input
raw pixel intensities over a window or the output of a bank of
filters (e.g., wavelets [5], Gaussian derivative filters [4], [12],
Gabor filters [14], [28], or Haar-like features [7], [9]). These
local detectors are scanned over a portion of the image and
may return one or more candidate locations for the part or a
“score” at each location. This local detector is often a binary
classifier (feature or not feature). For example, Zhan et al. [31]
have applied the Viola-Jones [27] style detector to facial
features. Unlike face detection where the detector is scanned
over the entire image area and where Viola and Jones [27]
demonstrated efficient detection using a cascade of weak
classifiers, bounds on the location of a fiducial are readily
determined from the face detection box. Searching over a
smaller region that includes the actual part location reduces
the chance of false detections with minimal impact of missing
fiducials [7]. In addition, since fewer locations are tested,
more costly classifiers can be used. In this paper, we use
support vector machines (SVMs) [5] with a radial basis
function (RBF) kernel. Even so, false detections occur often,
even for well-trained classifiers, because different portions of
the image can have the appearance of the same fiducial
under some imaging conditions. For example, a common
error is for a “left corner of left eye” detector to respond to the
left corner of the right eye. Eckhardt et al. [9] achieve
robustness and handle greater pose variation by using a large
area of support for the detector covering, for example, an
entire eye or the nose with room to spare.

To better handle larger pose variation, constraints can be
established about the relative location of parts to each other
rather than the location of each part to the detector box. This
can be expressed as predicted locations, bounding regions,

or as a conditional probability distribution of one part
location given another location [7]. Alternatively, the joint
probability distribution of all the parts can be used, and one
model is that they form a multivariate normal distribution
whose mean is the average location of each part. This is the
model underlying active appearance models and active
shape models, which have been used for facial feature point
detection in near frontal images [6], [7], [21]. Saragih et al.
[25] extend this to use a Gaussian mixture model, whereas
Everingham et al. [10] handle a wider range of pose,
lighting, and expression by modeling the joint probability of
the location of nine fiducials relative to the bounding box
with a mixture of Gaussian trees. Zhu and Ramanan [33]
also handle variations in pose using a mixture of trees
model in which parts are shared. Like [10], we do not
believe that a joint distribution of part locations over a wide
range of poses is adequately modeled by a single Gaussian,
but instead of a mixture model, we take a nonparametric
approach and use the part locations in a large number of
labeled exemplar images to model the joint distribution.

While a number of approaches balance local feature
detector responses on the image with prior global
information about the feature configurations [6], [7], [13],
[21], [25], [26], optimizing the resulting objective function
remains a challenge. The locations of some parts vary
significantly with expression (e.g., the mouth, eyebrows),
whereas others such as the eye corners and nose are more
stable. Consequently, some detection methods organize
their search to first identify the stable points; the locations
of the mouth points are then constrained, possibly through
a conditional probability, by the locations of stable points
[26]. This approach fails when the stable points cannot be
reliably detected, for example, when the eyes are hidden
by sunglasses or occluded by hair (a very common
occurrence). In contrast, our approach uses a RANSAC-
like sampling to randomly select among the different
types of parts and therefore tolerates occlusion of some
facial features.

A few authors have released software implementations
of their facial feature point detection method [10], [28], [33],
and because of the utility of detected fiducial points,
commercial products have become available by Betaface,
face.com, Luxand, Omron, PittPatt, and others. While some
of these systems can handle nonfrontal images and detect
up to 40 fiducials, the underlying methods are not disclosed
and evaluations of these methods have not been published.

3 FACE PART LOCALIZATION

In this section, we describe how we build our local and
global detectors using a training image set, described in
Section 5.1, with manually annotated part locations.

3.1 Local Detectors

For each part, we build a sliding window detector that can
be scanned over a region of the image. These sliding
window detectors are simply support vector machine
(SVM) classifiers with grayscale scale-invariant feature
transform (SIFT) [20] descriptors as features. We compute
the SIFT descriptor window at two scales: roughly one-
fourth and one-half the interocular distance. (In practice,
this is computed relative to the size of the face detector’s
bounding box.) These two SIFT descriptors are then
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Fig. 2. One of the images in LFPW. Overlaid, we show hand-labeled
points obtained using MTurk. Points are numbered to match Figs. 3
and 5.
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concatenated to form a single 256-dimensional feature
vector for the SVM classifier.

