
Model Order Selection and Cue Combination for Image Segmentation

Andrew Rabinovich1

amrabino@ucsd.edu

Tilman Lange2

langet@inf.ethz.ch

Joachim M. Buhmann2

jbuhmann@inf.ethz.ch

Serge Belongie1

sjb@cs.ucsd.edu

1Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093, USA

2Institute of Computational Science
ETH Zurich

CH-8050 Zurich, Switzerland

Abstract

Model order selection and cue combination are both dif-
ficult open problems in the area of clustering. In this work
we build upon stability-based approaches to develop a new
method for automatic model order selection and cue combi-
nation with applications to visual grouping. Novel features
of our approach include the ability to detect multiple sta-
ble clusterings (instead of only one), a simpler means of
calculating stability that does not require training a classi-
fier, and a new characterization of the space of stabilities
for a continuum of segmentations that provides for an effi-
cient sampling scheme. Our contribution is a framework for
visual grouping that frees the user from the hassles of pa-
rameter tuning and model order selection: the input is an
image, the output is a shortlist of segmentations.

1. Introduction

The goal of clustering (or segmentation, or grouping) is

to partition n objects into k groups so as to optimize an

objective function. One way of thinking of the objective

function is that it imposes a ranking on the set of all parti-

tions. While this is a convenient tool for intuition, when k
is unknown, the size of this set grows exponentially in n.

Compounding the problem is the fact that most clustering

algorithms possess a variety of parameters on the objective

function that weight different features (or cues) of the ob-

jects. In the case of image segmentation, these features in-

clude position, color, texture, motion, and so on. As such,

the problems of choosing k (model order selection) and the

relative parameter weightings (cue combination) are diffi-

cult open problems.

Fortunately, the various domains in which clustering is

applied often enjoy properties that can be leveraged against

the above problems. In this work, our domain of interest

is visual grouping. In this setting, k is often fairly small,

e.g., 20, and the various parameters can be restricted into

narrow valid ranges. Nonetheless, depending on the number

of cues employed and the granularity of their variation, this

can still present substantial problems both in the sense of

computation and of usability.

The present work addresses both of these problems. We

begin with the observation that no single value of k is cor-

rect in general. The literature on model order selection is

perhaps surprisingly focused on selecting one ‘best’ value

of k [2, 13] (and references therein). A similar situation

exists in the scale selection literature [10, 15]. To consider

multiple values of k, we stop short of exhaustively search-

ing the space of parameter values, however, by observing

that this space has structure that allows one to characterize

the space via an efficient sampling scheme. Our contribu-

tion is a framework for visual grouping that frees the user

from the hassles of parameter tuning and model order se-

lection: the input is an image, the output is a shortlist of

segmentations. The formalism we adopt in pursuit of this

framework is a quantification of a stable clustering, corre-

sponding to the intuition that a clustering is good if it is

repeatable in the face of perturbations.

As a preview of this idea, consider the dataset shown in

Figure 1. This stimulus consists of four clumps of points.

For simplicity, we consider two cues: proximity and den-

sity, where the latter is measured by counting the number

of points that fall inside a box centered on each point.1 We

show three representative stable clusterings, two for k = 2
and one for k = 4. Depending on the relative cue weight-

ing, one can obtain two very different stable clusterings for

k = 2. For k = 4, however, there is only one stable clus-

tering. Associated with each case is a range of parameter

values (cue weighting and box width) that lead to the same

result. The myriad other unstable clusterings are not of in-

terest to us. In this work we aim to select only meaningful

clusterings for a given dataset.

