
Moving Gradients: A Path-Based Method for Plausible Image Interpolation

Dhruv Mahajan
Columbia University

Fu-Chung Huang
UC Berkeley

Wojciech Matusik
Adobe Systems, Inc.

Ravi Ramamoorthi
UC Berkeley

Peter Belhumeur
Columbia University

(a) Input Image A (b) Interpolated Frames - Our Method (c) Input Image B
Figure 1: This paper describes an image interpolation technique to produce a sequence of intermediate frames between two input Images A and B (a,c), as
seen in our result in (b). While we show only three frames above, our method moves gradients in the original images to solve simultaneously for any number
of frames of a temporally consistent interpolation, producing an animation sequence that preserves the frequency content of the original images, and looks
quite natural. Note that this example is very challenging and under-constrained, involving complex, non-rigid and local deformations. Moreover, in contrast
to conventional morphing-based techniques, our method is fully automatic — we require only the input images, with no further user assistance.

Abstract
We describe a method for plausible interpolation of images, with
a wide range of applications like temporal up-sampling for smooth
playback of lower frame rate video, smooth view interpolation, and
animation of still images. The method is based on the intuitive
idea, that a given pixel in the interpolated frames traces out a path
in the source images. Therefore, we simply move and copy pixel
gradients from the input images along this path. A key innovation
is to allow arbitrary (asymmetric) transition points, where the path
moves from one image to the other. This flexible transition pre-
serves the frequency content of the originals without ghosting or
blurring, and maintains temporal coherence. Perhaps most impor-
tantly, our framework makes occlusion handling particularly sim-
ple. The transition points allow for matches away from the occluded
regions, at any suitable point along the path. Indeed, occlusions do
not need to be handled explicitly at all in our initial graph-cut opti-
mization. Moreover, a simple comparison of computed path lengths
after the optimization, allows us to robustly identify occluded re-
gions, and compute the most plausible interpolation in those ar-
eas. Finally, we show that significant improvements are obtained
by moving gradients and using Poisson reconstruction.

CR Categories: I.3.m [Computer Graphics]: Miscellaneous—
Image Interpolation; I.4.9 [Image Processing and Computer Vi-
sion]: Miscellaneous—Optical Flow

Keywords: interpolation, path framework, transition point, occlu-
sion handling, 3D poisson reconstruction

1 Introduction

We address the problem of image interpolation, to produce a se-
quence of plausible intermediate frames between two input images.

We focus on a wide range of applications like animation of still im-
ages (see Fig. 1), temporal interpolation for up-sampling of low
frame rate videos, and interpolating viewpoints between images
captured with different camera locations.

Our method is based on the simple and intuitive notion that a given
pixel in the interpolated frames will trace out a path in the input
images. Figure 2a shows two images A and B. Image B is a shifted
version of Image A. For simplicity, we consider a single scan line
forming a x− t interpolation plane shown in Fig. 2b. We synthe-
size each pixel p separately, by simply moving and copying pixels
from the input images.1 Figure 2b also shows one of the ways we
can interpolate at pixel p. Initially pixels are copied from Image
A and at some point we transition and start copying from Image B.
This corresponds to an interpolation path as shown in Fig. 2c. The
path starts at p in A, moves through the pixels in A to pA, makes a
transition to pB in B and then moves through pixels in B to reach p.
Our method is closely related to optical flow (and disparity-based
stereo and warping) techniques (Fig. 2d). However, instead of stan-
dard optical flow that projects pixels from the input images (arrows
from input images in Fig. 2d), ours is effectively an inverse opti-
cal flow algorithm. We compute where in the input images a given
intermediate pixel p comes from (arrows towards input images in
Fig. 2b), thus avoiding holes and other artifacts. Our focus is on
visually plausible interpolation, rather than obtaining the most ac-
curate sub-pixel flows for the input images.

