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Abstract 

We present a novel approach to measuring similar- 
ity between shapes and exploit it for object recogni- 
tion. In our framework, the measurement of similar- 
ity is preceded by ( I )  solving for correspondences be- 
tween points on the two shapes, ( 2 )  using the correspon- 
dences to estimate an aligning transform. In order to 
solve the correspondence problem, we attach a descrip- 
to< the shape context, to each point. The shape con- 
text at a reference point captures the distribution of the 
remaining points relative to it, thus. offering a globally 
discriminative characterization. Corresponding points 
on two similar shapes will have similar shape contexts, 
enabling us to solve for correspondences as an optimal 
assignment problem. Given the point correspondences, 
we estimate the transformation that best aligns the two 
shapes; regularized thin-plate splines provide a Pexi- 
ble class of transformation maps for this purpose. Dis- 
similarity between two shapes is computed as a sum of 
matching errors between corresponding points, together 
with a term measuring the magnitude of the aligning 
transform. We treat recognition in a nearest-neighbor 
clussijication framework. Results are presented for sil- 
houettes, trademarks, handwritten digits and the COIL 
dataset. 

1 Introduction 

Consider the two 5’s in Figure 1. Regarded as vec- 
tors of pixel brightness values and compared using L2 

norms, they are very different. However, regarded as 
shapes they appear rather similar to a human observer. 
Our objective in this paper is to operationalize a notion 
of shape similarity, with the ultimate goal of using that 
as a basis for category-level recognition. We approa-h 
this as a three stage process: (1) solve the correspon- 

dence problem between the two shapes, (2) use the cor- 
respondences to estimate an aligning transform, and (3) 
compute the distance between the two shapes as a sum of 
matching errors between corresponding points, together 
with a term measuring the magnitude of the aligning 
transformation. 

We wish to solve the problem in considerable gener- 
ality. Shapes are arbitrary 2D figures, e.g. derived from 
edges extracted in images of 3D objects, not just silhou- 
ettes. The family of aligning transforms include affine as 
well as non-rigid smooth transformations, parametrized 
using thin plate splines. Matching errors between cor- 
responding points are computed using both shape and 
local appearance differences. 

At the heart of our approach is a tradition of match- 
ing shapes by deformation that can be traced at least 
as far back as D’Arcy Thompson. In his classic work 
On Growth and Form [27], Thompson observed that re- 
lated but not identical shapes can often be deformed into 
alignment using simple coordinate transformations. Fis- 
chler and Elschlager [9] operationalized this approach 
using energy minimization in a mass-spring model. 
Grenander et al. [13] developed these ideas in a prob- 
abilistic setting. Yuille’s [3 13 version of the deformable 
template concept fitted hand-crafted parametrized mod- 
els, e.g. for eyes, in the image domain using gradient 
descent. Von der Malsburg and collaborators [ 191 used 
elastic graph matching for aligning faces. 

Our primary contribution is a simple and robust al- 
gorithm for finding correspondences between shapes. 
Shapes are represented by a set of points sampled from 
the shape contours (typically 100 or so pixel locations 
sampled from the output of an edge detector are used). 
There is nothing special about the points. They are not 
required to be landmarks or curvature extrema, etc.; as 
we use more samples we obtain ever better approxima- 
tions to the underlying shape. We introduce a shape de- 
scriptor, the shape context, to describe the coarse distri- 
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Figure 1. Examples of two handwritten digits. 

bution of the rest of the shape with respect to a point on 
the shape. Finding correspondences between two shapes 
is then equivalent to finding for each sample point on 
one shape the sample point on the other shape that has 
the most similar shape context. Maximizing similarities 
and enforcing uniqueness naturally leads to a setup as a 
bipartite graph matching (equivalently, optimal assign- 
ment) problem. As desired, we can incorporate other 
sources of matching information readily, e.g. similarity 
of local appearance at corresponding points. 

Given the correspondences at sample points, we ex- 
tend the correspondence to the complete shape by esti- 
mating an aligning transformation that maps one shape 
onto the other. The transformations can be picked from 
any of a number of families - we have used Euclidean, 
affine and regularized thin plate splines in various appli- 
cations. Once the shapes are aligned, computing sim- 
ilarity scores and recognition by k-NN classification is 
relatively straightforward. 

