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Abstract

Model order selection and cue combination are both dif-
ficult open problems in the area of clustering. In this work
we build upon stability-based approaches to develop a new
method for automatic model order selection and cue combi-
nation with applications to visual grouping. Novel features
of our approach include the ability to detect multiple sta-
ble clusterings (instead of only one), a simpler means of
calculating stability that does not require training a classi-
fier, and a new characterization of the space of stabilities
for a continuum of segmentations that provides for an effi-
cient sampling scheme. Our contribution is a framework for
visual grouping that frees the user from the hassles of pa-
rameter tuning and model order selection: the input is an
image, the output is a shortlist of segmentations.

1. Introduction

The goal of clustering (or segmentation, or grouping) is
to partition n objects into k groups so as to optimize an
objective function. One way of thinking of the objective
function is that it imposes a ranking on the set of all parti-
tions. While this is a convenient tool for intuition, when k&
is unknown, the size of this set grows exponentially in n.
Compounding the problem is the fact that most clustering
algorithms possess a variety of parameters on the objective
function that weight different features (or cues) of the ob-
jects. In the case of image segmentation, these features in-
clude position, color, texture, motion, and so on. As such,
the problems of choosing k (model order selection) and the
relative parameter weightings (cue combination) are diffi-
cult open problems.

Fortunately, the various domains in which clustering is
applied often enjoy properties that can be leveraged against
the above problems. In this work, our domain of interest
is visual grouping. In this setting, k is often fairly small,
e.g., 20, and the various parameters can be restricted into
narrow valid ranges. Nonetheless, depending on the number

Serge Belongie!

sjbl@cs.ucsd.edu

Joachim M. Buhmann?
jbuhmann@inf.ethz.ch

Institute of Computational Science
ETH Zurich
CH-8050 Zurich, Switzerland

of cues employed and the granularity of their variation, this
can still present substantial problems both in the sense of
computation and of usability.

The present work addresses both of these problems. We
begin with the observation that no single value of & is cor-
rect in general. The literature on model order selection is
perhaps surprisingly focused on selecting one ‘best’ value
of k [2, 13] (and references therein). A similar situation
exists in the scale selection literature [10, 15]. To consider
multiple values of k, we stop short of exhaustively search-
ing the space of parameter values, however, by observing
that this space has structure that allows one to characterize
the space via an efficient sampling scheme. Our contribu-
tion is a framework for visual grouping that frees the user
from the hassles of parameter tuning and model order se-
lection: the input is an image, the output is a shortlist of
segmentations. The formalism we adopt in pursuit of this
framework is a quantification of a stable clustering, corre-
sponding to the intuition that a clustering is good if it is
repeatable in the face of perturbations.

As a preview of this idea, consider the dataset shown in
Figure 1. This stimulus consists of four clumps of points.
For simplicity, we consider two cues: proximity and den-
sity, where the latter is measured by counting the number
of points that fall inside a box centered on each point.! We
show three representative stable clusterings, two for k = 2
and one for £ = 4. Depending on the relative cue weight-
ing, one can obtain two very different stable clusterings for
k = 2. For k = 4, however, there is only one stable clus-
tering. Associated with each case is a range of parameter
values (cue weighting and box width) that lead to the same
result. The myriad other unstable clusterings are not of in-
terest to us. In this work we aim to select only meaningful
clusterings for a given dataset.

The organization of this paper is as follows. In Section
2 we review relevant work on stability based clustering and

I This measure of local density is a simplified instance of a texture de-
scriptor; it generalizes to a local texton histogram [16].
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Figure 1. (a) Original stimulus of four clumps of points with vary-
ing density. Two stable clusterings for k = 2, 4, shown in (c) and
(d), are based on Euclidean distances between points. Stable clus-
tering for £ = 2, based on point density (texture descriptor), is
shown in (b). There are two other trivial stable solutions for &k = 1
and IV, where [V is the cardinality of the set.

suggest a simplification to an existing model that will al-
low for multiple stable solutions and reduce the algorithmic
complexity. In Section 3, we motivate the cue combina-
tion problem in a framework of stability based segmenta-
tion evaluation. We demonstrate the behavior of the pro-
posed approach on images of tissue samples and examples
from the Berkeley Segmentation Database in Section 4. We
conclude in Section 5 with the discussion and future work.