Developing a path-based framework (Sec. 3.1) requires a few sim-
ple, yet critical and novel design decisions. As shown in Fig. 2c, we
transition (Sec. 3.2) between the two input images at some point pA
and pB on the path. The transition point is chosen so that the two
images match well at this point (pA and pB are in correspondence).
It can be arbitrary and asymmetric, giving us an extra degree of flex-
ibility to achieve high quality results. Because we transition instead
of blend, we preserve the frequency content of the original images
without blurring or ghosting.

A major contribution is to greatly simplify occlusion handling. The
flexible transition points allow us to find a good correspondence
somewhere along the path, even if the pixel p itself is occluded
in one of the input images. By avoiding matching in the occluded
regions, we can write a simple energy functional that is solved using
standard graph-cut techniques (Sec. 4.2). This optimization to find

1In practice, we do take spatial coherence into account, by ensuring that
neighboring pixels have similar paths (Sec. 4.1).

Image A Scanline

x

y

t

tA= 0

a b c d e f g h i j k

f g h i j k l m n o p

a b c d e f g h i j k
b c d e f g h i j k l
c d e f g h i j k l m
d e f g h i j k l m n
e f g h i j k l m n o
f g h i j k l n o pm

p

p

tA= 0

tB= 1

t1

t2

t3

t4
tB= 1

d e f g h i j k l m n

a b c d e f g h i j k
b c d e f g h i j k l
c d e f g h i j k l m

e f g h i j k l m n o
f g h i j k l n o pm

p

p

pA

mA

mB

Transition

pB

Image B Scanline

(a) Schematic (b) Possible Interpolation (c) Corresponding Path (d) Standard Optical Flow

a b c d e f g h i j k
b c d e f g h i j k l
c d e f g h i j k l m
d e f g h i j k l m n
e f g h i j k l m n o
f g h i j k l n o pm

p

p

tA= 0

tB= 1

t1

t2

t3

t4

Backward
 flow

Forward
 flow

Figure 2: Basic notion of path in our algorithm. Image B is a shifted version of Image A. We consider a single scan line forming a x− t interpolation plane
(b). (b) shows the interpolation at a pixel p. Initially pixels are copied from Image A and at some point we start copying from Image B. This corresponds to an
interpolation path as shown in (c). The interpolation path for pixel p moves in A towards the right until pA, makes a transition to B and then moves towards
the right in B to reach p. At the transition point, the intensity values in the two images match, and hence we get a visually plausible interpolation. In practice,
we do this matching in the gradient domain and copy gradient values instead of intensities for visually better results. (d) shows the optical flow interpolation.
Red and blue lines show the interpolation with standard forward and backward optical flow respectively.

paths is robust, since we do not need to consider visibility explicitly,
unlike standard optical flow and stereo.

Seen in the context of optical flow techniques, our path computation
robustly finds the forward and backward flows whenever they exist
(in unoccluded regions, both flows are approximately the same). In
many cases, a visually plausible interpolation is produced directly,
and no further processing is needed. Moreover, the computed paths
make it easy to identify the occluded regions deterministically as
a post-processing operation by simply checking the consistency of
flows (Sec. 3.3). Thereafter, we can easily perform plausible inter-
polation in these areas (Sec. 4.3).

Finally, we show that significant benefits, in terms of visual quality,
can be obtained by working in the gradient domain (Secs. 3.4, 4.4),
matching, moving and copying image gradients rather than pixel
intensities. To our knowledge, ours is the first technique that does
interpolation in the gradient domain.

We demonstrate the power of our framework by showing three ap-
plications (Sec. 6), ranging from temporal interpolation of video
sequences (Fig. 13) where we can address non-rigid motions of
multiple objects, to view interpolation (Fig. 12), to animating still
images (Figs. 1, 15) where we can interpolate the complex local de-
formations correctly. Moreover, as seen in Figs. 6, 7, 13 and 16, our
approach produces significantly better results than both commercial
video interpolation software (Adobe After Effects), and image in-
terpolation based on optical flow.

