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Abstract

Keypoint matching between pairs of images using popular descriptors like SIFT
or a faster variant called SURF is at the heart of many computer vision algorithms
including recognition, mosaicing, and structure from motion. However, SIFT and
SURF do not perform well for real-time or mobile applications. As an alternative
very fast binary descriptors like BRIEF and related methods use pairwise compar-
isons of pixel intensities in an image patch. We present an analysis of BRIEF and
related approaches revealing that they are hashing schemes on the ordinal correla-
tion metric Kendall’s tau. Here, we introduce Locally Uniform Comparison Image
Descriptor (LUCID), a simple description method based on linear time permuta-
tion distances between the ordering of RGB values of two image patches. LUCID
is computable in linear time with respect to the number of pixels and does not
require floating point computation.

1 Introduction

Local image descriptors have long been explored in the context of machine learning and computer
vision. There are countless applications that rely on local feature descriptors, such as visual regis-
tration, reconstruction and object recognition. One of the most widely used local feature descriptors
is SIFT which uses automatic scale selection, orientation normalization, and histograms of oriented
gradients to achieve partial affine invariance [15]. SIFT is known for its versatility and reliable
recognition performance, but these characteristics come at a high computational cost.

Recently, mobile devices and affordable reliable imaging sensors have become ubiquitous. The
wide adoption of these devices has made new real-time mobile applications of computer vision
and machine learning feasible. Examples of such applications include visual search, augmented
reality, perceptual interfaces, and wearable computing. Despite this, these devices have less com-
putational power than typical computers and perform poorly for floating point heavy applications.
These factors have provided an impetus for new efficient discrete approaches to feature descrip-
tion and matching. In this work we explore current trends in feature description and provide a new
view of BRIEF and its related methods. We also present a novel feature description method that is
surprisingly simple and effective.

1.1 Background

Bay et al. proposed SURF as an approximation to SIFT, a notable shift toward real-time feature
description [1]. SURF obtains a large speed up over SIFT while retaining most of its desirable
properties and comparable recognition rates. However, SURF is not generally suited to real-time
applications without acceleration via a powerful GPU [21].

In [3] Bosch et al. proposed Ferns as a classification based approach to key point recognition. Ferns
uses sparse binary intensity comparisons between pixels in an image patch for descriptive power.

*This work was completed while the author was at UCSD.



This simple scheme provides real-time performance in exchange for expensive off-line learning.
In response to the success of Ferns, Calonder et al. presented a novel binary feature descriptor
they named BRIEF [4]. Rather than training off-line, BRIEF makes use of random pixel intensity
comparisons to create a binary descriptor quickly. These descriptors can be matched an order of
magnitude faster than SIFT with the Hamming distance, even on mobile processors. As a result,
BRIEF has come into widespread use and has inspired several variants based on the approach [12,
14, 19]. However, little explanation as to why or how these types of descriptors work is given.
There is a fuzzy notion that pairwise intensity comparisons are an approximation to signed intensity
gradients. This is not the whole story, and in fact these methods are sampling in an ad hoc manner
from a rich source of discriminative information.

1.2 Related work

In this work we diverge from the current paradigm for fast feature description and explore a deter-
ministic approach based on permutations. The study of distances between permutations began near
the inception of group theory and has continued unabated since [5, 7, 8, 9, 11, 10, 16].

A notable early use of permutation based methods in the realm of visual feature description was pre-
sented by Bhat and Nayar in [2]. They investigated the use of rank permutations of pixel intensities
for the purpose of dense stereo, the motivation being to find a robust alternative to the ¢ norm. Per-
mutations on pixel intensities offer a transformed representation of the data which is naturally less
sensitive to noise and invariant to monotonic photometric transformations. Bhat and Nayar present
a similarity measure between two rank permutations that is based on the Kolmogorov Smirnov test.
Their measure was designed to be robust to impulse noise, sometimes called salt and pepper noise,
which can greatly corrupt a rank permutation. In [20] Scherer et al. reported that though Bhat and
Nayar’s method was useful, it suffered from poor discrimination.