2. Stability Based Clustering

Stability based clustering is a relatively new approach to
model order selection. In late 1980s Jain and Dubes [9]
discussed the validity of a given clustering structure based
on hypothesis testing. The boom of work on finite mix-
ture models in the 1990s gave rise to numerous approaches
based on information theoretic criteria such as MDL, AIC,
and BIC [1]. More recently a class of approaches based on
stability have shown great promise. Our work falls into this
category; we provide a brief review of it next.

2.1. Model Order Selection

The approach of stability based model order selection
(from [13]) is as follows. Given a dataset, the data points
are split into two disjoint subsets .4 and B. Using some
clustering method, cluster A into k& groups. Once the clus-
tering for a given k is found and all the points in A are
labeled, a classifier ¢ is chosen and is trained using the la-
bels from the clustering algorithm. Once the classifier (the

predictor) is trained, the subset B is considered. The data in
B is clustered into k groups and independently labeled us-
ing ¢. Then the labels from the clustering and classification
are compared to determine the stability. Care must be taken
here since the labeling is arbitrary up to a permutation. To
address this, one can perform pairwise comparison between
points (i.e., are the two points in the same group or not) or
find an optimal label permutation, e.g., using the Hungarian
method [11]. Finally, the number of points with the same
label provide a stability measure for that value of k. This
procedure is repeated for a range of k’s.

This approach is well motivated and we adopt it with the
following modifications:
1. Instead of splitting the data in two, cluster the entire
set with a given k. The clustering engine can be a central
method such as k-means if the clusters are spherical, or a
pairwise method such as NCut [5, 25] if not; for generality
assume the data is not spherical and use a pairwise method.
2. Once the data is clustered and the data points labeled, add
noise (proportional to the variance of the data, discussed
in Section 3.2.2) to slightly perturb the pairwise distances.’
Then, perform clustering for the same number of groups and
assign new labels to the data. Such a labeling scheme avoids
the use of a classifier, and reduces the algorithmic complex-
ity. This perturbation is performed many times; here we
re-clustered the data 50 times, yielding 50 different label-
ings for the data points.
3. Given all of the labelings, permute all but one of them to
best match the labeling held constant, an anchor, and com-
pute the stability according to the following definition:

1 n
Sth) = — (ZS—Z> (1)
E \i=1

where s; € [0, 1] indicates the agreement between the labels
over all perturbed restarts for the ith point in the data, the
fraction n/k prevents a bias for a particular value of k, and
n — n/k is the normalization coefficient. Since any given
anchor could be suboptimal, we try all possible anchors and
pick the one that yields highest stability.

3. Visual Cue Combination
3.1. Segmentation Stability with Given Parameters

Unlike the case of point sets, where Euclidean distance
may be used to assess the similarity between data points,
image segmentation is best performed using multiple visual
cues [16, 22, 27]. How to choose which cues to consider
for a given segmentation problem and how to weigh their
importance is unclear. This is known as the cue combina-
tion problem in computer vision. Traditionally, supervised

2One could instead perturb the positions of each data point. See Sec-
tion 3.2.2 for details.
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learning approaches are used to address cue combination
in a given application. Based on labeled data, a classi-
fier is trained to choose the appropriate weighting for each
cue [17, 18]. In other approaches, the combination of cues
is set manually [8]. Since we do not assume human labeled
examples are available, we propose to use the stability based
model order selection approach to identify all possible com-
binations of cues and numbers of groups that lead to a stable
segmentation. The stability calculation process remains un-
changed; however, with every new combination of cues, the
grouping criterion changes.

One possible approach to combining cues is to construct
an affinity matrix using a convex combination:

Wi; = e~ (C1,i5-p+C2,45-(1-p)) )

where p € [0, 1] specifies the cue weighting, Cy and Cs are
the individual dissimilarities for each of the cues, and W is
the overall affinity between points based on both cues. Each
of the dissimilarities C'y, Co and affinity I/ have an internal
scaling parameter, o, that is used to maximally separate the
dissimilar entries and group the similar entries in the matrix.
We discuss the selection of this parameter next.