2 Previous Work
Optical flow and stereo: There is a wealth of research in
computer vision on establishing dense correspondences between
a pair of images. A good survey of two-view stereo methods
is [Scharstein and Szeliski 2002]. For more general motions of
scene elements, optical flow methods are usually employed [Bar-
ron et al. 1994]. Interpolation is not usually the main goal of these
methods, although it is simple to project pixels from the input im-
ages using the forward and backward flows. These results are then
blended together. However, this linear blending can lead to ghost-
ing and blurring if there are even minor errors in the flows. The
path framework (essentially a form of inverse optical flow) draws
heavily from these techniques. Our key innovations are the use of
a transition point to avoid blending the images, and the resulting
simplicity with which we handle occlusions.

The traditional emphasis in optical flow has been on computing
continuous flow, rather than robustly finding discontinuities. Some
methods break the optical flow into piecewise-smooth parts [Black
and Anandan 1996; Mémin and Pérez 2002]. However, these meth-

ods are parametric and cannot handle non-rigid scenes. [Xiao et al.
2006; Alvarez et al. 2007] take an important step by introducing
iterative variational methods. [Zitnick et al. 2005] jointly compute
optical flow and video segmentation. However, their technique fails
in the presence of significant occlusions due to absence of explicit
occlusion reasoning. In stereo, occlusions have been addressed with
dynamic programming within a scan-line [Belhumeur and Mum-
ford 1992; Geiger et al. 1992], and more recently with global opti-
mization using graph cuts [Kolmogorov and Zabih 2001; Sun et al.
2005]. An important disadvantage for most of these methods, is
they need to explicitly consider occlusions within the optimization
with some sort of occlusion penalty, that makes optimization much
more difficult. In contrast, in our method, a low cost path exists
even for the occluded pixels. Hence, we do not need to consider oc-
clusions explicitly in our optimization at all, and can handle them
as a simple post-optimization operation. This makes our energy
functional simple and easy to optimize.
Warping and morphing: More generally, a variety of techniques
exist to warp the input images to create intermediate frames. Ex-
tensive work exists in image-based rendering (IBR) [Chen and
Williams 1993; McMillan and Bishop 1995; Seitz and Dyer 1996;
Fitzgibbon et al. 2003], that uses either manual correspondence or
computer vision techniques based on stereo and optical flow. Most
of these methods focus on view interpolation, while we develop a
common framework for view and temporal interpolation by using
a general linear path. Some of these methods are inspired by sem-
inal earlier work on image morphing [Wolberg 1990], that can in-
terpolate between completely general (and possibly very different)
images. However, morphing usually requires user-specified corre-
spondences while our method is fully automatic.
Video processing: The concept of having transition points be-
tween input images and videos to generate new sequences has also
been used before for problems like video textures [Schödl et al.
2000], graph-cut textures [Kwatra et al. 2003] and video composit-
ing [Wang et al. 2005]. The inputs are the images or videos and the
output is also an edited or composited image or video respectively.
In comparison, we also find a variable transition point for our paths
at every pixel. However, our input is just two images and the output
is the whole sequence of interpolated frames.
Poisson reconstruction: In our algorithm, we copy gradients
from the original images and need to reconstruct pixel values us-
ing the gradients. The Poisson equation has been widely used for
problems other than image interpolation, such as image editing ap-
plications in the gradient domain [Pérez et al. 2003; Jia et al. 2006;
Agarwala et al. 2004; Jia and Tang 2008]. Similarly, the 3D Pois-
son equation has been used for video editing in the gradient do-
main [Wang et al. 2004]. However, in all these methods the gradi-

ent fields in the input images/videos remain static. Their inputs are
images (videos) and output also an image (video). In comparison,
our inputs are just two 2D images and output the whole sequence
of interpolated frames.