We demonstrate object recognition in a wide variety 
of settings. We deal with 2D objects, e.g. the MNIST 
dataset of handwritten digits (Fig. 5 ) ,  silhouettes, and 
trademarks (Fig. 7), as well as 3D objects from the 
Columbia COIL dataset, modeled using multiple views 
(Fig. 6). These are widely used benchmarks and our ap- 
proach turns out to be the leading performer on all the 
problems for which there is comparative data. 

The structure of this paper is as follows. We discuss 
related work in Section 2. In Section 3 we then describe 
our shape matching method in detail. Our transforma- 
tion model is discussed in Section 4. We then discuss 
the problem of measuring shape similarity in Section 5 
and demonstrate our proposed measure on a variety of 
databases including handwritten digits and pictures of 
3D objects. Finally, we conclude in Section 6. 

2 Prior Work on Shape Matching 

An extensive survey of shape matching in computer 
vision can be found in [28]. Broadly speaking, there are 
two approaches: ( I )  feature-based, and (2) brightness- 
based. 

Feature-based approaches involve the use of spatial 
arrangements of extracted features such as edges or 
junctions. Silhouettes have been described (and com- 

pared) using Fourier descriptors, e.g. [32]. skeletons de- 
rived using Blum's medial axis transform [26], or di- 
rectly matched using dynamic programming e.g. [ 1 I]. 
Since silhouettes are limited as shape descriptors for 
general objects', other approaches[ 14, 101 treat the 
shape as a set of points in the 2D image, extracted us- 
ing, say, an edge detector. Amit and Geman [ l ]  find 
key points or landmarks, and recognize objects using the 
spatial arrangements of point sets. However not all ob- 
jects have distinguished key points (think of a circle for 
instance), and using key points alone sacrifices the shape 
information available in smooth portions of object con- 
tours. Most closely related to our approach is the work 
of Rangarajan and collaborators [12, 71, which is dis- 
cussed in Section 3.2. 

Brightness-based approaches make more direct use 
of pixel brightness values. Several approaches[ 19,29,8] 
first attempt to find correspondences between the two 
images, before doing the comparison. This turns out 
to be quite a challenge as differential optical flow tech- 
niques do not cope well with the large distortions that 
must be handled due to posehllumination variations. Er- 
rors in finding correspondence will cause downstream 
processing errors in the recognition stage. As an alter- 
native, there are a number of methods that build clas- 
sifiers without explicitly finding correspondences. In 
such approaches, one relies on a learning algorithm hav- 
ing enough examples to acquire the appropriate invari- 
ances. Some examples include [21, 61 for handwritten 
digit recognition, [22] for face recognition, and isolated 
3D object recognition [24]. 

3 Matching with Shape Contexts 

In our approach, a shape is represented by a discrete 
set of points sampled from the internal or external con- 
tours on the shape. These can be obtained as locations 
of edge pixels as found by an edge detector, giving us a 
set P = { P I , .  , . ,p,}, p i  E Et2, of n points. They need 
not, and typically will not, correspond to key-points such 
as maxima of curvature or inflection points. We pre- 
fer to sample the shape with roughly uniform spacing, 
though this is also not critical. Fig. 2(a,b) shows sample 
points for two shapes. Assuming contours are piecewise 
smooth, we can obtain as good an approximation to the 
underlying continuous shapes as desired by picking n to 
be sufficiently large. 

For each point pi on the first shape, we want to find 
the "best" matching point qj on the second shape. This 

'They ignore internal contours and are difficult to extract from real 
images . 
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maining n - 1 points, 

hi(k> = # ( 4  # pi : ( q  - p i )  E bin(k)} . (1)  

i _- I 
R . 

Figure 2. Shape context computation and matching. (a,b) Sampled 
edge points of two shapes. (c) Diagram of log-polar histogram bins 
used in computing the shape contexts. We use 5 bins for log I‘ and 12 
bins for 0. (d-f) Example shape contexts for reference samples marked 
by 0, 0, a in (a,b). Each shape context is a log-polar histogram of the 
coordinates of the rest of the point set measured using the reference 
point as the origin. (Dark=large value.) Note the visual similarity of 
the shape contexts for o and 0, which were computed for relatively 
similar points on the two shapes. By contrast, the shape context for a 
is quite different. (g) Correspondences found using bipartite matching, 
with costs defined by the x2 distance between histograms. 

is a correspondence problem similar t o  that in stereopsis. 
Experience there suggests that matching is easier if one 
uses a rich local descriptor, e.g. a gray scale window or 
a vector of filter outputs, instead of just the brightness at 
a single pixel or edge location. Rich descriptors reduce 
the ambiguity in matching. 