3.2. o Estimation and Re-Sampling using Non-
Parametric Density Estimates

In this section we estimate the scaling parameter for each
cue individually and propose a re-sampling scheme for data
perturbation. We assume that similarities C;; correspond
to squared Euclidean distances ||x; — x;||? in a suitable
(embedding) space and that we have access to a represen-
tation of the data (one for each cue). If only similarities
between data points are available, a vectorial representation
in RY, d < n — 1, can be obtained given that the simi-
larity matrix fulfills Mercer’s condition, i.e., if we have a
kernel matrix [3]. Then, the application of Kernel Principal
Component Analysis (kPCA) [23] results in an isometric
embedding of the corresponding distances into an n — 1 di-
mensional space (after centering the kernel matrix).

3.2.1 o Estimation

For each cue we obtain a set of n realizations X1, ...,X, €
R? of the random variable X with unknown density (x).
The guiding principle of the stability approach is to require
segmentations to be robust with respect to fluctuations in
the source, i.e., in y(x). If the density were known, this
condition would have been easily checked for by drawing
multiple samples from ~. However, in practice, we do not
have access to 7. Thus, we adopt the following strategy: In-
stead of using the density 7, we construct a non-parametric
density estimate g, the latter being used for the re-sampling
and the subsequent stability assessment.

To obtain a non-parametric estimate of the density 7y(x)
a Parzen window estimator is used. The density is approxi-
mated by a super-position of basis functions, being centered
around the realizations x;, i € {1,...,n} [4, 7, 26]. One
possible choice for the underlying kernel function is a Gaus-
sian kernel: the kernel centered at x; reads

_ .12
L exp<”X Xi”). 3)

hxio () = o ayam 20

The density estimate ¢, is then a super-positon of the indi-
vidual density estimates:

ST RCSESE ) Sy SN S R )

1<i<n

The estimate depends on a smoothness (a.k.a. bandwidth)
parameter, o, whose choice greatly influences the shape
of the density estimate g,. It is well known, that do-
ing (neg. log-) likelihood-cross-validation (asymptotically)
leads to a consistent estimate of ¢ [28]. In essence, one tests
— D xwerl0g ¢ (x®) for different choices of o and a set
of “test” points 7. Finally, a o is picked, for which this test
quantity becomes minimal.

3.2.2 Re-sampling

kx, o(x) is a Gaussian density with variance o2 and the
corresponding density estimate ¢, is a mixture of Gaus-
sians with n modes, each having weight % and the
common variance with d-dimensional covariance matrix
diag(o?,...,0?). This Gaussian mixture is used to sample
“noisy” versions of x;. In particular, we get a noisy version
x; of each original point x; by sampling a substitute from
the Gaussian £y, . Note that, in contrast to the original sta-
bility approach of [13], the point correspondence problem
is automatically resolved in this case, as one can identify X;
sampled from ky, , with x;.

3.3. Just Noticeable Difference

Besides the scaling parameter, some cues have another
internal parameter. For example the density cue has a win-
dow in which the density is computed. The size of this win-
dow, w, is an internal parameter of the density cue (other
cues such as proximity do not have such internal parameters
and simply use the raw coordinates of points to determine
similarity). Varying the values of such internal parameters
has a particular effect on the overall stability of the cluster-
ing. If for example the window size w is changed by a small
fraction to w + ¢, the stability of a given grouping will not
change as texture is captured equally with windows of neg-
ligibly different sizes. This is related to the phenomenon of
the Just Noticeable Difference and Weber’s Law [21]. Slight
variations of the value of w do not result in perceptually
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distinctive textures [12]. Thus, the segmentations produced
with such different values of w will be the same. However,
such a rule does not apply to the variation of number of
groups. If the stability of segmentations with all possible
cue combinations is known for & groups, in general there
can be nothing said about the stability behavior of grouping
with & £+ 1 groups. In the example in Figure 1 there are
stable solutions for k¥ = 2 and k = 4 groups, however, no
clustering with k = 3 is stable.