In [18] Mittal and Ramesh proposed an improved version of the method presented by Bhat and
Nayar. Their improvement was in a similar vein to [20], based on a modification to Kendall’s tau
[11]. The key observation made was that both Kendall’s tau metric and Bhat and Nayar’s metric are
highly sensitive to Gaussian noise. To become robust to Gaussian noise Mittal and Ramesh account
for actual intensity differences while only considering uncorrelated order changes. We choose to
explore the Hamming and Cayley distances, in part because they are naturally robust to Gaussian
noise, impulse noise is not a major issue for modern imaging devices, and they are computable in
linear time as opposed to quadratic time.

Recently there has been more research on the application of ordinal correlation methods to sparse
visual feature description. In [22] and [13] ordinal methods were applied to SIFT descriptors. In
contrast to [2] and [20] the elements of the SIFT descriptor are sorted, rather than sorting pixel
intensities themselves. Though these methods do improve the recognition performance of SIFT they
add computational cost, rather than reducing it.

1.3 Our contributions

In this paper, we introduce LUCID, a novel approach to real-time feature description based on order
permutations. We contrast LUCID with BRIEF, and provide a theoretical basis for understanding
these two methods. We prove that BRIEF is effectively a locality sensitive hashing (LSH) scheme on
Kendall’s tau. It follows from this that other descriptors based on binary intensity comparisons are
dimensionality reduction schemes on Kendall’s tau. We then explore alternative distances based on
the observation that image patch matching can be viewed as a near duplicate recognition problem.

In the next section we describe LUCID, provide a background on permutation distances and discuss
optimizations for an efficient implementation. Section 3 provides an analysis of BRIEF and com-
pares it to LUCID. Section 4 reports on experiments that evaluate LUCID’s accuracy and run time
relative to SURF and BRIEF.



2 LUCID

Here we present a new method of feature description that is surprisingly simple and effective. We
call our method Locally Uniform Comparison Image Descriptor or LUCID. Our descriptors implic-
itly encapsulate all possible intensity comparisons in a local area of an image. They are extremely
efficient to compute and are related through the generalized Hamming distance for efficient match-
ing [10].

2.1 Constructing a descriptor [~, descl] = sort(pl(:));
[~, desc2] = sort(p2(:));
Let p1 and p2 be n X n image patches with distance = sum(descl ~= desc2);
c color channels. We can compute descrip-
tors for both patches and the Hamming dis-
tance between them in three lines of Mat- E
lab as shown in Figure 1. Here descl and
desc2 are the order permutation represen- / \

an O(mlogm) running time. However, our
native implementation makes use of a sta-
ble comparison-free linear time sort and thus
takes O(m) time and space. Descriptor con-
struction is depicted in Figure 1.

tations for pl and p2 respectively. Let
m = cn?, then clearly this depiction has E E E

2.2 Permutation distances

A more detailed discussion of the following 12345678 910111203141516171819202122232425262]
is given in [16]. Recall the definition of a
permutation: a bijective mapping of a finite *

set onto itself. This mapping 7 is a mem- 1356913 14,16,18,19,21,22,23,2, 11,20, 1,4,7,8, 10, 12,15, 17, 24,25,26,7]
ber of the symmetric group S, formed by

function composition on the set of all per- .
mutations of n labelled objects. We write Figure 1: Top: LUCID feature construction and

7(i) = j to denote the action of 7 with matching method in 3 lines of Matlab. Note: ~ is

i,j € {1,2,...,n}. The permutation product used to ignore the first return value of sort; and the
for 7y, 9 € S, is defined as function com- second value is the order permutation. Bottom: An
)

position 7y = 7 07y, the permutation that illustration of an image patch split into its RGB color
results from first applying 7> then 7. Every channels, vectorized and then sorted; inducing a per-

permutation 7w € S, can be written as a prod- Mutation on the indices.

uct of disjoint cycles o1, 09, ..., 0¢. Cycles are permutations such that ¢* (i) = 4 for some k < n

where 0% = H§:1 o. We will use the notation #cycles(w) = £ to denote the number of cycles in 7.

