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Abstract
In the course of modern medical research, it is common
for a research facility to house thousands of caged mice,
rats, rabbits, and other mammals in rooms known as
vivaria. In any experiment involving a group of animals it
is necessary to perform environmental and physiological
monitoring to determine the effects of the procedure and
the health of the animals involved. Such monitoring is
currently performed by human observers, and for practical
reasons, only a small subset of cages can be inspected for
limited amounts of time. This short paper outlines the
computer vision and machine learning technology behind
the Smart Vivarium, a system for automated, continuous
animal behavior monitoring.  The Smart Vivarium will
serve as an invaluable tool for medical researchers as it
will make better use of fewer animals.  Early discovery of
sick animals will prevent diseases from spreading, and in
general will lead to more efficient caretaking of animals. 
Additionally, the proposed technology can serve as a
powerful tool for monitoring sentinel cages in potential
bioterrorism targets and chemical agent research
facilities.  
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1 Introduction
 A single vivarium can contain thousands of cages of
mice, making close monitoring of individual mice
impossible. Automated behavior analysis of individual
mice will allow for earlier detection of abnormal behavior,
and thus an improved level of animal care, as well as more
detailed and exact data collection which will improve the
efficiency of medical experiments.
  Video surveillance of mice has the important char-
acteristic of being non-intrusive; no modification to the
environment is necessary.  It is now feasible because of
the recent availability of low-cost video cameras. Because
of the huge number of medical experiments conducted on
caged mice, this feasibility has led to a large amount of
research on this problem; see for example the proceedings
of Measuring Behavior, 1996 – present. To our
knowledge, all current approaches (for example, [1])
require overhead mounted cameras.  This simplifies the
problem because the amount of occlusion is reduced.
However, this kind of surveillance requires a specially
designed cage, since in a standard mouse cage the
overhead view is obstructed by the feeder and cage top
(see Figure 1).  In this short paper, we describe recent
advances from our research group at the University of
California, San Diego, on the problems of non-intrusive
mouse tracking and behavior recognition from a side cage
view.

Figure 1. Still frame captured from a video sequence of
three mice (240 by 360 pixels). The metal container at the
top of the cage holds food pellets and a water bottle. It
also prevents the use of an overhead mounted camera. The
bedding on the floor of the cage is the only dynamic part
of the background, other than reflections.

2 Tracking Multiple Mouse Contours

  Our tracking research focuses on the problem of tracking
the contours of multiple identical mice from video of the
side of their cage; see Figure 1 for an example frame.
Although existing tracking algorithms may work well
from an overhead view of the cage, the majority of vivaria
are set up in a way that prohibits this view.
  This problem is uniquely difficult from a computer vision
standpoint. Because mice are highly deformable 3D
objects with unconstrained motion, an accurate contour
model is necessarily complex. Because mouse motion is
erratic, the distribution of the current mouse positions
given their past trajectories has high variance.  The biggest
challenge to tracking mice from a side view is that the
mice occlude one another severely and often. Tracking the
mice independently would inevitably result in two trackers
following the same mouse. Instead, we need a multitarget
algorithm that tracks the mice in concert. As the number
of parameters that must be simultaneously estimated
increases linearly with K, the number of mice, the search
space size increases exponentially with K [4]. Thus, using
existing approaches to directly search the contour space
for all mice at once is prohibitively expensive.
  In addition, tracking individual mouse identities is dif-
ficult because the mice are indistinguishable.  We cannot
rely on object-specific identity models (e.g., [3]) and must
instead accurately track the mice during occlusions.  This
is challenging because mice have few if any trackable
features, their behavior is erratic, and edges (particularly
between two mice) are hard to detect.  Other features of
the mouse tracking problem that make it difficult are
clutter (the cage bedding, scratches on the cage, and the
mice’s tails), inconsistent lighting throughout the cage,
and moving reflections and shadows cast by the mice.



Figure 2. Still frame summary of the successes of our algorithm.  We plot the average affine transformation applied to the
contour with the most total weight.