3.4. All Possible Segmentations for a Set of Cues

As discussed earlier, there may be more than one stable
segmentation of a given image. Segments may be formed
based on different cue combinations and/or model orders.
To identify all parameter settings for which a segmentation
is stable, it is intuitive to consider all possible combinations
of parameter values: different numbers of groups, different
cue weightings, and finally the internal parameters for each
of the cues. Even if we restrict the range of parameters,
e.g., 10 different values for k, 20 values for window size,
and 10 for cue combination, for the example in Figure 1,
there are still 2,000 segmentations to consider; see Figure 2.
Although such a representation of the space of possible seg-
mentations is very thorough and potentially useful, the brute
force computation of these segmentations and stability val-
ues associated with them becomes computationally infea-
sible. Instead, we propose a sampling-based approach for
approximating the space of segmentation stabilities. Since
the behaviors of segmentations for different £’s are decou-
pled, we must sample p and w for every desired k.

To be able to analyze the behavior of the parameters in-
dependently, as was discussed in Section 3.3, the overall sta-
bility of a given segmentation is modeled as a product of sta-
bilities of each individual cue. With A, a matrix of sampled
segmentation stabilities, constructed, we use Non-negative
Matrix Factorization (NMF) to decompose the overall seg-
mentation stability values into segmentation stabilities of
individual cue parameters.>* NMF [14, 20] is a recently in-
troduced method for finding non negative basis functions
(vectors) that represent the data. Using an iterative approach
with non-negativity constaints, a data mixture A is factored
into constituent components S and the weights B for each
component. Repeated iteration of the update rules is only
guaranteed to converge to a locally optimal matrix factoriza-
tion, however, practical applications of NMF indicate suit-
ability of the approach. In its usual form, this decomposi-
tion is an additive one in terms of the learned components.
Here, we set up the problem as multiplicative (this holds
true in the rank-one case) and consider B and S to be the

3In the presence of more than two cues, the use of NMF is generalized
to Non-negative Tensor Factorization (NTF) [24, 30]. Each combination of
parameters for each value of k£ becomes a tensor and is decomposed with
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Figure 2. Slices of the cube of all possible segmentations for the
4 clumps stimulus (shown in Figure 1); the number of groups is
indicated on top of every slice. All the stability values are in the
range of [0, 1]. p is the cue combination coordinate in [0, 1], w
is the window radius, an internal texture parameter, in [1,55]. As
expected, there are stable solutions for a range of cue parameters
when grouping into £ = 2 and k = 4 groups. It is important to
note that although the slices for k = 2 and k = 4 show high stabil-
ity, the slice for £ = 3 is unstable. This underlines the decoupled
behavior of the order in model selection.

two basis functions. In doing the NMF, there is a constraint
on non-negativity, yet there is no upper bound on the indi-
vidual entries of the basis functions. Since the basis func-
tions that we extract correspond to the stability value for
individual cues for a given k, the entries in vectors B and S
must be constrained to [0, 1]. To enforce the bounds on the
values, we introduce an extension to the general NMF.

3.5. Bounded Non-negative Matrix Factorizations

To achieve the desired bounds on the elements of B and
S, the following procedure is based on a rank-1 decom-
position; however, it is possible to achieve rank k decom-
positions of A with k rank-1 consecutive decompositions.
Given A = BS, subjectto 0 < B;; < 1,0 < 53 < 1,
the decomposition is an outer product of B and S assuming
rank(A) = 1. To constrain the upper bound of elements
of B and S, we wish to re-write A = BS in terms of a
function that is restricted on the interval [0, 1]. For example
e Y, if y > 0, is constrained in [0, 1]. Let A’ = —log(A),
B’ = —log(B), 8" = log(9S), thus A’ = B' 4+ S is
an instance of a least squares problem.* In particular, let
V = A'(:) (concatenated), b = [B’(:,1); S'(1,:)], and let

4Since A’ is m x n and both B’ and S’ are vectors, the entries of B’
and S’ are repeated to achieve the m X n dimensions.
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Figure 3. Accuracy of bNMF approximation of the stability matrix A from Figure 1 for k¥ = 4. (a) Original; (b) Rank 1 approximation of
A using bNMF; (c) Error of rank 1 approximation; (d) Two successive rank 1 approximations; (e) Error of rank 2 approximation.
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Fis mn x (m+n), where m and n are the lengths of B and
S (the above example of F' is shown for m = 3 and n = 3).
Thus, A’ = B’ + S’ becomes:

V = Fb (5)

In order to satisfy initial constraint of 0 < B;; < 1,0 <
Si; < 1, this least squares problem must be solved with
the constraint that b; > 0 (1sgnonneg in Matlab). By
performing the above substitutions in reverse, B’ and S’ are
recovered. Finally, we exponentiate A’ = B’ + S’ to obtain
the bounded decomposition into B and S.

e—A, e—B’(:,l)e—S/(l,:) (6)

A = BS 7)

This is Bounded Non-negative Matrix Factorization with a
rank-one constraint.