The organization of this paper is as follows. In Section

2 we review relevant work on stability based clustering and

1This measure of local density is a simplified instance of a texture de-

scriptor; it generalizes to a local texton histogram [16].
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Figure 1. (a) Original stimulus of four clumps of points with vary-

ing density. Two stable clusterings for k = 2, 4, shown in (c) and

(d), are based on Euclidean distances between points. Stable clus-

tering for k = 2, based on point density (texture descriptor), is

shown in (b). There are two other trivial stable solutions for k = 1
and N , where N is the cardinality of the set.

suggest a simplification to an existing model that will al-

low for multiple stable solutions and reduce the algorithmic

complexity. In Section 3, we motivate the cue combina-

tion problem in a framework of stability based segmenta-

tion evaluation. We demonstrate the behavior of the pro-

posed approach on images of tissue samples and examples

from the Berkeley Segmentation Database in Section 4. We

conclude in Section 5 with the discussion and future work.

2. Stability Based Clustering
Stability based clustering is a relatively new approach to

model order selection. In late 1980s Jain and Dubes [9]

discussed the validity of a given clustering structure based

on hypothesis testing. The boom of work on finite mix-

ture models in the 1990s gave rise to numerous approaches

based on information theoretic criteria such as MDL, AIC,

and BIC [1]. More recently a class of approaches based on

stability have shown great promise. Our work falls into this

category; we provide a brief review of it next.

2.1. Model Order Selection

The approach of stability based model order selection

(from [13]) is as follows. Given a dataset, the data points

are split into two disjoint subsets A and B. Using some

clustering method, cluster A into k groups. Once the clus-

tering for a given k is found and all the points in A are

labeled, a classifier φ is chosen and is trained using the la-

bels from the clustering algorithm. Once the classifier (the

predictor) is trained, the subset B is considered. The data in

B is clustered into k groups and independently labeled us-

ing φ. Then the labels from the clustering and classification

are compared to determine the stability. Care must be taken

here since the labeling is arbitrary up to a permutation. To

address this, one can perform pairwise comparison between

points (i.e., are the two points in the same group or not) or

find an optimal label permutation, e.g., using the Hungarian

method [11]. Finally, the number of points with the same

label provide a stability measure for that value of k. This

procedure is repeated for a range of k’s.

This approach is well motivated and we adopt it with the

following modifications:

1. Instead of splitting the data in two, cluster the entire

set with a given k. The clustering engine can be a central

method such as k-means if the clusters are spherical, or a

pairwise method such as NCut [5, 25] if not; for generality

assume the data is not spherical and use a pairwise method.

2. Once the data is clustered and the data points labeled, add

noise (proportional to the variance of the data, discussed

in Section 3.2.2) to slightly perturb the pairwise distances.2

Then, perform clustering for the same number of groups and

assign new labels to the data. Such a labeling scheme avoids

the use of a classifier, and reduces the algorithmic complex-

ity. This perturbation is performed many times; here we

re-clustered the data 50 times, yielding 50 different label-

ings for the data points.

3. Given all of the labelings, permute all but one of them to

best match the labeling held constant, an anchor, and com-

pute the stability according to the following definition:

S(k) =
1

n − n
k

(
n∑

i=1

si − n

k

)
(1)

where si ∈ [0, 1] indicates the agreement between the labels

over all perturbed restarts for the ith point in the data, the

fraction n/k prevents a bias for a particular value of k, and

n − n/k is the normalization coefficient. Since any given

anchor could be suboptimal, we try all possible anchors and

pick the one that yields highest stability.

3. Visual Cue Combination
3.1. Segmentation Stability with Given Parameters

Unlike the case of point sets, where Euclidean distance

may be used to assess the similarity between data points,

image segmentation is best performed using multiple visual

cues [16, 22, 27]. How to choose which cues to consider

for a given segmentation problem and how to weigh their

importance is unclear. This is known as the cue combina-

tion problem in computer vision. Traditionally, supervised

2One could instead perturb the positions of each data point. See Sec-

tion 3.2.2 for details.
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learning approaches are used to address cue combination

in a given application. Based on labeled data, a classi-

fier is trained to choose the appropriate weighting for each

cue [17, 18]. In other approaches, the combination of cues

is set manually [8]. Since we do not assume human labeled

examples are available, we propose to use the stability based

model order selection approach to identify all possible com-

binations of cues and numbers of groups that lead to a stable

segmentation. The stability calculation process remains un-

changed; however, with every new combination of cues, the

grouping criterion changes.