A convenient representation for a permutation 7 € S, is the n dimensional vector with the ™
coordinate equal to 7(i); this is the permutation vector. The convex hull of the permutation vectors
Sp C R™ is the permutation polytope of Sy,. This is an n — 1 dimensional polytope with |S,,| = n!
vertices. The vertices are equidistant from the centroid and lie on the surface of a circumscribed n—1
dimensional sphere. The vertices corresponding to two permutations 7y, 7o € .S, are connected by
an edge if they are related by a pairwise adjacent transposition. This is analogous to Kendall’s tau,
defined to be the minimum number of pairwise adjacent transpositions between two vectors, more
precisely Kq(m1,m2) = [{(i. j)|m1 () < 71(j), wa(i) > 7a(j), 1 < i, < m}].

There are at least two classes of distances that can be defined between permutations [16]. Spatial
distances can be viewed as measuring the distance travelled along some path between two vertices
of the permutation polytope. Examples of spatial distances are Kendall’s tau which steps along the
edges of the polytope, the Euclidean distance which takes the straight line path, and Spearman’s
footrule which takes unit steps on the circumscribed sphere of the polytope. A disorder distance
measures the disorder between two permutations and ignores the spatial structure of the polytope.
Examples of disorder distances are the generalized Hamming distance Hy(7y,m2) = |[{i|m1(i) #
m2(7) }| which is the number of elements that differ between two permutation vectors and the Cayley



distance Cy(my, mo) = n — #cycles(mam; *) which is the minimum number of unrestricted transpo-
sitions between w1 and 7mo. We choose the generalized Hamming distance to relate our descriptors
because it is much simpler than the Cayley distance to compute. Hamming also lends itself to SIMD
parallel processing unlike Cayley which is inherently serial. However, if time is not a constraint
experimental results show that the Cayley distance should be preferred for accuracy.

Disorder distances are not sensitive to Gaussian noise, but are highly sensitive to impulse noise.
In contrast, Kendall’s tau is confused by Gaussian noise, but is more resilient to impulse noise
[2, 20, 18]. Impulse noise can severely corrupt these permutations since it can cause pixels in a
patch to become maximal or minimal elements changing each element in the permutation vector.
In the presence of moderate impulse noise the Cayley and Hamming distances will likely become
maximal while Kendall’s tau would be at O(1/n) its maximal distance. Generally, modern imaging
devices do not suffer from severe impulse noise, but there are other sources of impulse noise such
as occlusions and partial shadows. LUCID is used with sparse interest points and only individual
image patches would be affected by impulse noise. Since impulse noise would cause the distance to
become maximal these bad matches can be reliably identified via threshold.

Kendall’s tau is normally used in situations where multiple independent judges are ranking sets or
subsets of objects, such as top-k lists, movie preferences or surveys. In these scenarios multiple
judges are asked to rank preferences and the permutation polytope can be used as a discrete analog
to histograms to gain valuable insight into the distribution of the judges’ preferences. In the context
of sparse image patch matching, the imaging sensor ideally acts as a single consistent judge; thus a
single image patch will correspond to one vertex on the permutation polytope. Ideally, for a pair of
corresponding patches in different images the permutations should be identical. Thus in our scenario
the image sensor can be viewed as one judge comparing nearly identical objects. The structure of
the permutation polytope becomes less important in this context.

Since the Cayley and Hamming distances are computed in linear time rather than quadratic time
like Kendall’s tau, they may be better suited for fast image patch matching. In section 3 we present
a proof demonstrating that BRIEF is a locality sensitive hashing scheme on Kendall’s tau metric
between vectors of pixel intensities.