As a key contribution we propose a descriptor, the 
shape context, that could play such a role in shape 
matching. Consider the set of vectors originating from a 
point to all other sample points on a shape. These vec- 
tors express the configuration of the entire shape rela- 
tive to the reference point. Obviously, this set of n - 1 
vectors is a rich description, since as n gets large, the 
representation of the shape becomes exact. 

The full set of vectors as a shape descriptor is much 
too detailed since shapes and their sampled representa- 
tion may vary from one instance to another in a cate- 
gory. We identify the distribution over relative positions 
as a more robust and compact, yet highly discriminative 
descriptor. For a point pi on the shape, we compute a 
coarse histogram hi of the relative coordinates of the re- 

This histogram is defined to be the shape context of p i .  
The descriptor should be more sensitive to differences 
in nearby pixels. We thus propose to use a log-polar 
coordinate system. An example is shown in Fig. 2(c). 

Consider a point pi on the first shape and a point q j  
on the second shape. Let Cij = C ( p i , q j )  denote the 
cost of matching these two points. As shape contexts 
are distributions represented as histograms, it is natural2 
to use the x2 test statistic: 

where h i ( k )  and h j ( k )  denote the K-bin normalized 
histogram at pi and q j ,  respectively. 

Given the set of costs Cij between all pairs of points 
i on the first shape and j on the second shape we want to 
minimize the total cost of matching subject to the con- 
straint that the matching be one-to-one. This is an in- 
stance of the square assignment (or weighted bipartite 
matching) problem, which can be solved in O ( N 3 )  time 
using the Hungarian method. In our experiments, we use 
the more efficient algorithm of [ 171. The input to the as- 
signment problem is a square cost matrix with entries 
Cij. The result is a permutation ~ ( i )  such that the sum 
Ci Ci,T(i) is minimized. 

When the number of samples on two shapes is not 
equal, the cost matrix can be made square by adding 
“dummy” nodes to each point set with a constant match- 
ing cost of ed .  The same technique may also be used 
even when the sample numbers are equal to allow for 
robust handling of outliers. In this case, a point will be 
matched to a “dummy” whenever there is no real match 
available a t  smaller cost than Ed. Thus, Ed can be re- 
garded as a threshold parameter for outlier detection. 

The cost Cij for matching points can include, an ad- 
ditional term based on the local appearance siniilurify 
at points pi  and q j .  This is particularly useful when 
we are comparing shapes derived from gray-level im- 
ages instead of line drawings. For example, one can add 
a cost based on color or texture similarity, SSD between 
small gray-scale patches, distance between vectors of fil- 
ter outputs, similarity of tangent angles, and so on. 

'Alternatives include Bickel’s generalization of the Kolmogorov- 
Smimov test for 2D distributions [4], which does not require binning. 
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3.1 Invariance and Robustness 

A matching approach should be ( 1 )  invariant under 
scaling and translation, and (2) robust under small affine 
transformations, occlusion and presence of outliers. In 
certain applications, one may want complete invariance 
under rotation, or perhaps even the full group of affine 
transformations. We now evaluate shape context match- 
ing by these criteria. 

Invariance to translation is intrinsic to the shape con- 
text definition since all measurements are taken with re- 
spect to points on the object. To achieve scale invariance 
we normalize all radial distances by the mean distance 
a between the n2 point pairs in the shape. 

Since shape contexts are extremely rich descriptors, 
they are inherently insensitive to small perturbations of 
parts of the shape. While we have no theoretical guar- 
antees here, robustness to small affine transformations, 
occlusions and presence of outliers is evaluated experi- 
mentally in Sect. 4.1. 

In the shape context framework, we can provide for 
complete rotation invariance if this is desirable for an ap- 
plication. Instead of using the absolute frame for com- 
puting the shape context at each point, one can use the 
tangent vector at each point as the positive z-axis. In 
this way the reference frame turns with the tangent an- 
gle, and the result is a completely rotation invariant de- 
scriptor. In the extended version of this paper [3] we 
demonstrate this experimentally using the dataset from 
Kimia and collaborators[26]. 