3.5.1 Projection onto the approximation subspace

Rank 1 approximation of the stability matrix may not be
sufficient to represent the structure of A accurately; a higher
order approximation may be required. Thus, it is necessary
to quantify the performance of such an approximation.

The subspace spanned by the original full rank matrix A
is projected onto the subspace spanned by the eigenvectors
of the approximated matrix (). In the case of rank 1 approx-
imation, A is projected onto a line — ()’s only eigenvec-
tor. More formally, we would like to find a combination of
> ziq; = A, where each column of A is projected onto the
subspace spanned by eigenvectors of (), g;. Let the set of
eigenvectors spanning @)’s subspace be .. In matrix form:

QZ = A (8)
RI(A-Q.2) = 0 9)
QlQ.z = Qla (10)

Z = (QIQ.)'QIA (1

Z is the projection matrix of A onto the eigenspace of Q.
Thus, the projection of A onto @)’s eigenspace is P = Q.2
and the residual of the projection P and original matrix A
is E = A — P. Figure 3 illustrates the rank 1 and rank
2 approximations of the original matrix A, for the stimulus
in Figure 1, and the residuals between A and the approxi-
mations. With a rank 1 approximation the residual error is
31.7%, while the residual error of the rank 2 approximation
is only 4.26%.

3.5.2 Cue interpolation and approximation accuracy

Unlike k, a cue parameter such as point density within a
window is not independent of its “neighbors”. Visual cues
may have a piecewise constant or monotonically changing
behaviors and may be modeled as such. By having only a
few stability values along the discrete interval of values for
a given cue, it is possible to use a simple model to inter-
polate to the rest of the desired values for a particular cue.
Since the actual cue combination is modeled as a convex
combination, the behavior of that “axis” is continuous and
smooth, and was fit using a simple bicubic interpolation.
The behavior of stability as a function of box size for point
density was modeled as piecewise constant. Once the vec-
tors B and S are filled, their outer product fills the entire
space of stability values for all segmentations for a given k.

To measure the quality of such a sampled approximation,
we compare the approximated cube of stabilities to the ac-
tual one, where each stability value is computed according
to our definition of stability. The approximation evaluation
was carried out using the stimulus in Figure 1. As shown in
Figure 4, with less than 20% of all possible combination of
parameters for each £, an approximation of 90% accuracy is
achieved. Accuracy was calculated via the projection pro-
cedure in Section 3.5.1.

3.6. Shortlist of stable segmentations

The set of stability values provides valuable information
about the associated segmentations, but such a representa-
tion still requires manual “sifting” of the stable segmenta-
tions from the ones with low stability. Our aim is to output
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Figure 4. Evaluation of the accuracy of sampling the cube of stabil-
ities to approximate its dense representation. The curve illustrates
the agreement between two dense cubes of stability values, where
the entries in the first cube are all explicitly computed and the en-
tries in the second are the result of sampling and interpolating. By
sampling less than 20% (out of 200 points in each plane of the
cube) of the full cube, the sampling approach is able to achieve an
accuracy of 90%.

only a small set of parameter values that lead to stable seg-
mentations. To identify stable solutions, we adopt a hystere-
sis based thresholding approach. Due to the continuous na-
ture of the behavior of visual cues, we only consider regions
of high stability values rather than individual points of high
stability in this space of segmentations, to avoid noise. We
begin pruning the cube by choosing a point of high stability
with an assumption that every image has at least one stable
segmentation; the stability values in the neighborhood are
grouped into plateaux (each plateau represents a unique seg-
mentation) by region growing [6]. We enforce that at least
2 neighboring positions have a high value to consider this
region to be stable and result in a plateau. Sequentially, an-
other point of high stability, outside of the explored plateau,
is considered, and the region exploration is repeated. Such a
process is done until all values of high stability (above a cer-
tain threshold) have been considered. Currently, we set the
upper, 7, and lower, 7;, thresholds manually. In the “ropes”
stimulus for example, we set 7, = 0.974 and 7; = 0.691.