2.3 An efficient implementation

Table 1: Time in milliseconds to construct 10,000 Our choice to use the Hamming distance

descriptors and to exhaustively match 5000x5000 de- 18 inspired by the new Streaming SIMD
scriptors. Extensions (SSE) instructions. SSE is

a simple way to add parallelism to na-
tive programs through vector operations.

Descriptor Dimension Construction Matching & K ;
LOCID-3-Gray o 5 70 In our 1mplem§ntat10n we use a 128-bit
LUCID-16-Gray 256 30 880 packed comparison whlch gives LUCID

BRIEF 256 40 2130 16x matching parallelism for grayscale
LUCID-24-RGB 1728 50 4120  image patches up to 16x16, and 8x par-
SURF 64 450 420 allelism for RGB image patches up to

147x147. Many mobile processors have
these types of instructions, but even when
they are not available it is still possible to gain parallelism. One additional bit per descriptor element
can be reserved allowing the use of binary addition and bit masks to produce a packed Hamming
distance. For descriptor lengths less than 2'°, 16 bits per element are needed. This strategy supports
RGB image patches up to 105x105 pixels and yields 4x parallelism on 64-bit processors. It is also
possible to randomly sample a small subset of pixels before sorting to achieve greater speed. This
operation can be interpreted as randomly projecting the descriptors into a lower dimension.

Order permutations are fast to construct and access memory in sequential order. Since pixel inten-
sities are represented with small positive integers they are ideal candidates for stable linear time
sorting methods like counting and radix sort. These sorting algorithms access memory in linear
order and thus with the fewest number of possible cache misses. BRIEF accesses larger portions of
memory than LUCID in a non-linear fashion and should incur more time consuming cache misses.
Therefore LUCID offers a modest improvement in terms of descriptor construction time as shown
in Table 1.



We investigate three versions of LUCID since they are the first three multiples of eight: LUCID-24-
RGB, LUCID-16-Gray, and LUCID-8-Gray which respectively are LUCID on image patches that
are 24x24 in RGB color, 16x16 grayscale and 8x8 grayscale. Before construction a 5x5 averaging
blur is applied to the entire image to remove noise that may perturb the order permutation. BRIEF
also performs pre-smoothing; Calonder et al. reported that they found a 9x9 blurring kernel to be
“necessary and sufficient” [4].

We compare the running time of LUCID to the OpenCV implementations of SURF and BRIEF with
default parameters on a 2.66GHz Intel® Core® i7.! In Table 1 timing results for SURF, BRIEF
and the variants of LUCID are shown. BRIEF uses 48x48 image patches and produces a descriptor
with 256 dimensions which is equal to the dimension of LUCID-16-Gray. Surprisingly, LUCID-16-
Gray is faster to match than BRIEF; this was not expected since BRIEF has the same complexity
as LUCID to match. This might indicate that there are further optimizations that can be made for
OpenCV'’s implementation.

3 Understanding BRIEF and related methods

In [4] Calonder et al. propose BRIEEF, an efficient binary descriptor. BRIEF is intended to be simple
to compute and match based solely on sparse intensity comparisons. These comparisons provide for
the efficient construction of a compact descriptor. Here we discuss their method as presented in [4].
Define a test 7

1, ifp(x) < p(y)
0, otherwise

T(P;x,y) = { (D
where p is a square image patch and p(x) is the smoothed value of the pixel with the local coor-
dinates x = (u,v)". This test will represent one bit in the final descriptor. To construct a BRIEF
descriptor a set of pre-defined pixel comparisons are performed. This pattern is a set of n4 pixel co-
ordinate pairs (x,y) that should be compared in each image patch. A descriptor is then defined to be
the ng dimensional bitstring f,,(P) := >_1<;<p,, 2'~'7(P; X1, yi). Calonder et al. suggest that in-
tuitively these pairwise intensity comparisons capture the signs of intensity gradients. However, this
is not precise and in the next section we prove that the reason BRIEF works is that it inadvertently
approximates Kendall’s tau.