3.2 Related work 

The most comprehensive body of work on shape 
correspondence in this general setting is the work of 
Rangarajan and collaborators [ 12, 71. They developed 
an iterative optimization algorithm to determine point 
correspondences and underlying image transformations 
jointly, where typically some generic transformation 
class is assumed, e.g. affine or thin plate splines. The 
cost function that is being minimized is the sum of Eu- 
clidean distances between a point on the transformed 
first shape and the second shape. This sets up a chicken- 
and-egg problem: the distances make sense only when 
there is at least a rough alignment of shape. Joint estima- 
tion of correspondences and shape transformation leads 
to a difficult, highly non-convex optimization problem, 
which is addressed using deterministic annealing [ 121. 
The shape context is a very discriminative point descrip- 
tor, facilitating easy and robust correspondence recovery 

by incorporating global shape information into a local 
descriptor. 

As far as we are aware of, the shape context descrip- 
tor and its use for matching 2D shapes is novel. The 
most closely related idea in past work is that due to John- 
son and Hebert [ 161 in their work on range images. They 
introduced a representation for matching dense clouds of 
oriented 3D points called the “spin image”. A spin im- 
age is a 2D histogram formed by spinning a plane around 
a normal vector on the surface of the object and counting 
the points that fall inside bins in the plane. 

4 Modeling Transformations 

Given a set of correspondences between two shapes, 
one can proceed to estimate a transformation that maps 
the model into the target. For this purpose there are sev- 
eral options; perhaps most common is the affine model. 
In this work, we use the thin plate spline (TPS) model, 
which is commonly used for representing flexible co- 
ordinate transformations [30, 251. Bookstein [ 5 ] ,  for 
example, found it to be highly effective for modeling 
changes in biological forms. The thin plate spline is the 
2D generalization of the cubic spline. In its regularized 
form, which is discussed below, the TPS model includes 
the affine model as a special case. We will now provide 
some background information on  the TPS model. 

Let vi denote the target function values at corre- 
sponding locations pi = (zi,yi) in the plane, with 
i = 1 , 2 , .  . . ,n. In particular, we will set vi equal 
to xi and y: in turn to obtain one continuous transfor- 
mation for each coordinate. We assume that the loca- 
tions ( x i ,  yi) are all different and are not collinear. The 
TPS interpolant f(z, y) minimizes the bending energy 
If = JJ fZ5 + 2fZy + fiydxdy and has the form: 

f ( z , y )  = a1 +azz + a,y 
n 

i=l  

where U ( r )  = r2 logr. In order for f(x, y) to have 
square integrable second derivatives, we require that 
n n n 

i=l  i=l i=l 

Together with the interpolation conditions, f(xi, yi) = 
vi, this yields a linear system for the TPS coefficients: 
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Figure 3. Illustration of the matching process applied to the example 
of Fig. 1. Top row: 1st iteration. Bottom row: 5th iteration. Left col- 
umn: estimated correspondences shown relative to transformed model, 
with tangent vectors shown. Middle column: estimated correspon- 
dences shown relative to untransformed model. Right column: result 
of transforming the model based on the current correspondences; this 
is the input to the next iteration. The grid points illustrate the interpo- 
lated transformation over R2. Here we have used a regularized TPS 
model with A, = 1. 

where Kij = U(11(xi, yi) - (zj, yj)((), the i th row of P 
is (1, x i ,  yi), w and v are column vectors formed from 
wi and vi, respectively, and a is the column vector with 
elements a l ,  a,, ay .  We will denote the (n+3) x ( n + 3 )  
matrix of this system by L. As discussed e.g. in [25], L 
is nonsingular and we can find the solution by inverting 
L. If we denote the upper left n x n block of L-’ by A, 
then it can be shown that I f  c( wTAv = wTKw.  

When there is noise in the specified values vi, one 
may wish to relax the exact interpolation requirement by 
means of regularization. This is accomplished by mini- 
mizing H [ f ]  = Cy=, (vi - f(zi, ~ i ) ) ~  + XI,. The reg- 
ularization parameter A, a positive scalar, controls the 
amount of smoothing; the limiting case of X = 0 reduces 
to exact interpolation. As demonstrated in [30], we can 
solve for the TPS coefficients in the regularized case by 
replacing the matrix K by K + X I ,  where I is the n x n 
identity matrix. It is interesting to note that the highly 
regularized TPS model degenerates to the least-squares 
affine model. 

To address the dependence of X on the data scale, 
suppose (xi, yi) and (x:, y:) are replaced by (crzi, a y i )  
and (ax;, cry:), respectively, for some positive constant 
0. Then it can be shown that the parameters w,  a ,  I ,  
of the optimal thin plate spline are unaffected if X is re- 
placed by a2X. This simple scaling behavior suggests 
a normalized definition of the regularization parameter. 
Let cr again represent the scale of the point set as esti- 
mated by the mean edge length between two points in 
the set. Then we can define X in terms of cr and A,, a 

scale-independent regularization parameter, via the sim- 
ple relation X = a2X,. 