One possible approach to combining cues is to construct

an affinity matrix using a convex combination:

Wij = e−(C1,ij ·p+C2,ij ·(1−p)) (2)

where p ∈ [0, 1] specifies the cue weighting, C1 and C2 are

the individual dissimilarities for each of the cues, and W is

the overall affinity between points based on both cues. Each

of the dissimilarities C1, C2 and affinity W have an internal

scaling parameter, σ, that is used to maximally separate the

dissimilar entries and group the similar entries in the matrix.

We discuss the selection of this parameter next.

3.2. σ Estimation and Re-Sampling using Non-
Parametric Density Estimates

In this section we estimate the scaling parameter for each

cue individually and propose a re-sampling scheme for data

perturbation. We assume that similarities Cij correspond

to squared Euclidean distances ‖xi − xj‖2 in a suitable

(embedding) space and that we have access to a represen-

tation of the data (one for each cue). If only similarities

between data points are available, a vectorial representation

in R
d, d ≤ n − 1, can be obtained given that the simi-

larity matrix fulfills Mercer’s condition, i.e., if we have a

kernel matrix [3]. Then, the application of Kernel Principal

Component Analysis (kPCA) [23] results in an isometric
embedding of the corresponding distances into an n− 1 di-

mensional space (after centering the kernel matrix).

3.2.1 σ Estimation

For each cue we obtain a set of n realizations x1, . . . ,xn ∈
R

d of the random variable X with unknown density γ(x).
The guiding principle of the stability approach is to require

segmentations to be robust with respect to fluctuations in

the source, i.e., in γ(x). If the density were known, this

condition would have been easily checked for by drawing

multiple samples from γ. However, in practice, we do not

have access to γ. Thus, we adopt the following strategy: In-

stead of using the density γ, we construct a non-parametric

density estimate q, the latter being used for the re-sampling

and the subsequent stability assessment.

To obtain a non-parametric estimate of the density γ(x)
a Parzen window estimator is used. The density is approxi-

mated by a super-position of basis functions, being centered

around the realizations xi, i ∈ {1, . . . , n} [4, 7, 26]. One

possible choice for the underlying kernel function is a Gaus-

sian kernel: the kernel centered at xi reads

kxi,σ(x) =
1

(2πσ2)d/2
exp

(
−‖x − xi‖2

2σ2

)
. (3)

The density estimate qσ is then a super-positon of the indi-

vidual density estimates:

γ(x) ≈ qσ(x) :=
1
n

∑
1≤i≤n

kxi,σ(x). (4)

The estimate depends on a smoothness (a.k.a. bandwidth)

parameter, σ, whose choice greatly influences the shape

of the density estimate qσ . It is well known, that do-

ing (neg. log-) likelihood-cross-validation (asymptotically)

leads to a consistent estimate of σ [28]. In essence, one tests

−∑x(t)∈T log qσ(x(t)) for different choices of σ and a set

of “test” points T . Finally, a σ is picked, for which this test

quantity becomes minimal.

3.2.2 Re-sampling

kxi,σ(x) is a Gaussian density with variance σ2 and the

corresponding density estimate qσ is a mixture of Gaus-

sians with n modes, each having weight 1
n and the

common variance with d-dimensional covariance matrix

diag(σ2, . . . , σ2). This Gaussian mixture is used to sample

“noisy” versions of xi. In particular, we get a noisy version

x̃i of each original point xi by sampling a substitute from

the Gaussian kxi,σ . Note that, in contrast to the original sta-

bility approach of [13], the point correspondence problem

is automatically resolved in this case, as one can identify x̃i

sampled from kxi,σ with xi.