3.1 BRIEF is LSH on Kendall’s Tau

Consider a version of BRIEF where the pixel sampling pattern consists of all (’g) pairs of pixels.

Then the Hamming distance between two of these BRIEF descriptors is equivalent to the Kendall’s
tau distance between the pixel intensities of the vectorized image patches. The original formulation
of BRIEF is LSH on the normalized Kendall’s tau correlation metric.

Proof. Let p1,p2 be m dimensional vectorized image patches. Define By(i,j) := I(px(Z) < pk(j))
where [ is the indicator function. For image patches containing m pixels, BRIEF chooses a pattern of
pairs P C {(4,5)|1 < i < j < m}, and for two vectorized image patches p1, pz2, it returns the score
>ipep 1(B1(i,§) # Ba(i, ). When P = {(,j)[1 < i < j < m}, this is precisely Ka(p1, p2). It can
be shown that BRIEF satisfies the definition of LSH as defined in [6], consider a random pair (4, j) with ¢ < j.
Then

P[Bi(i,) # Ba(i, )] = 3 (Tl)uBl(z",j’) # Ba(i',§')) = Kay (p1, pa).

if<jl \2

3.2 The DAG of Possible Comparisons

The motivation behind BRIEF was to create a compact descriptor that could take advantage of SSE.
This was in part inspired by hashing schemes that produced binary descriptors related by the Ham-
ming distance [4]. However, these schemes require first constructing a large descriptor and then

"We used a stable release of OpenCV, version 2.4.3. OpenCV is open source and all versions are publicly
available at http://opencv.willowgarage.com.



sampling from it. BRIEF is more efficient than these methods because it skips the step of construct-
ing the large descriptor. BRIEF is essentially a short cut and instead it immediately performs LSH.
To our knowledge, the fact that BRIEF itself is an LSH scheme has not been previously discussed
in the literature.

In this instance the large descriptor would be the set of all possible pairwise pixel intensity compar-
isons in a patch, which has an impractical (g‘) = O(m?) dimension. This set of comparisons can
be modelled as a directed acyclic graph (DAG) with m nodes, one for each pixel in the vectorized
image patch, and (”21) edges. In this model, there exists a directed edge (i, j) connecting the node
that correspond to the pixel with index ¢ to the one with index j in the vectorized image patch if

p(i) < p(j) where p is the m dimensional vectorized image patch and i # j.

The topological sort of this DAG produces a unique Hamiltonian path from the sole source node to
the sole sink node. The order in which the nodes are visited on this path is equivalent to the order
permutation produced by a stable sort of the pixel intensities. Since this path is unique the order
permutation implicitly captures all O(m?) possible comparisons in O(m) space. This is possible
because of the transitive property of the binary comparison and the stable order in which pixels are
sorted. This is how LUCID captures all the comparative information in a patch.

In [4] Calonder et al. explored several different types of pixel sampling patterns and concluded that
random sampling works the best in practice. This makes sense since BRIEF can be interpreted as
randomly sampling edges from the DAG. Random sampling will eventually converge to a complete
representation of the DAG through the transitive property. BRIEF can alternatively be viewed as a
random projection of the adjacency matrix of the DAG.

Several variants and extensions of BRIEF have been proposed where different patterns as well as
rotation and scale normalization are considered [12, 14, 19]. It follows from the proof in section 3.1
and the DAG model that these methods are dimensionality reduction schemes on Kendall’s tau.