The complete matching algorithm is obtained by al- 
ternating between the steps of recovering correspon- 
dences and estimating transformations (see Fig. 3). 
We usually employ a fixed number of iterations, typi- 
cally three in large scale experiments, but more refined 
schemes are possible. On a regular Pentium I11 500 MHz 
workstation this process takes roughly 20Oms when the 
shapes have 100 sample points each. 

4.1 Empirical Robustness Evaluation 

In order to study the robustness of our proposed 
method, we performed the synthetic point set matching 
experiments described in [7]. The experiments are bro- 
ken into three parts designed to measure robustness to 
deformation, noise, and outliers. (The latter tests each 
include a “moderate” amount of deformation.) In each 
test, we subjected the model point set to one of the above 
distortions to create a “target” point set. We then ran our 
algorithm to find the best warping between the model 
and the target. Finally, the performance is quantified by 
computing the average distance between the coordinates 
of the warped model and those of the target. The results 
are shown in Fig. 4. More details of the experiments 
may be found in [2]. 

5 Shape Similarity and Recognition 

We define the shape distance D ( P , Q )  between 
shapes P and Q as a weighted sum of three terms: shape 
context distance, image appearance distance and bend- 
ing energy. We will demonstrate the use of this dis- 
tance for recognition in a nearest-neighbor classifier for 
a number of different object recognition problems. 

We measure shape context distance between shapes 
P and Q as the symmetric sum of shape con- 
text matching costs over best matching points, i.e. 

argminpGp C (p ,T  ( 9 ) )  where T(.)  denotes 
the estimated TPS shape transformation. 

Often there is additional appearance information 
available that is not captured by our notion of shape, 
e.g. local image patches, textural information, color, etc. 
As a key benefit of the shape matching framework, the 
distorted image can be warped back into a normal form 
after recovery of the underlying 2D image transforma- 
tion, thus correcting for distortions of the image appear- 
ance. We used a .term Dac ( P ,  ‘2) for appearance cost 

Dsc ( P ,  e> = $ Cp,Ep argmin,€Q c ( P ,  T (4)) + 
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Figure 4. Empirical robustness evaluation, following [7]. Two 
model pointsets are shown in the first column of rows 1 and 2. 
Columns 2-4 show examples of point sets for the deformation, noise, 
and outlier tests. Row 3 shows error as a function of the deformation, 
noise, or outlier to data ratio for our method (O), [7]'s method (*) and 
iterated closest point ( 0 )  for the fish shape in row 1 .  Row 4 shows the 
results for the Chinese character in row 2. The error bars indicate the 
std. dev. of the error over 100 random trials. 

which is the sum of squared differences in Gaussian win- 
dows around corresponding points. 

The third term corresponds to the 'amount' of trans- 
formation necessary to align the shapes. In the TPS case 
the bending energy Dbe ( P ,  e) = w T K w  is a natural 
measure. 

5.1 Digit Recognition 

We begin with results on the well-known MNIST 
dataset of handwritten digits, which consists of 60,000 
training and 10,000 test digits[21]. Matching used 100 
point samples selected from the Canny edges of each 
digit image. We employed a TPS transformation model 
and used 3 iterations of shape context matching and TPS 
re-estimation. We used a nearest neighbor classifier with 
D ( P ,  e) as defined above. 

Nearest neighbor classifiers have the property that as 
the number of examples n in the training set -+ CO, 

the I-NN error converges to a value _< 2E*, where E* 
is the Bayes Risk (for k-NN, by making k -+ CO and 
k/n, -+ 0, the error + E*). However, what matters in  
practice is the performance for small n, and this gives us 

Figure 5 .  Handwritten digit recognition on the MNISTdataset. Left: 
Test set errors of a I-NN classifier using SSD and Shape Distance (SD) 
measures. Right: Detail of performance curve for Shape Distance, 
including results with training set sizes of 15,000 and 20,000. Results 
are shown on a semilog-i scale for K = 1,3,5 nearest neighbors. 

a way to compare different similarity/distance measures. 
In Fig. 5, our shape distance is compared to SSD (sum 
of squared differences between pixel brightness values 
of images regarded as vectors). 