For all of the training samples, we rescale the images so
that the faces have an interocular distance of roughly
55 pixels. Positive samples are taken at the manually
annotated part locations. Negative samples are taken at
least one-fourth of the interocular distance away from the
annotated locations. Additional samples are synthesized in
two ways. First, we perform a left-right flip of all faces to
double the number of training samples. Second, we perform
five random rotations of each face where the rotation
is selected uniformly from the interval [�15 degrees,
þ15 degrees].

Although we use local detectors, rather than regressors,
the detectors return a score at each point x in the image (or
in some smaller region around the face as inferred from an
earlier face detection step), indicating the distance from a
location to a separating hyperplane used in classification.
The detector score dðxÞ indicates the likelihood that the
desired part is located at point x in the image. This score is
normalized to behave like a probability by dividing by the
sum of the scores in the detector window. Once normal-
ized, we write this score as P ðx j dÞ, i.e., the probability that
the fiducial is at location x given all the scores in the
detection window.

Nevertheless, as the local detectors are imperfect, the
correct location will not always be at the location with
the highest detector score. This can happen for many of the
aforementioned reasons, including occlusions due to head
pose and visual obstructions such as hair, glasses, hands,
microphones, and so on. Yet these mistakes in the local
detector almost always happen at places that are incon-
sistent with positions of the other—correctly detected—
fiducial points. In the next section, we describe how we
build our global detectors to better handle the cases where
the local detectors are likely to go astray.

3.2 Global Detectors

Although faces come in different shapes, present them-
selves to the camera in many ways, and may possess often
extreme facial expressions, there are strong anatomical and
geometric constraints that govern the layout of face parts
and their location in images. We do not try to model these
constraints explicitly, but rather let our training data dictate
this implicitly. Here, we need to consider all the part
locations taken together to develop a global detector for a
collection of fiducial points. To exploit this, we use a global
model for a configuration of part locations.

We will letX denote the true location of the fiducial points
in the image, while Xk will refer to a set of models that are
used to generate the image fiducials. More specifically, let
X ¼ fx1;x2; . . . ;xng denote the locations of n parts, where xi

is the location of the ith part. LetD ¼ fd1;d2; . . . ;dng denote
the measured detector responses, where di is the window of
scores returned by the ith local detector. We want to find the
value of X that maximizes the probability of X given the
measurements from our local detectors, i.e.,

X� ¼ arg max
X

P ðX j DÞ: ð1Þ

Let Xk (where k ¼ 1; . . . ;m) denote the locations of the
n parts in the kth of m exemplars, and let Xk;t be the

locations of the parts in exemplar k transformed by some

similarity transformation t; we call Xk;t a global model.
If we suppose that each X is generated by one of our

global models Xk;t, we can expand P ðX j DÞ as follows:

P ðX j DÞ ¼
Xm
k¼1

Z
t2T

P ðX j Xk;t;DÞP ðXk;t j DÞdt; ð2Þ

where our collection of m exemplars Xk along with

similarity transformations t have been introduced into the

calculation of P ðX j DÞ and then marginalized out.
By conditioning on the global model Xk;t, we can now

treat the locations of the parts xi as conditionally

independent of one another, given Xk;t. We write the parts

of Xk;t as xik;t, each denoting a part of exemplar k

transformed by t. We assume that given xik;t and di, xi will

be conditionally independent of the other part locations and

detector outputs, and rewrite the first term of (2) as

P ðX j Xk;t;DÞ ¼
Yn
i¼1

P
�
xi j xik;t;di

�
ð3Þ

¼
Yn
i¼1

P
�
xik;t j xi;di

�
P ðxi j diÞ

P
�
xik;t j di

� : ð4Þ

xik;t represents the position of part i in exemplar k,

supposing this exemplar has been used to generate the

image, after being transformed by t. P ðxik;t j diÞ represents

the distribution of this part location, conditioned on the

detector output for that part.
Since knowing the true location of the parts trumps any

information provided by the detector about which ex-

emplar and transformation were used to generate an

image, P ðxik;t j xi;diÞ ¼ P ðxik;t j xiÞ. Also, since the relation

between the transformed model fiducial and the true

fiducial is translationally invariant, it should only depend

on �xik;t ¼ xik;t � xi. With these observations, we can

rewrite (4) as

P ðX j Xk;t;DÞ ¼
Yn
i¼1

P
�
�xik;t

�
P ðxi j diÞ

P
�
xik;t j di

� : ð5Þ

Moving on to the second term in (2), we can use Bayes’