4 Experiments

Table 2: Recognition Rates. The FAST (FKD) and SURF (SKD) keypoint detectors are used to
find the top 500 of 1500 keypoints in the first image for each pair. Ground truth homographies are
used to warp the keypoints into the other images. The ratio of correct matches for each descriptor to
the total number of ground truth matches is defined to be the recognition rate. For each image pair
and keypoint detector the highest and second highest recognition rates are bolded with the second
highest rate prefixed by an asterisk.

Image Pair LUCID-24-RGB LUCID-16-Gray LUCID-8-Gray BRIEF SURF

— FKD SKD | FKD SKD | FKD SKD | FKD SKD | EKD SKD
Bikes 12 | 094 092 | *0.90 083 | 0.79 054 | *0.90 *0.90 | 023 0.75

Bikes 14 | *0.65 *0.61 | 0.50 046 | 026 022 | 0.81 084 | 0.04 0.59
Bikes 1/6 | *0.19 022 | 0.13 0.1 | 007 006 | 073 0.75 | 001 *0.39
Wall 112 | *0.54 047 | 038 032 | 021 012 | 087 082 | 0.17 *0.56
Wall 1]4 | *0.16 0.15 | 0.12  0.10 | 0.08 006 | 0.64 0.64 | 0.11 *0.32
Wall 1|6 | *0.04 003 | 003 002 | 002 002 | 0.17 017 | 0.03 *0.09
Light 12 | 0.86 *0.89 | 090 091 | 087 0.73 | 060 083 | 048 081

Light 1]4 | *0.71 075 | 0.82 *0.76 | 062 055 | 060 079 | 041 071

Light 16 | 0.56 057 | 0.61 058 | 044 036 | *0.59 078 | 032 *0.65
Trees 12 | *0.44 %037 | 034 025 | 0.17 0.4 | 079 0.69 | 0.10 0.36
Trees 1]4 | *0.20  0.10 | 0.11  0.03 | 005 002 | 0.67 042 | 000 *0.16
Trees 1/6 | 0.09 006 | 005 003 | 003 002 | 063 042 | 000 *0.07
Jpeg 112 | 095 099 | *0.97 099 | 0.99 094 | 080 *0.92 | 077 *0.95
Jpeg1]4 | *0.88 0.89 | 094 093 | 086 071 | 0.80 *0.92 | 048 0.89
Jpeg 116 | *0.37 039 | 037 035 | 024 0.14 | 079 090 | 0.10 *0.61

We use a subset of the commonly used benchmarking dataset used in [17].> Our subset consists
of the image pairs that do not undergo extreme affine warping since neither BRIEF nor LUCID

>The dataset is available for download at http://www.robots.ox.ac.uk/~vgg/research/
affine/
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Figure 3: Recognition rates for LUCID-*-RGB on the bikes 1|4 and light 1|4 image pairs. The rates
are plotted as a function of the width of the descriptor patch and of the blur kernel applied. The best
100 of 300 FAST keypoints were detected in the first image of each pair. We found a blur width of
5 rarely hurts performance and often helps. Performance increases monotonically with patch size
with diminishing returns after 30x30.

account for these transformations. These image pairs are denoted by name 1|k, where k represents
the second image used in the pair, e.g. bikes 1|k indicates the pair consisting of the first image of
the bikes set to the fifth. In each experiment we detect a large number of keypoints in the first image
of a set and select the top NV keypoints sorted by response. For each pair of images the keypoints
are warped into the second image using a ground truth homography. Points that are warped out of
bounds are culled before describing the points with each descriptor. Exhaustive nearest neighbor
search is used to bring the points into correspondence. The recognition rate is then recorded as the
ratio of correct matches to the number of ground truth matches.

In Table 2 we summarize the result of our comparison to BRIEF and SURF. BRIEF and LUCID
perform well in most instances, though BRIEF degrades more slowly with respect to image trans-
formations. This robustness can be attributed to the fact that BRIEF sparsely samples pixels. Most
of the images are taken parallel to the horizon so orientation estimation does not help and in fact
degrades SURF’s performance relative to BRIEF and LUCID. LUCID performs the best on the light
set which undergo exposure changes. This makes sense since the order permutation is invariant to
monotonic intensity transformations and unlike BRIEF captures all the comparative information.