3.3. Just Noticeable Difference

Besides the scaling parameter, some cues have another

internal parameter. For example the density cue has a win-

dow in which the density is computed. The size of this win-

dow, ω, is an internal parameter of the density cue (other

cues such as proximity do not have such internal parameters

and simply use the raw coordinates of points to determine

similarity). Varying the values of such internal parameters

has a particular effect on the overall stability of the cluster-

ing. If for example the window size ω is changed by a small

fraction to ω + ε, the stability of a given grouping will not

change as texture is captured equally with windows of neg-

ligibly different sizes. This is related to the phenomenon of

the Just Noticeable Difference and Weber’s Law [21]. Slight

variations of the value of ω do not result in perceptually
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distinctive textures [12]. Thus, the segmentations produced

with such different values of ω will be the same. However,

such a rule does not apply to the variation of number of

groups. If the stability of segmentations with all possible

cue combinations is known for k groups, in general there

can be nothing said about the stability behavior of grouping

with k ± 1 groups. In the example in Figure 1 there are

stable solutions for k = 2 and k = 4 groups, however, no

clustering with k = 3 is stable.

3.4. All Possible Segmentations for a Set of Cues

As discussed earlier, there may be more than one stable

segmentation of a given image. Segments may be formed

based on different cue combinations and/or model orders.

To identify all parameter settings for which a segmentation

is stable, it is intuitive to consider all possible combinations

of parameter values: different numbers of groups, different

cue weightings, and finally the internal parameters for each

of the cues. Even if we restrict the range of parameters,

e.g., 10 different values for k, 20 values for window size,

and 10 for cue combination, for the example in Figure 1,

there are still 2,000 segmentations to consider; see Figure 2.

Although such a representation of the space of possible seg-

mentations is very thorough and potentially useful, the brute

force computation of these segmentations and stability val-

ues associated with them becomes computationally infea-

sible. Instead, we propose a sampling-based approach for

approximating the space of segmentation stabilities. Since

the behaviors of segmentations for different k’s are decou-

pled, we must sample p and ω for every desired k.

To be able to analyze the behavior of the parameters in-

dependently, as was discussed in Section 3.3, the overall sta-

bility of a given segmentation is modeled as a product of sta-

bilities of each individual cue. With A, a matrix of sampled

segmentation stabilities, constructed, we use Non-negative

Matrix Factorization (NMF) to decompose the overall seg-

mentation stability values into segmentation stabilities of

individual cue parameters.3 NMF [14, 20] is a recently in-

troduced method for finding non negative basis functions

(vectors) that represent the data. Using an iterative approach

with non-negativity constaints, a data mixture A is factored

into constituent components S and the weights B for each

component. Repeated iteration of the update rules is only

guaranteed to converge to a locally optimal matrix factoriza-

tion, however, practical applications of NMF indicate suit-

ability of the approach. In its usual form, this decomposi-

tion is an additive one in terms of the learned components.

Here, we set up the problem as multiplicative (this holds

true in the rank-one case) and consider B and S to be the

3In the presence of more than two cues, the use of NMF is generalized

to Non-negative Tensor Factorization (NTF) [24, 30]. Each combination of

parameters for each value of k becomes a tensor and is decomposed with

NTF.

Figure 2. Slices of the cube of all possible segmentations for the

4 clumps stimulus (shown in Figure 1); the number of groups is

indicated on top of every slice. All the stability values are in the

range of [0, 1]. p is the cue combination coordinate in [0, 1], ω
is the window radius, an internal texture parameter, in [1, 55]. As

expected, there are stable solutions for a range of cue parameters

when grouping into k = 2 and k = 4 groups. It is important to

note that although the slices for k = 2 and k = 4 show high stabil-

ity, the slice for k = 3 is unstable. This underlines the decoupled

behavior of the order in model selection.

two basis functions. In doing the NMF, there is a constraint

on non-negativity, yet there is no upper bound on the indi-

vidual entries of the basis functions. Since the basis func-

tions that we extract correspond to the stability value for

individual cues for a given k, the entries in vectors B and S
must be constrained to [0, 1]. To enforce the bounds on the

values, we introduce an extension to the general NMF.