3 Overview of Our Algorithm
We now present an overview of our algorithm, highlighting its main
features and novel contributions. The main components are the path
framework (Sec. 3.1), a new free parameter via transition points
(Sec. 3.2), simplified occlusion handling (Sec. 3.3) and gradient
domain Poisson reconstruction (Sec. 3.4). Corresponding Secs.
4.1-4.4 discuss the implementation of each component of our algo-
rithm. We also discuss the limitations of our work alongside.

3.1 Path Framework
As discussed in Sec. 1 and illustrated in Fig. 2, our method is based
on the notion of a path at every pixel. The path starts at p in A,
moves through the pixels in A to pA, makes a transition to pB in
B and then moves through pixels in B to reach p. At the transi-
tion point, the intensity values in the two images match, and hence
we get a visually plausible interpolation. The interpolated values
at p can then be found by moving the pixels along this path and
copying their gradient values at p. Although Fig. 2 shows a hori-
zontal path, as suitable for view interpolation with rectified images,
the path framework is general. We can consider any linear path,
thus allowing a common framework for view and temporal interpo-
lation.2 The path ω can be parameterized by two general motion
vectors mA and mB in A and B respectively, ω = (mA,mB).

3.1.1 Path vs. Optical Flow

Our path framework is closely related to optical flow. Given a pixel
p in image A, forward optical flow determines to which pixel in im-
age B it matches best. Similarly backward optical flow is found
from B to A. Figure 2d shows the interpolation at p using for-
ward (red) and backward (blue) flow. These flows are then linearly
blended to get the final interpolation.

Our path framework can be viewed as an inverse optical flow. Given
a pixel p in the intermediate frame I(p, t), we determine from where
in image A or B this pixel comes. Note that in standard optical flow,
not all pixels in the intermediate frame will have a pixel in the ini-
tial images project onto them (either due to change in scale, minor
flow errors, incorrect handling of occlusions, or integer quantiza-
tion). These holes need to be filled as a post-processing step and
can lead to unpleasant visual artifacts, while our path framework
goes through each intermediate pixel, and so has no holes.

Both our method and standard optical flow have analogous approx-
imations and limitations. Optical flow assumes that a point moves
in a straight line from A to B and vice versa; curved motions can-
not be addressed. The path framework does not have this restric-
tion, but instead assumes that all points/pixels passing through p
during interpolation have the same flow. Thus, our paths are only
approximate for highly curved objects. In practice, these assump-
tions work well for most scenes, except at the occlusion boundaries
(Sec. 3.3). Both our and optical flow techniques also cannot handle
complex lighting changes. However, small changes in lighting can
be smoothly handled by working in the gradient domain (Sec. 3.4).

3.2 Arbitrary Transition Point

An important novel idea is the transition point between the images.
By allowing the transition point to vary, we give flexibility in where

2Although we only consider linear paths in this paper, our framework is
not restricted to them. For example, we can consider general non-linear
paths constructed using affine transformations on pixels. This might be
helpful for handling more general motions such as rotation, shear or scaling.

0

1

.5

(a) Input Images (b) Transition Point

Figure 3: (a) shows two input stereo images. (b) shows the transition point
at every pixel as a fraction of total path length. Note how the transition
point changes at every pixel to enhance the visual plausibility.

correspondence is established. As shown in Fig. 2c, the transition
points pA and pB at p are related to path parameters (mA,mB) by

pA = p+mA pB = p−mB. (1)

Since mA and mB are general motion vectors, the transition points
pA and pB can vary arbitrarily over the images and we choose the
one where the two images agree the most. We constrain mA and mB
to have the same direction so that the direction of motion remains
the same once we transition from A to B.

v̂A =
mA

| mA |
=

mB

| mB |
= v̂B.

Figure 3b shows the transition point at every pixel as a fraction of
total path length for the two stereo images shown in Fig. 3a. This
parameter is a function of matching cost and changes significantly
over the image.

Transition points provide an important extra degree of freedom to
improve the quality of interpolation compared to previous tech-
niques. Indeed, standard forward or backward optical flow (Fig.
2d) can be seen as fixing the transition to be at the end-points,
while other work on symmetric stereo using a cyclopean coordi-
nate system [Belhumeur and Mumford 1992] effectively requires
symmetric transition points.