rule to get

P ðXk;t j DÞ ¼
P ðD j Xk;tÞP ðXk;tÞ

P ðDÞ ð6Þ

¼ P ðXk;tÞ
P ðDÞ

Yn
i¼1

P ðdi j xik;tÞ; ð7Þ

where again conditioning on the global model Xk;t allows

us to treat the detector responses di as conditionally

independent of one another.
A final application of Bayes’ rule lets us rewrite (7) as

P ðXk;t j DÞ ¼
P ðXk;tÞ
P ðDÞ

Qn
i¼1 P ðdiÞQn
i¼1 P

�
xik;t
�

" #Yn
i¼1

P
�
xik;t j di

�
ð8Þ
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¼ C
Yn
i¼1

P
�
xik;t j di

�
: ð9Þ

Note that the terms within the square bracket in (8) that
depend only on D are constant given the image. Also note
that the terms within the square bracket that depend only
on Xk;t are also constant because we assume a uniform
distribution on our global models. Therefore, we may
reduce all the terms within the square bracket to a single
constant C.

Combining (1), (2), (5), and (9) yields

X� ¼ arg max
X

Xm
k¼1

Z
t2T

Yn
i¼1

P
�
�xik;t

�
P ðxi j diÞdt; ð10Þ

where X� is the estimate for the part locations.
The first term P ð�xik;tÞ is taken to be a 2D Gaussian

distribution centered at the model location xik;t. Each part i
has its own Gaussian distribution. These distributions
model how well the part locations in the global model fit
the true locations. If we had a large number of exemplars in
our labeled dataset from which to construct these global
models—i.e., if m were very large—then we would expect a
close fit and low variances for these distributions. To
estimate the covariance matrices for the part locations, we
do the following. For each exemplar Xj from our labeled
data set, we find a sample Xk from the remaining exemplars
and a transformation t that gives the best L2 fit to Xj. We
compute the difference Xj �Xk;t and normalize it by the
interocular distance. These normalized differences are used
to compute the covariance matrices for each part location.

The second term P ðxi j diÞ is computed as follows:
We take the estimated location xi for part i and look up the
response for the ith detector at that point in the image, i.e.,
diðxiÞ. This value is then normalized to behave like a
probability by dividing by the sum of diðxÞ for all x in the
detector window.

4 OPTIMIZATION

Computing the sum and integral in (10) is challenging, as
they are taken over all global models k and all similarity
transformations t. However, we note from (2) that if
P ðXk;t j DÞ is very small for a given k and t, it will be unlikely
to contribute much to the overall sum and integration.
Our strategy is thus to consider only those global models k
with transformations t for which P ðXk;t j DÞ is large.

In a sense, we wish to perform a Monte Carlo integration
of (10) where the global models Xk;t we choose are the ones
that are likely to contribute to the sum and integral. In the
following section, we describe how we select a list of k and t
that are used to compute this integration.

4.1 Choosing the Global Models Xk;t

We wish to optimize P ðXk;t j DÞ over the unknowns k and
t. This optimization is nonlinear and not amenable to
gradient descent-type algorithms. First, k is a discrete
variable with a large number of possible values (in our
experiments, we have about 1,000 possible exemplars).
Second, we expect that even for a fixed k, different values of
t will produce large numbers of local optima because our

fiducial detectors usually produce a multimodal output.
Transformations that align a model with any subsets of
these modes are likely to produce local optima in our
optimization function.

To cope with this, we adopt a RANSAC-like generate-
and-test approach. We generate a large number of plausible
values for k and t. We evaluate each of these using (9). We
keep track of the m� best global models, i.e., the m� best
pairs k and t. This is done in the following steps:

1. Select a random exemplar k.
2. Select two random parts. Randomly match each of

these to one of the g highest modes of the detector
output for that part.

3. Set t to be the similarity transformation that aligns
the model fiducial points with the detector modes.

4. Evaluate (9) for this k; t.
5. Repeat Steps 1 to 4 r times.
6. Record in a setM the m� pairs k and t for which (9)

in Step 4 is the largest.