  We propose a solution that combines existing blob and
contour tracking algorithms.  However, just combining
these algorithms in the obvious way does not effectively
solve the difficulties discussed above.  We propose a novel
combination of these algorithms that accentuates the
strengths of each individual algorithm.  In addition, we
capitalize on the independence assumptions of our model
to perform most of the search independently for each
mouse.  This reduces the size and complexity of the search
space exponentially, and allows our Monte Carlo sampling
algorithm to search the complex state parameter space
with a reasonable number of samples. Our algorithm
works with a detailed representation of a mouse contour to
achieve encouraging results.
  We evaluated our blob and contour tracking algorithm on
a video sequence of three identical mice exploring a cage,
available at http://smartvivarium.calit2.net.  This sequence
contained 11 occlusions of varying difficulty.  Summary
still frames are shown in Figure 2.  These results
demonstrate the following strengths of our algorithm:

• Our contour tracking algorithm is robust to erratic mouse
behavior – we never lose a mouse.  For instance, we
follow mice that jump, drop from the ceiling, and make
quick turns and accelerations that are not fit by our simple
dynamics model.
• Two contours never fit the same mouse.
• Our algorithm is rarely distracted by background clutter.
This implies that our feature extraction methods and the
blob and contour combination provide robust observation
likelihoods.  The only exceptions are when both
algorithms make mistakes: when the blob tracker mistakes
shaded bedding for foreground and the contour tracker fits
to the edge of a tail.
• Perhaps the most impressive result is that our algorithm
accurately tracks the mice through 7 out of 11 occlusions
and partway through the other 4.  This is because of the
detailed fit provided by the contour tracking algorithm and
its ability to use features available during occlusions.
• In general, our algorithm usually found very good
contour fits outside of occlusions, much better than those
obtained using contour tracking alone.

  More information about our algorithm can be found in
[2].

3 Behavior Recognition via Sparse
Spatio-Temporal Features

  After tracking and thus determining the positions and
identities of each mouse, we focus our attention on
recognizing their behavior.   The method we have
developed so far is successful in determining five basic
behaviors: sleeping, drinking, exploring, grooming, and
eating. Its design is very general and easily portable to
other activities (like scratching or nesting that were
omitted simply for lack of training footage).
  Most behavior recognition methods developed in the
computer vision literature are focused on human activity
recognition (for a survey see [6]), but these methods are
generally inapplicable to rodent behavior for the following
reasons:

• With the exception of the eyes and ears, there are very
few distinguishable features on the body of a rodent
• Rodent limbs are almost imperceptible in a single frame
(except perhaps for the tail)
• Relevant activities can happen in a burst (e.g. less than a
second)

  Furthermore, many of the traditional approaches for
human activity recognition assume simplifications that we
cannot make, including:

• Simple backgrounds and little or no occlusion
• Small or no variation in the behaviors and posture of the
subjects
• High resolution, clean data

  Many of the problems described above have counterparts
in object recognition. The inspiration for our approach
comes from approaches to object recognition that rely on
sparsely detected features in a particular arrangement to
characterize an object, e.g. [8] and [7]. Such approaches
tend to be robust to image clutter, occlusion, object
variation, and the imprecise nature of the feature detectors.
In short they can provide a robust descriptor for objects
without relying on too many assumptions.
  Our approach is based on describing a behavior in terms
of local regions of interesting motion.  Figure 3 shows
example frames of two clips of a mouse grooming where
the global appearance and motion are quite different but
local regions of motion are quite similar.



Figure 3. Highlighted regions of local motion in example
frames of two from videos of mice grooming.  Six
prominent areas of motion were extracted from each
behavior. Note that although the posture of the mouse is
quite different in the two cases, three of the six regions
(shown in the top three rows) for each mouse are quite
similar.  The other three have no obvious correspondence
although it is very hard to perceive what these are without
motion.

Figure 4. The confusion matrix on test data shows the
efficiency of our approach.   Each row represents how our
algorithm classified a given activity (using Linear
Discriminant Analysis).  The most confusion occurs when
a mouse is grooming and the algorithm incorrectly
classifies it as exploring.

  Although our method is still in development, it is already
very reliable (cf. figure 4).   These results were obtained
with only a small amount of training data.  As we increase
the amount of training data, and incorporate a more robust
model for activity, the accuracy and number of activities
we can detect shall continue to increase.

4 Conclusion

We have described our recent progress in two areas of the
Smart Vivarium project at UC San Diego: multiple mouse
tracking and behavior recognition in the home cage
environment.  In our ongoing work we are collaborating
with medical researchers to apply this technology for
purposes of behavioral phenotyping in inbred mouse
strains.
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