While our method explicitly computes paths, not optical flows, the
distance between the transition points can be used to predict for-
ward (vA) and backward (vB) flows,

vA = pB− pA vB = pA− pB. (2)

In regions away from occlusion boundaries, the backward and for-
ward flows are nearly equivalent. The occluded regions are dis-
cussed in detail in Secs. 3.3, 4.3.

3.3 Occlusion Handling
An important benefit of arbitrary transition points is that they al-
low us to handle occlusions in a relatively simple and deterministic
manner. We assume that only two layers/objects are involved in oc-
clusion. Boundaries involving more than two layers as in Fig. 8 are
not directly addressed by our method.

Figures 4a and b show two objects—foreground represented by al-
phabets, and background represented by numbers. The background
is static and the foreground moves to the left by 4 pixels. As a result,
in Fig. 4c, the region 0123 of the background occluded in image A
becomes visible in image B.

Figure 4c shows one of the plausible paths for this pixel along with
our interpolation at that pixel. Since we can do matching at a point
other than the pixel p itself, there still exists a path in the occluded
region. The transition occurs at the foreground pixel g visible in
both images. Figure 4d shows another possible path at p. Note
that both the paths are equivalent except that the transition occurs
at pixel f . Hence, the initial path computation in Sec. 4.2 does
not need to explicitly consider occlusion at all. This is in stark
contrast to most optical flow and stereo algorithms—that must solve
for occlusion within the optimization by taking a penalty or treating
these pixels as outliers.

 (c) Possible Path (d) Alternative Path

a b c d e f g 4 5 6
b c d e f g 0 4 5 6
c d e f g 0 1 4 5 6
d e f g 0 1 2 4 5 6
e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

t1

t2

t3

-4
vA

4
vB

...................

e f g

0 1 2 3 4 5 6

...................

...................
 Back Plane

 Front Plane

 (a) Scene for Image A (b) Scene for Image B

a b c d e f g

0 1 2 3 4 5 6

 Front Plane
...................

...................
 Back Plane

vA= - 4

vA= 0

a b c d e f g 4 5 6
b c d e f g 0 4 5 6
c d e f g 0 1 4 5 6
d e f g 0 1 2 4 5 6
e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

t1

t2

t3

-4
vA

4
vB

a b c d e f g 4 5 6 e f g 0 1 2 3 4 5 6
 Image A Image B

Figure 4: Path interpolation in the occluded regions with one object sta-
tionary. (a) and (b) shows a scene with two objects, foreground represented
by alphabets and background represented by numbers. The background is
stationary whereas the foreground is moving to the left. As a result, the re-
gion 0123 is visible in image B but not in A. (c) shows one of the plausible
paths for this pixel along with the assigned flows by the path. A low cost
path exists even for the occluded pixels. The path computes the forward flow
whereas the backward flow is not defined. (d) shows another alternate path
at p. Note that both paths are the same except for the transition point.

Once the path is determined, the transition points pA and pB are
known and we directly compute the flows using Eq. 2. Figures 4c
and d show these flows at a pixel p in the occluded region. Since p
in image A has a correspondence in image B, we are able to predict
the forward flow. However, the backward flow is not defined since
the background (“1”) is not visible in A. Hence, our path framework
computes the forward or backward flow, or both, whenever they
exist. Fortunately, we can also use this property to robustly identify
the occluded regions (Sec. 4.3).