In our current experimental system, we use the values
r ¼ 10;000, g ¼ 2, and m� ¼ 100.

4.2 Estimating XX

In the previous section, we used a RANSAC-like procedure
to find a list M of m� global models Xk;t for which
P ðXk;t j DÞ is the largest. With these in hand, we approx-
imate the optimization for X in (10) as

X� ¼ arg max
X

X
k;t2M

Yn
i¼1

P
�
�xik;t

�
P ðxi j diÞ; ð11Þ

where the sum is now only taken over those k; t 2 M.
Equation (11) is essentially multilinear in xi, so we may

not optimize each term independently. However, we can
initialize a solution in this way. So, to find the best X�, we
first find an initial estimate xi0 for each part i as

xi0 ¼ arg max
xi

X
k;t2M

P
�
�xik;t

�
P ðxi j diÞ: ð12Þ

This is equivalent to solving for xi0 by setting all P ð�xjk;tÞ
and P ðxjjdjÞ to a constant in (10) for all j 6¼ i. To compute
each xi0, we merely need to multiply the normalized detector
output by a Gaussian function centered at xik;t with the
covariances calculated as described at the end of Section 3.2.
Then, we find the image location xi0 where the sum of the
resulting products is maximized. The initial estimates, xi0,
i 2 1; . . . ; n, can then be used to initialize an optimization of
(11) to find the final estimates xi� that make up X�.

In practice, we find that these initial estimates suffice,
and further optimization is unnecessary. Therefore, follow-
ing RANSAC to select transformed exemplars, we inde-
pendently optimize the location of each fiducial point by
averaging the product of the detector outputs and Gaussian
distributions placed around the location of each trans-
formed exemplar fiducial.

5 EXPERIMENTS

Our work focuses on localizing parts in natural face images,
taken under a wide range of poses, lighting conditions, and
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facial expressions, in the presence of occluding objects such
as sunglasses or microphones. Existing datasets for evalu-
ating part localization do not contain the range of
conditions that we aim to address in this paper, and so
we show results on the Labeled Faces in the Wild (LFW)
[15] dataset and on our new dataset, Labeled Face Parts in
the Wild (LFPW). Our most significant results are on these
datasets.

Since researchers have recently reported results on
BioID, we present comparative results on BioID. Like most
datasets used to evaluate part localization on face images,
BioID contains near-frontal views and less variation in
viewing conditions than LFPW.

5.1 Data Sets

Our new LFPW dataset consists of 3,000 faces from images
downloaded from the web using simple text queries on sites
such as google.com, flickr.com, and yahoo.com. The 3,000
faces were detected using a commercial, off-the-shelf
(COTS) face detection system. Faces were excluded only if
they were incorrectly detected by the COTS detector or if
they contained text on the face. Note also that our COTS
face detector does not detect faces in or near profile, and so
these images are implicitly excluded from our dataset.

To obtain ground-truth data, 35 fiducial points on each
face were labeled by workers on Amazon Mechanical Turk
(MTurk). Of these 35 points, we only used 29 in this paper
and excluded points associated with the ears. Fig. 2
illustrates the location of these points. Each point was
labeled by three different MTurk workers. We used the
average location as ground truth for the fiducial point. A
subset of this data is made available at kbvt.com.

Fig. 6 shows example images from LFPW, along with our
results. There is a degree of subjectivity in the way humans
label the location of fiducial points in the images, and this is
seen in Fig. 3, which shows the variation among the MTurk
workers. Some parts like the eye corners are more
consistently labeled, whereas the brows and chin are
labeled less accurately.

Labeled Faces in the Wild (LFW) [15] is an existing large
dataset of real-world images gathered from news sites. It
consists of 13,233 images of 5,749 public figures, taken in
unconstrained settings and with noncooperative subjects. It
is commonly used for benchmarking face verification
algorithms, and as such has been used by many researchers.

It is qualitatively similar to our own LFPW dataset, but due
to its age (collected several years ago), it contains slightly
lower quality images in general.

The publicly available BioID dataset contains
1,521 images, each showing a frontal view of a face of
one of 23 different subjects [16]. We used 17 fiducial points
that had been marked for the FGNet project, and used in
the me17 error measure as defined in [6]. This dataset has
been widely used, allowing us to benchmark our results
with prior work. Note that we trained using the LFPW
dataset and tested on BioID in our experiments. There are
considerable differences in the viewing conditions of these
two datasets. Furthermore, the location of parts in LFPW
do not always match those of BioID, and so we computed a
fixed offset between parts that were defined differently
(e.g., whereas the left and right nose points are outside of
the nose in LFPW, they are below the nose in BioID). Fig. 8
shows some example images, along with our results.