On the MNIST dataset nearly 30 algorithms 
have been compared (http:Nwww.research.att.com/ 
-yann/exdb/mnist/index.html). The lowest test set error 
rate published at this time is 0.7% for a boosted LeNet-4 
with a training set of size 60,000 x 10 synthetic dis- 
tortions per training digit. Our error rate using 20,000 
training examples and 3-NN is 0.63%. 

5.2 MPEG-7 Shape Silhouette Database 

Our next experiment involves the MPEG-7 shape 
silhouette database, specifically Core Experiment CE- 
Shape-I part B, which measures performance of 
similarity-based retrieval [ 151. The database consists of 
1400 images: 70 shape categories, 20 images per cate- 
gory. The performance is measured using the so-called 
"bullseye test," in which each image is used as a query 
and one counts the number of correct images in the top 
40 matches. 

As this experiment involves intricate shapes we in- 
creased the number of samples from 100 to 300. In 
some categories the shapes appear rotated and flipped, 
which we address using a modified distance function. 
The distance dist(R, Q) between a reference shape R 
and a query shape Q is defined as 

dist(Q, R)  = min{dist(Q, R"), dist(Q, Rb),  dist(Q, R")} 

where R", R b  and R" denote three versions of R: un- 
changed, vertically flipped, and horizontally flipped. 

With these changes in place but otherwise using the 
same approach as in the MNIST digit experiments, we 
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obtain a retrieval rate of 76.5 1 %. Currently the best pub- 
lished performance is achieved by Latecki et al. [20], 
with a retrieval rate of 76.45%, followed by Mokhtarian 
et al. [23] at 75.44%. 

5.3 Columbia COIL-20 Database 

Our next experiment involves the 20 common house- 
hold objects from the COIL-20 database [24]. Each ob- 
ject was placed on a turntable and photographed every 
5’ for a total of 72 views per object. We prepared our 
training sets by selecting a number of equally spaced 
views for each object and using the remaining views for 
testing. The matching algorithm and shape distance are 
exactly the same as for digits. 

Fig. 6(a) shows the performance of a 1-NN classi- 
fier using our shape distance as well as SSD (sum of 
squared differences). SSD performs very well on this 
easy database due to the lack of variation in lighting [ 141 
(PCA just makes it faster). 

In a companion paper [2] we recently developed a 
novel editing algorithm based on shape context similar- 
ity and k-medoid clustering. The editing algorithm is il- 
lustrated in Fig. 6(b). More views are chosen for visually 
complex categories. This idea is related to the “aspect” 
concept as discussed in [ 181. The curve marked SC- 
proto in Fig. 6(a) shows the improved classification per- 
formance using this prototype selection strategy instead 
of equally-spaced views. Note that we obtain a 2.4% er- 
ror rate with an average of only 4 two-dimensional views 
for each three-dimensional object, thanks to the flexibil- 
ity provided by the matching algorithm. 

5.4 Trademark Retrieval 

The automatic identification of trademark infringe- 
ment is of commercial interest. Currently, trademarks 
are broadly classified according to the Vienna code, 
and infringements are detected by manually looking for 
close perceptual similarity in an appropriate category. 
Shape, together with text and texture, is key in defin- 
ing perceptual similarity. Using our notion of shape dis- 
tance, Fig. 7 depicts nearest neighbor retrieval results 
from a database of 300 trademarks. We experimented 
with eight different query trademarks for each of which 
the database contained at least one potential infringe- 
ment. It is clearly seen that the potential infringements 
are easily detected and appear as most similar on the top 
ranks despite substantial variation of the actual shapes. 
It has been manually verified that no visually similar 
trademark has been missed by the algorithm. 

Figure 6. Left: 3D object recognition using the COIL-20 dataset. 
Comparison of test set error for SSD, Shape Distance (SD), and Shape 
Distance with Ic-medoid prototypes (SD-proto) vs. number of proto- 
type views. For SSD and SD, we varied the number of prototypes 
uniformly for all objects. For SD-proto, the number of prototypes per 
object depended on the within-object variation as well as the between- 
object similarity. Right: K-medoid prototype views for two different 
3D objects, using an average of 4 views per object. With this approach, 
resources are allocated adaptively depending on the visual complexity 
of an object. In this example we observe that the Anacin box requires 
twice as many views as the baby powder bottle. 

6 Conclusion 

We have presented a new approach to the analysis of 
shape. A key characteristic of our approach is the es- 
timation of shape similarity and correspondences based 
on a novel descriptor, the shape context. In our experi- 
ments we have demonstrated excellent performance on 
a wide variety of datasets, both of 2D and 3D objects. 
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