3.4 Gradient/Poisson Reconstruction
One of the main features of our algorithm is that we do the interpo-
lation in the gradient domain. Once we have computed the plausible
path at pixel p, we move the pixels along this path, copying their
gradient values to get the spatial gradients at p for the interpolated
frames. Temporal gradients at p can be computed by finding the dif-
ference in intensity values between two successive pixels that move
along this path. The gradient computation is discussed in more de-
tail in Sec. 4.4. We then do 3D Poisson reconstruction from the
computed gradients to get the interpolated frames. 3D Poisson re-
construction avoids local artifacts (e.g., at the transition points) as
the error is distributed among all the interpolated frames both spa-
tially and temporally. Moreover, since it computes the image whose
gradient is closest in the l2-norm, it helps to preserve the edges bet-
ter and hence reduce blurring. To our knowledge, ours is the first
work that does image interpolation in the gradient domain.

4 Implementation
We have presented the notion of a generalized path with an extra
degree of freedom to arbitrarily transition between the images. We
will now discuss the implementation of our algorithm and explain
in detail the various steps of Sec. 3. Secs. 4.1-4.4 correspond to the
components discussed in Secs. 3.1-3.4.

4.1 Path Computation: Basic Set Up
Let L denote the finite set of all possible discrete paths. If we allow
arbitrary motions, L becomes very large. Hence, we do our path
computation hierarchically. We construct the Gaussian pyramid of
our input images and perform our path computation at the coarsest

level. We then use the paths from the coarser level to construct the
set L of possible paths at the next finer level. We double the total
length of the path at the next finer level, and allow a shift of one
pixel to enable the path length to be an odd number. However, we
still allow the transition point to be arbitrary. This greatly reduces
the size of L, making the interpolation feasible for large motions.

4.2 Optimization for Paths: Computing Transition Point
Once we have defined our paths, it is easy to modify the standard
matching and energy functional methods for stereo and optical flow.

Correspondence (Local Cost): It is critical that the two images
should agree or match at the transition point. For a path ω at p, we
define its cost C(p,ω) as

C(p,ω) = M(pA, pB). (3)

M(pA, pB) is a measure of how well images A and B match at tran-
sition points pA and pB. Note that in view interpolation pA and
pB are the image points which in general correspond to the same
3D surface point. In order to compute the matching cost we define
q(pA, pB) to be the weighted sum of color matching and gradient
matching terms [Brox et al. 2004].

q(pA, pB) =‖∇A(pA)−∇B(pB) ‖2 +0.5 ‖ A(pA)−B(pB) ‖2, (4)

where ∇ represents the gradients in the image domain.

Note that if we double the intensities in the two images, the match-
ing cost increases by a factor of 4. We would like the cost to be
independent of large gradient intensities in A and B versus the small
ones. We define σ(pA) to be the standard deviation of pA in image
A from its neighboring pixels pN . Similarly, we evaluate σ(pB).
We define a normalized metric q′(pA, pB),

q′(pA, pB) =

√
q(pA, pB)

σ(pA)σ(pB)
. (5)

Note that the term inside the square root is similar to the normalized
cross correlation (NCC) [Gonzalez and Woods 2002] except that we
compute it with respect to neighboring pixels only rather than over
a window. To further encourage good matches only, we also raise
q′ to a large power, such as

M(pA, pB) = (q′(pA, pB))α . (6)

The function works for a wide range of values of α and we use
α = 8 in Figs. 1, 14 and 15. We have observed that other matching
functions can also be used without affecting the quality. One such
function that we use in Figs. 6, 7, 8, 9, 12 and 13 is

M(pA, pB) = exp(q′(pA, pB))−1. (7)

Coherency: The cost C is a per-pixel function and solves for
the path separately at every pixel. However, we would expect the
neighboring pixels to have similar motions and hence similar paths.
Moreover, there are uncertainties in paths in the texture-less regions
and hence we need a coherency term to regularize them. We intro-
duce a pairwise smoothness prior cost V (ω,ωN) between the re-
spective paths ω and ωN at the two neighboring pixels p and pN .3
Every path has a length d =|mA +mB | and direction v̂A = v̂B asso-
ciated with it. We define V (ω,ωN) as

V (ω,ωN) = min(| dv̂A−dN v̂AN |,δ), (8)

where δ is a discontinuity preserving threshold. The value of this
parameter for various examples in the paper is shown in Fig. 11.
Note that the coherency cost puts constraints only on the path
lengths and directions of two neighboring pixels but not on the
transition points. The neighboring pixels can still have arbitrary
transition points very different from each other.