To compare the challenge presented by different datasets,
we created a measure of the asymmetry of the fiducials in an
image. We reflect fiducials about a vertical line passing
through their centroid and compute the mean distance
between fiducial pairs that are symmetric in 3D (e.g., the
outer corner of the left and right eyes). For a frontal image
without occluded fiducials, the measure would be near zero.
For faces that are rotated in 3D or about the optical axis, the
asymmetry increases with the extent of rotation. Fig. 4
shows the distribution of the asymmetry measure for the
BioID and LFPW datasets, and the distributions indicate
that LFPW is truly a more challenging dataset.

5.2 Results

In our experiments with LFPW, we randomly split the
dataset into 1,100 training images and 300 test images. (An
additional 1,600 images have been held out for subsequent
evaluations at future dates.) Training images were used to
train our SVM-based fiducial detectors and also served as
the exemplars for computing our global models Xk.

We evaluate the results of each localization by measuring
the distance from each localized part to the average of three
locations supplied by MTurk workers. Error is measured as
a fraction of the interocular distance to normalize for image
size. Fig. 3 shows the resulting error broken down by part.
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Fig. 3. Mean error of our fiducial detector on the LFPW dataset
compared to the mean variation in human labeling. The fiducial labels
are shown in Fig. 2, and the error is the fraction of interocular distance.
Our detector is almost always more accurate.

Fig. 4. The distribution of the asymmetry measure over images in the
LFPW and BioID datasets. The BioID dataset consists mostly of frontal
images, resulting in a sharp peak near the y-axis (i.e., nearly symmetric
faces), whereas the LFPW dataset contains many more off-frontal
faces, making it far more challenging.
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This figure also compares the error in our system to the
average distance between points marked by one MTurk
worker and the average of the points marked by the other
two. We can see that this distance almost always exceeds
the distance from points localized by our system to the
average of the points marked by humans. It is worth noting

that the eye points (9-18) are the most accurate, the nose and
mouth points (19-29) are slightly worse, and the chin and
eyebrows (1-8, 29) are least accurate. This trend is consistent
between human and automatic labeling.

Figs. 1 and 6 show results on some representative images.
We highlight a few characteristics of these results. These
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Fig. 5. Comparison of fiducial point detectors on the LFPW dataset. We show the mean error as a fraction of interocular distance for our method,
Everingham et al. [10], Zhu and Ramanan [33], and a commercial off-the-shelf (COTS) system. Only the fiducial points shared in common with our
method are shown. See Fig. 2 for locations of the fiducial points. Our detector is between two to three times as accurate as all other methods.

Fig. 6. Images from Labeled Face Parts in the Wild (LFPW), along with parts located by our detector.
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images include nonfrontal images including viewpoints
from below (Row 1, Col. 2 and Row 2, Col. 2), difficult
lighting (Row 4, Col. 1), glasses (Row 1, Col. 5), sunglasses
(Row 2, Col. 4 and Row 4, Col. 3), partial occlusion (Row 2,
Col. 5 by a pipe and Row 3, Col. 4 by hair), an artist drawing
(Row 1, Col. 3), theatrical makeup (Row 2, Col. 1), and so on.
The localizer requires 400 milliseconds per fiducial on an
Intel Core i7 3.06-GHz machine; most of the time is spent
evaluating the local detectors.

In Fig. 5, we compare our LFPW results to those of a
commercial face and fiducial detector2 and the detector of
[10]. Since we had access to executables, we ran these
detectors over the LFPW test set and used the same metric
for evaluation. The commercial system locates six fiducials
(both corners of each eye and the outer corners of the
mouth), so we compare results on those fiducials only. At
roughly 3 percent mean error rate, our results are roughly
twice as accurate as the commercial system and [10].

We also ran the method for face detection, pose
estimation, and landmark localization presented in [33] on
the 300 test images in the LFPW dataset per a request by a
reviewer and the editor, using the publicly available
implementation by the authors. It should be noted that this

method was published and code was released after
submission of our paper to TPAMI. We used the pretrained
model with 1,050 parts because the authors of [33] said that
it gave the best performance on localization and was used
for reporting the localization results in [33].