Finally a set of parameters for cue combination, texture
window size, and model order are output as a shortlist. This
is the list of all possible parameters that provide stable clus-
terings. With images presented in this work, the shortlist
of all possible stable segmentations reduced the size of the
entire space of possible parameter combinations by more
than 95%. The shortlist is a highly compact summary of
the entire space of all segmentations. Some combinations
of parameters may result in redundant segmentations and
some segmentations may be stable but meaningless. Re-
moving the parameters that yield incorrect and redundant

stimulus | max | total total # | % stable | mean# of pa-
k possible stable segmen- rameter com-
param. plateaux | tations binations per
comb. out of all | plateau
possible

ropes 20 5500 19 0.31% 29.4

clouds 20 5500 14 0.25% 45.7

flowers 50 13750 86 0.62% 8.1

tissue 1 100 | 27500 218 0.79% 11.6

tissue 2 100 | 27500 109 0.39% 38.9

tissue 3 100 | 27500 236 0.86% 12.2

Figure 5. Segmentation statistics. The percent is computed as-
suming that each of the plateaux of stable parameter combinations
represents only 1 segmentation. In reality there could be more
than 1, however, even if there are a few different segmentations
per plateau, the fraction of stable ones will still be less than 5%.

segmentation is a subject of ongoing work.

4. Experimental Results

There are a number of domains where the existence of
multiple segmentations for a given image is natural. The
domain of biomedical images is one of them. Due to the hi-
erarchical structure of the images, segmentations with mul-
tiple numbers of groups are natural. Also it is desirable
to be able to identify segments based on different criteria,
e.g., DNA content, protein expression and brain activity.
Here we present examples of multiple stable segmentations
of images of tissue biopsy samples. To explore the general-
ity of our framework, we apply it to images from the Berke-
ley Segmentation Database (BSD) as well. In Figure 6 are
segmentations of three images from BSD and three images
of tissue samples. In all six examples the different seg-
mentations are the results of varying the number of groups
and the cue weightings (using texture and color). Averaged
segment boundaries, in the 4th column of the first 3 rows,
from multiple subjects from BSD (darker boundaries indi-
cate higher probability for a given set of human segmenta-
tions) further illustrate the presence of multiple stable seg-
mentations and exhibit a high correlation with segmenta-
tions produced by our method. Table in Figure 5 shows the
segmentation statistics of our method for the images from
Figure 6.

Similarity of texture was measured using texton his-
tograms with an internal parameter of texture window ra-
dius [16]. Similarity of color was based on the Euclidean
distance of the hue channel in HSV color space. Binning
kernel density estimates of the color distribution in CIELAB
color space using a Gaussian kernel, and comparing his-
tograms with the x? difference may be perceptually more
meaningful; however, the choice of color description is not
central here. We chose the HSV representation for its sim-
plicity. Given the similarities for each cue, the overall pair-
wise pixel affinity was computed according to Equation 2.
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Figure 6. Examples of stable segmentations. Each is a result of a different choice of k, texture and color weighting. Only two and three stable solutions
are shown for the BSD and tissue examples, respectively. In all examples, over 95% of all possible segmentations have low stability and are discarded. In
column 4 of the first 3 rows we show averaged segment boundaries from multiple subjects from the BSD (darker boundaries indicate higher probability for

a given set of human segmentations).
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Once the combined affinity matrix W is constructed, using
the proposed rank-one sampling approach twice, its entries

N. Cristianini and J. Shawe-Taylor. An introduction to support vector
machines. Cambridge University Press, 2000.

are treated as edge Weights of an undirected graph. A num- [4] R..Duda and P. Hart. Pattern Classification and Scene Analysis. John
. Wiley & Sons, 1973.
ber of approaches, such as spectral clustering, cut such a ) ) )

o . [5] Bernd Fischer and Joachim M. Buhmann. Bagging for path-based
graph based on.some criterion [19, 25, 29]. In this work, clustering. IEEE Transactions on Pattern Analysis and Machine In-
we use Normalized Cuts [25], where the number of lead- telligence, 25(11):1411-1415, November 2003.
ing eigenvectors were set to k& and were further thresholded [6] R.C.Gonzalez and R.E. Woods. Digital Image Processing. Prentice
using k-means clustering. The current algorithm is imple- Hall, 2002.
mented in Matlab and on average takes 2.51 seconds Of pro- [7]1 T. Has.tie, R. Tibshirani, and J. Friedman. The Elements ()fStatistical
cessing for each stability value on a dual 3.2 GHz proces- Learning. Springer, 2001.