3 pN refers to the 4-neighborhood of p

Global objective function: Since the coherency term V (ω,ωN)
involves pairwise pixels, we need to solve the interpolation glob-
ally. We define a global energy function E for interpolation that we
need to minimize. E is the sum of the path cost C (Eq. 3) for all the
pixels in the image and the pairwise coherency cost V (Eq. 8) for
every pair of neighboring pixels. Thus,

E = ∑
p

C(p,ω)+λ ∑
p

∑
pN

V (ω,ωN), (9)

where λ is the regularization parameter and controls the contribu-
tion of the coherency cost relative to the path cost. We have found
that our method works well over a broad range of λ .
Energy minimization: Since the set of possible discrete paths
L is finite, we can use any suitable global optimization technique
from the minimization literature. The energy function in Eq. 9 can
be minimized using a fast iterative expansion algorithm based on
graph-cuts ([Boykov et al. 2001; Kolmogorov and Zabih 2001]).
The algorithm is guaranteed to terminate in | L | iterations, finding
a strong local minimum of the energy. In our case, we found that
the algorithm generally terminates in 5−10 iterations.

Discussion: Note that our energy functional is simple with just
matching and coherency terms. We need not consider the occlu-
sions in our optimization. This is different from most stereo and
optical flow algorithms, where occluded regions are either consid-
ered as outliers or the occlusion labels are used explicitly in the
optimization. This make their energy functional more complex.

Note that because of the extra degree of freedom due to transition
points, our optimization involves 3 variables (mA and mB are gen-
eral 2D vectors, but constrained to have the same direction). In con-
trast, optical flow requires 2 variables.4 As a result, our method is
expected to perform slower than the standard optical flow methods.
Also note that we find paths only to one pixel accuracy leading to
coarse computation of the flow. In practice, we found this sufficient
for visually plausible interpolation.

4.3 Occlusion Handling
As discussed earlier in Sec. 3.3 and Figs. 4c and d, a plausible path
is found even in the occluded regions. Moreover, as we now show,
our method can detect the occlusions as a simple post-processing
step, and correct the paths accordingly.

We again consider the moving foreground against the static back-
ground scene discussed in Fig. 4. Figure 5a shows the forward (vA)
and backward (vB) flows at different pixels derived (using Eq. 2)
from the computed paths. Note that wherever the flow exists, our
path framework is able to compute it. However, the backward flow
is not defined in the occluded region 0123. We now present a post-
processing algorithm to detect these regions.
Forward flow verification: Consider a pixel p in the occluded
region. We project p in image A to p f in image B shown by the
green line in Fig. 5b. Since p in image A and p f in image B both
belong to the foreground, we have vA(p) = −vB(p f). Hence, we
mark vA(p) as a consistent flow. Note that our verification matches
flows, not pixel intensities, at these locations.
Backward flow verification: We project p in image B to pb in
image A using vB(p) shown by the red line. Since p in image B
belongs to the occluded region whereas pb in image A belongs to
the background, vB(p) 6= −vA(pb). Hence, we mark vB(p) to be
not defined.
Occlusion labeling: We repeat the process for all the pixels in
the images and get the markings shown in Fig. 5c. Only the flows
in the occluded regions shown by red lines are labeled by a cross.
We mark these pixels as occluded (red in Fig. 5d).

4There are occlusion labels also in some stereo and optical flow opti-
mizations, but these are binary labels only.