3.5. Bounded Non-negative Matrix Factorizations

To achieve the desired bounds on the elements of B and

S, the following procedure is based on a rank-1 decom-

position; however, it is possible to achieve rank k decom-

positions of A with k rank-1 consecutive decompositions.

Given A = BS, subject to 0 ≤ Bij ≤ 1, 0 ≤ Sij ≤ 1,

the decomposition is an outer product of B and S assuming

rank(A) = 1. To constrain the upper bound of elements

of B and S, we wish to re-write A = BS in terms of a

function that is restricted on the interval [0, 1]. For example

e−y , if y ≥ 0, is constrained in [0, 1]. Let A′ = − log(A),
B′ = − log(B), S′ = log(S), thus A′ = B′ + S′ is

an instance of a least squares problem.4 In particular, let

V = A′(:) (concatenated), b = [B′(:, 1);S′(1, :)], and let

4Since A′ is m × n and both B′ and S′ are vectors, the entries of B′
and S′ are repeated to achieve the m × n dimensions.
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(a) (b) (c) (d) (e)

Figure 3. Accuracy of bNMF approximation of the stability matrix A from Figure 1 for k = 4. (a) Original; (b) Rank 1 approximation of

A using bNMF; (c) Error of rank 1 approximation; (d) Two successive rank 1 approximations; (e) Error of rank 2 approximation.

F =

2
66666664

1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0

...
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1

3
77777775

F is mn×(m+n), where m and n are the lengths of B and

S (the above example of F is shown for m = 3 and n = 3).

Thus, A′ = B′ + S′ becomes:

V = Fb (5)

In order to satisfy initial constraint of 0 ≤ Bij ≤ 1, 0 ≤
Sij ≤ 1, this least squares problem must be solved with

the constraint that bi ≥ 0 (lsqnonneg in Matlab). By

performing the above substitutions in reverse, B′ and S′ are

recovered. Finally, we exponentiate A′ = B′ +S′ to obtain

the bounded decomposition into B and S.

e−A′
= e−B′(:,1)e−S′(1,:) (6)

A = BS (7)

This is Bounded Non-negative Matrix Factorization with a

rank-one constraint.

3.5.1 Projection onto the approximation subspace

Rank 1 approximation of the stability matrix may not be

sufficient to represent the structure of A accurately; a higher

order approximation may be required. Thus, it is necessary

to quantify the performance of such an approximation.

The subspace spanned by the original full rank matrix A
is projected onto the subspace spanned by the eigenvectors

of the approximated matrix Q. In the case of rank 1 approx-

imation, A is projected onto a line — Q’s only eigenvec-

tor. More formally, we would like to find a combination of∑
ziqi = A, where each column of A is projected onto the

subspace spanned by eigenvectors of Q, qi. Let the set of

eigenvectors spanning Q’s subspace be Qe. In matrix form:

QeZ = A (8)

Q�
e (A − QeZ) = 0 (9)

Q�
e QeZ = Q�

e A (10)

Z = (Q�
e Qe)−1Q�

e A (11)

Z is the projection matrix of A onto the eigenspace of Q.

Thus, the projection of A onto Q’s eigenspace is P = QeZ
and the residual of the projection P and original matrix A
is E = A − P . Figure 3 illustrates the rank 1 and rank

2 approximations of the original matrix A, for the stimulus

in Figure 1, and the residuals between A and the approxi-

mations. With a rank 1 approximation the residual error is

31.7%, while the residual error of the rank 2 approximation

is only 4.26%.