Fig. 5 shows the errors for the 17 face parts that are
common between our method and theirs; these include
fiducials on the brows, eyes, nose, mouth, and chin. Because
the fiducials might not be defined as the same location for
different methods, the bias between the detected locations
and those of an average user was first removed. For 300 test
images, the ground-truth face was not detected in 16 images
by the detector in [33], and for 10 images, the detector
returned near profile fiducial configurations with different
fiducials than used in our method. These 26 images were
removed from the evaluation because they would unfairly
penalize the method of Zhu and Ramanan [33].

As shown in Fig. 5, the error for [33] was twice as large
for the eyebrows and almost three times as large for
the eyes. The sides and top of the mouth are twice as large,
but the lower lip is even more poorly localized, and the
error is nearly three times as large; lower lips tend to
be harder for most methods, especially when the mouth is
open. The average runtime was 107.6 s per image on a
3.06 Ghz Macbook Pro, which is about 10 times slower
than our method.
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2. For contractual reasons, we may not identify the commercial system in
this paper.

Fig. 7. Images from Labeled Faces in the Wild (LFW), along with OpenCV face detections (blue rectangles) and 55 parts localized by our detector
(green dots). Our mean accuracy is 5.18 percent of the interocular distance.

Fig. 8. Images from BioID, along with parts localized by our detector.
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Fig. 6 shows some examples of errors of our system. In
Row 1, Cols. 2 and 5, local cues for the chin are indistinct,
and the chin is not localized exactly. Row 2, Col. 4 shows an
example in which the lower lip is incorrectly localized. This
can happen when the mouth is open and a row of teeth are
visible. We believe that these errors can be primarily
attributed to the local detectors; in future work, we plan
to make use of color-based representations that can more
easily distinguish between lips and teeth. And in Row 4,
Col. 1, the left corner of the left eyebrow is too low,
presumably due to occlusion from the hair.

Fig. 7 shows results of our part localizers on images from
the labeled faces in the wild (LFW) data set. These localizers
were trained using 6,080 manually labeled images from
Columbia’s PubFig [17] dataset. Fifty-five points on the face
were labeled, allowing for finer-grained localization on the
face. Note the consistency of localization despite changes in
the face box returned by OpenCV (blue rectangles). Our
mean error across all images of LFW and all 55 fiducial
points is 5.18 percent of the interocular distance.

We have also applied our part localizer to the BioID faces
and show some example output images in Fig. 8. Results
have been reported on this dataset by a number of authors.
Fig. 9 shows the cumulative error distribution of the me17

error measure (mean error of 17 fiducials) defined in [6].
Fig. 9 compares the results of our method to those reported
by authors in [6], [21], [26], [28] . Our results are similar to
but slightly better than those of Valstar et al. [26], who, to
our knowledge, report the best current results on this
dataset. We note that we train on a very different dataset
(LFPW) and use some fiducials whose locations are defined
a bit differently.

Finally, in Fig. 10, we return to LFPW and show the
cumulative error distribution of the me17 error measure for
our method applied to LFPW. Even though LFPW is a more
difficult dataset per Fig. 4, the cumulative error distribution
curve on LFPW is almost identical to our cumulative error
distribution curve on BioID. (Note that the figures have
different scales along the x-axis.) Fig. 10 also shows the
cumulative error distribution when only the local detectors
are used and when locations are predicted solely from the
face box. While the local detectors are effective for most
fiducial points, there is a clear benefit from using the
consensus of global models. Many of the occluded fiducial

points are incorrectly located by the local detectors, as

evidenced by the slow climb toward 1.0 of the red curve.

6 CONCLUSIONS

We have described a new approach to localizing parts in
face images. Our primary innovation is a Bayesian model
that combines local detector outputs with a consensus of
nonparametric global models for part locations, computed
from exemplars. Our localizer is accurate over a large range
of real-world variations in pose, expression, lighting,
makeup, and image quality. To train and test this system,
we introduce LFPW, a large, real-world dataset of hand-
labeled images. Our system demonstrates strong perfor-
mance on this dataset, significantly outperforming previous
research systems and a commercial system. We also
demonstrate state-of-the-art performance on the LFW and
BioID datasets.
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