1.0

4.1 Parameter selection e
LUCID has three parameters, blur kernel width, image oallF ]
patch size, and the option to use color or grayscale im- i :
ages. Figure 3 gives plots of recognition rate as a func-
tion of blur kernel width and patch size for the medium £ ]
difficulty warps of two different image sets. These plots ¢
indicate that LUCID performs well with a 5x5 averaging 3
blur kernel, and that larger patches help with diminishing ;, ol b i
returns. Though not shown here, we find that using color = S [—————
improves recognition performance with an expected slow P | e wopedory |
down. o2l i i | wcpiscray [
: : = Cayley-24-Gray
: : *—* BRIEF
4.2 Distance distributions P [ee suer

0'%.0 D:l 0:2 D.‘3 70.‘4 0.‘5 0.‘6 0.‘7
Here we examine the discriminative capability of three false positive rate
distances, the Cayley distance, the generalized Hamming
distance and Kendall’s tau on pixel intensities. The Ham-

ming distance represents LUCID which approximates the

Figure 2: ROC curves for descriptors on
image pair bikes 1|4 for 200 keypoints.
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Figure 4: Histograms of distances for correct matches and impostors for the bikes 1|4 image pair.
The plots show the Cayley, the Hamming distance on the order permutations, and Kendall’s tau on
pixel intensities. These plots present a good separation of correct matches and impostors. Kendall’s
tau requires O(m?) time to compute while the Cayley and Hamming distances run in O(m) time
making them efficient alternatives. The Hamming distance is embarrassingly parallel and lends itself
well to existing SSE instructions making it the most efficient distance.

Cayley distance. In Figure 4 we plot the distance distributions for correct matches and impostors,
focusing on the medium difficulty warp of the bikes images. We chose this image set because bikes
is a natural man-made scene and its distributions are representative for the other image sets. An
ROC curve is shown in Figure 2 to visualize these results in a different way as well as for SURF and
BRIEF. BRIEF does particularly well on this image pair because the only transformation that occurs
is blur. Interestingly, BRIEF outperforms Kendall’s Tau and the other methods that use all the pixels.
BRIEF is in essence random projection dimensionality reduction for Kendall’s tau. This indicates
that random projections may improve the performance of the Cayley and Hamming distances as
well. It is important to note that Kendall’s tau is inefficient to compute with quadratic running time
contrasted with the linear running time of the Cayley and generalized Hamming distances.

5 Conclusions and future work

In this work we have presented an analysis of BRIEF and related methods providing a theoretical
basis as to how and why they work. We introduced a new simple and effective image descriptor that
performs comparably to SURF and BRIEF. For our comparison and simplicity we made use of every
pixel in an image patch. However, given BRIEF’s superior performance to Kendall’s tau we plan to
explore sampling patterns of pixels and other dimensionality reduction techniques. In addition, we
plan to incorporate scale and rotation normalization as in [12] and [19]. This will allow an in depth
comparison of our method to descriptors like SIFT and SURF.

LUCID offers a new simplified approach for efficient feature construction and matching. We plan
to investigate approximate nearest neighbor approaches like LSH and metric trees to improve the
speed of matching. It would also be useful to find a binary representation of LUCID to allow for a
more compact descriptor and use of existing LSH schemes. It is already possible to obtain such a
representation for LUCID through a method like WTAHash [23]. WTAHash produces an embedding
for ordinal feature spaces such that transformed feature vectors are in binary form and the Hamming
distance between them closely approximates the original metric.

Finally, we hope that this new understanding of BRIEF and other binary descriptors will allow for
the creation of new efficient visual feature descriptors. Spending less time processing visual features
provides more CPU time for core functionality and application complexity enabling new real-time
applications.
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