3.5.2 Cue interpolation and approximation accuracy

Unlike k, a cue parameter such as point density within a

window is not independent of its “neighbors”. Visual cues

may have a piecewise constant or monotonically changing

behaviors and may be modeled as such. By having only a

few stability values along the discrete interval of values for

a given cue, it is possible to use a simple model to inter-

polate to the rest of the desired values for a particular cue.

Since the actual cue combination is modeled as a convex

combination, the behavior of that “axis” is continuous and

smooth, and was fit using a simple bicubic interpolation.

The behavior of stability as a function of box size for point

density was modeled as piecewise constant. Once the vec-

tors B and S are filled, their outer product fills the entire

space of stability values for all segmentations for a given k.

To measure the quality of such a sampled approximation,

we compare the approximated cube of stabilities to the ac-

tual one, where each stability value is computed according

to our definition of stability. The approximation evaluation

was carried out using the stimulus in Figure 1. As shown in

Figure 4, with less than 20% of all possible combination of

parameters for each k, an approximation of 90% accuracy is

achieved. Accuracy was calculated via the projection pro-

cedure in Section 3.5.1.

3.6. Shortlist of stable segmentations

The set of stability values provides valuable information

about the associated segmentations, but such a representa-

tion still requires manual “sifting” of the stable segmenta-

tions from the ones with low stability. Our aim is to output
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Figure 4. Evaluation of the accuracy of sampling the cube of stabil-

ities to approximate its dense representation. The curve illustrates

the agreement between two dense cubes of stability values, where

the entries in the first cube are all explicitly computed and the en-

tries in the second are the result of sampling and interpolating. By

sampling less than 20% (out of 200 points in each plane of the

cube) of the full cube, the sampling approach is able to achieve an

accuracy of 90%.

only a small set of parameter values that lead to stable seg-

mentations. To identify stable solutions, we adopt a hystere-

sis based thresholding approach. Due to the continuous na-

ture of the behavior of visual cues, we only consider regions

of high stability values rather than individual points of high

stability in this space of segmentations, to avoid noise. We

begin pruning the cube by choosing a point of high stability

with an assumption that every image has at least one stable

segmentation; the stability values in the neighborhood are

grouped into plateaux (each plateau represents a unique seg-

mentation) by region growing [6]. We enforce that at least

2 neighboring positions have a high value to consider this

region to be stable and result in a plateau. Sequentially, an-

other point of high stability, outside of the explored plateau,

is considered, and the region exploration is repeated. Such a

process is done until all values of high stability (above a cer-

tain threshold) have been considered. Currently, we set the

upper, τu, and lower, τl, thresholds manually. In the “ropes”

stimulus for example, we set τu = 0.974 and τl = 0.691.

Finally a set of parameters for cue combination, texture

window size, and model order are output as a shortlist. This

is the list of all possible parameters that provide stable clus-

terings. With images presented in this work, the shortlist

of all possible stable segmentations reduced the size of the

entire space of possible parameter combinations by more

than 95%. The shortlist is a highly compact summary of

the entire space of all segmentations. Some combinations

of parameters may result in redundant segmentations and

some segmentations may be stable but meaningless. Re-

moving the parameters that yield incorrect and redundant

stimulus max

k
total

possible

param.

comb.

total #

stable

plateaux

% stable

segmen-

tations

out of all

possible

mean # of pa-

rameter com-

binations per

plateau

ropes 20 5500 19 0.31% 29.4

clouds 20 5500 14 0.25% 45.7

flowers 50 13750 86 0.62% 8.1

tissue 1 100 27500 218 0.79% 11.6

tissue 2 100 27500 109 0.39% 38.9

tissue 3 100 27500 236 0.86% 12.2

Figure 5. Segmentation statistics. The percent is computed as-

suming that each of the plateaux of stable parameter combinations

represents only 1 segmentation. In reality there could be more

than 1, however, even if there are a few different segmentations

per plateau, the fraction of stable ones will still be less than 5%.

segmentation is a subject of ongoing work.