. “ 9 s . [8] D. Hoiem, A.A. Efros, and M. Hebert. Geometric context from a
sor with 2 GB of RAM. For example, the “ropes” image is . . , . y .
. single image. In Proc. 10th Int’l. Conf. Computer Vision, pages I:
256 x 255 pixels and the full process took 0.76 hours (46 654—661, 2005.
minutes) (without sampling it takes 3.83 hours). Note that [9] A.K.Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice
current algorithm is highly parallelizable; we intend to ex- Hall, 1988.
p]oit this in future work. [10] J.J. Koenderink. The structure of images. Biological Cybernetics,
50:363-370, 1984.
5. Discussion [11] H. W. Kuhn. The Hungarian method for the assignment problem.
In this work we proposed a framework that frees the user Naval Research Logistics Q”‘”e" y, 2:83-97, 19535. '
from the burden of manual parameter tuning and model or- [12] M.S. Landy.ar.ld 1. Oruc. Properties of second-order spatial frequency
d lecti in the task of i tati We 1 channels. Vision Research, 42:2311-2329, 2002.
er selection 1n the task ol image segmentation. We lever- [13] T. Lange, V. Roth, M.L. Braun, and J.M. Buhmann. Stability-based
age the observation that the number of possible segmen- validation of clustering solutions. Neural Computation, 16:1299—
tations of a dataset is significantly smaller than the num- 1323, 2004.
ber of parameter combinations of the segmentation algo- [14] D.D. Lee and H. S. Seung. Learning the parts of objects with non-
rithm; furthermore the number of stable segmentation is negative matrix factorization. Nature, 401:788-791, 1999.
much smaller than the total number of possible segmen- [15] T. Lindeberg. Principles for automatic scale selection. Technical
. . . . Report ISRN KTH/NA/P-98/14-SE, Royal Inst. of Tech., 1998.
tations. With an image as input, our method generates a i . .
hortli £ bl . Th d h [16] J. Malik, S. Belongie, J. Shi, and T. Leung. Contour and texture
shortlist of stable Segn?enta.'tlons' € proposed approac analysis for image segmentation. IJCV, 43(1):7-27, 2001.
performs well on medlcal 1mages and examples from the [17] D.Martin, C. Fowlkes, and J. Malik. Learning to detect natural image
Berkeley Segmentation Database. boundaries using local brightness, color, and texture cues. PAMI,
After sampling a small fraction of the possible cue 26(5):530-549, May 2004.
weightings and internal parameters, the sparsely populated [18] M. Meild and J. Shi. Learning segmentation with random walk. In
. cpere . . Proc. of NIPS, pages 873-879, 2001.
space of segmentation stabilities is filled in using a novel [19] A. Ne. M. Jord 1Y Weis. O | elusiering: Analvsi
. . . Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis
extension to NMF that constrains both the'upper e.md lower and an algorithm. In Proc. of NIPS, 2002.
bf)l.ll.lds of the ?léments of the eXtraCteq basis fuITCthHS. Sta- [20] P. Paatero and U. Tapper. Least squares formulation of robust non-
bilities for individual cues and the weights are interpolated negative factor analysis. CILS, 37:23-35, 1997.
to the desired resolution and the full space of segmentation [21] S.E. Palmer. Vision Science. MIT Press, 1999.
stabilities is reconstructed. Finally, only parameters (k, cue [22] T. Poggio, E. Gamble, and J. Little. Parallel integration of vision
weights and cue internal parameters) that result in stable modules. Science, 242:436-440, 1988.
segmentations are returned. The selected segmentations are (23] B. Schdlkopf, A. Smola, and K.-R. Miiller. Nonlinear compo-
. . nent analysis as a kernel eigenvalue problem. Neural Computation,
stable, but not all may be unique. In future work we will ad- 10:1299-1319. 1998
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