4. Experimental Results
There are a number of domains where the existence of

multiple segmentations for a given image is natural. The

domain of biomedical images is one of them. Due to the hi-

erarchical structure of the images, segmentations with mul-

tiple numbers of groups are natural. Also it is desirable

to be able to identify segments based on different criteria,

e.g., DNA content, protein expression and brain activity.

Here we present examples of multiple stable segmentations

of images of tissue biopsy samples. To explore the general-

ity of our framework, we apply it to images from the Berke-

ley Segmentation Database (BSD) as well. In Figure 6 are

segmentations of three images from BSD and three images

of tissue samples. In all six examples the different seg-

mentations are the results of varying the number of groups

and the cue weightings (using texture and color). Averaged

segment boundaries, in the 4th column of the first 3 rows,

from multiple subjects from BSD (darker boundaries indi-

cate higher probability for a given set of human segmenta-

tions) further illustrate the presence of multiple stable seg-

mentations and exhibit a high correlation with segmenta-

tions produced by our method. Table in Figure 5 shows the

segmentation statistics of our method for the images from

Figure 6.

Similarity of texture was measured using texton his-

tograms with an internal parameter of texture window ra-

dius [16]. Similarity of color was based on the Euclidean

distance of the hue channel in HSV color space. Binning

kernel density estimates of the color distribution in CIELAB

color space using a Gaussian kernel, and comparing his-

tograms with the χ2 difference may be perceptually more

meaningful; however, the choice of color description is not

central here. We chose the HSV representation for its sim-

plicity. Given the similarities for each cue, the overall pair-

wise pixel affinity was computed according to Equation 2.
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Figure 6. Examples of stable segmentations. Each is a result of a different choice of k, texture and color weighting. Only two and three stable solutions

are shown for the BSD and tissue examples, respectively. In all examples, over 95% of all possible segmentations have low stability and are discarded. In

column 4 of the first 3 rows we show averaged segment boundaries from multiple subjects from the BSD (darker boundaries indicate higher probability for

a given set of human segmentations).
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Once the combined affinity matrix W is constructed, using

the proposed rank-one sampling approach twice, its entries

are treated as edge weights of an undirected graph. A num-

ber of approaches, such as spectral clustering, cut such a

graph based on some criterion [19, 25, 29]. In this work,

we use Normalized Cuts [25], where the number of lead-

ing eigenvectors were set to k and were further thresholded

using k-means clustering. The current algorithm is imple-

mented in Matlab and on average takes 2.51 seconds of pro-

cessing for each stability value on a dual 3.2 GHz proces-

sor with 2 GB of RAM. For example, the “ropes” image is

256 × 255 pixels and the full process took 0.76 hours (46

minutes) (without sampling it takes 3.83 hours). Note that

current algorithm is highly parallelizable; we intend to ex-

ploit this in future work.

5. Discussion
In this work we proposed a framework that frees the user

from the burden of manual parameter tuning and model or-

der selection in the task of image segmentation. We lever-

age the observation that the number of possible segmen-

tations of a dataset is significantly smaller than the num-

ber of parameter combinations of the segmentation algo-

rithm; furthermore the number of stable segmentation is

much smaller than the total number of possible segmen-

tations. With an image as input, our method generates a

shortlist of stable segmentations. The proposed approach

performs well on medical images and examples from the

Berkeley Segmentation Database.

After sampling a small fraction of the possible cue

weightings and internal parameters, the sparsely populated

space of segmentation stabilities is filled in using a novel

extension to NMF that constrains both the upper and lower

bounds of the elements of the extracted basis functions. Sta-

bilities for individual cues and the weights are interpolated

to the desired resolution and the full space of segmentation

stabilities is reconstructed. Finally, only parameters (k, cue

weights and cue internal parameters) that result in stable

segmentations are returned. The selected segmentations are

stable, but not all may be unique. In future work we will ad-

dress the problem of only including highly stable segmen-

tations that are not redundant.
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