(c) Incorrect Flow Detection (d) Occluded Region

d e f g 0 1 2 4 5 6

b c d e f g 0 4 5 6
c d e f g 0 1 4 5 6

a b c d e f g 4 5 6

e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

t1

t2

t3

vA

X

vB

XXX

 (a) Flows Assigned By the Paths (b) Flow Verification
pf

a b c d e f g 4 5 6
b c d e f g 0 4 5 6
c d e f g 0 1 4 5 6
d e f g 0 1 2 4 5 6
e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

t1

t2

t3

vA

vB

X

No match

Match

pbp

p

a b c d e f g 4 5 6
b c d e f g 0 4 5 6
c d e f g 0 1 4 5 6
d e f g 0 1 2 4 5 6
e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

t1

t2

t3

vA

vB

0 0 0 -4 -4 -4 -4 -4 -4 -4

4 4 4 4 4 4 4 0 0 0

0 0 0 -4 -4 -4 -4 -4 -4 -4

4 4 4 4 4 4 4 0 0 0

0 0 0 -4 -4 -4 -4 -4 -4 -4

4 4 4 4 4 4 4 0 0 0

d e f g 0 1 2 4 5 6

b c d e f g 0 4 5 6
c d e f g 0 1 4 5 6

a b c d e f g 4 5 6

e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

t1

t2

t3

vA

X

vB

XXX

0 0 0 -4 -4 -4 -4 -4 -4 -4

4 4 4 ? ? ? ? 0 0 0

(e) Our Interpolation

d e f g 1 2 3 4 5 6

b c d e f g 3 4 5 6
c d e f g 2 3 4 5 6

a b c d e f g 4 5 6

e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

vA

vB

0 0 0 -4 -4 -4 -4 -4 -4 -4

4 4 4 0 0 0 0 0 0 0

t’
vB = 0 d e f g 1 2 3 4 5 6

b c d e f g 3 4 5 6
c d e f g 2 3 4 5 6

a b c d e f g 4 5 6

e f g 0 1 2 3 4 5 6

tA= 0

tB= 1

vA

vB

0 0 0 -4 -4 -4 -4 -4 -4 -4

4 4 4 0 0 0 0 0 0 0

Tr
an

sit
ion

Boundary
 Point

 (f) Corresponding Path

vA = -4

Figure 5: Occlusion detection for the static background case. (a) shows
the forward flow (vA) and backward flow (vB) assigned by our method for
all the pixels. (b) shows the verification process at a pixel p by projecting
the flows to the other image and checking their consistency. As a result,
we know that the backward flow in image B is not defined. (c) shows the
verification process for all the pixels. Note the mismatching (red lines) of the
background pixels. These pixels are then labeled as occluded (d). (e) shows
our interpolation at an occluded pixel. We interpolate using forward flow till
we reach the boundary point R at time t ′. We then start interpolating using
the backward flow. (f) shows the path corresponding to this interpolation.
The transition occurs at the boundary point in A. Note that the two images
no longer match at the transition point.

4.3.1 Assigning Flows to the Occluded Pixels
So far we have only identified the occluded regions. We still need to
assign flows to them for interpolation. We assume that the occluded
region has one of the two flows responsible for occlusion, the fore-
ground (alphabets, vB = 4) or the background (numbers, vB = 0).
We also assume that the occluded region as a whole is consistent
and takes the flow which majority of pixels want to take.

To determine whether the occluded region is part of the foreground
or background, we match pixel intensities, assuming that back-
ground pixels will match more closely with the background. Our
method is robust, since we match the whole area together, rather
than individual pixels separately. In practice, we have found that
this algorithm works well for most of our test scenes except in the
texture-less regions where the visual quality of interpolation is not
affected by the wrong flows. The same analysis holds for the gen-
eral occlusion case, with both objects moving, and is discussed in
the appendix.

4.3.2 Paths in Occluded Regions
Now that we know the flows in the occluded regions also, we can
estimate the path in these regions. The paths need to be recomputed

Backyard - Our Interpolation Zoom Ups (Low Resolution Images From Middlebury Website)

Ground Our Spatially JIF - Horn &
 Truth Method Variant Reg F-TV-L1 Schunck

 TV-L1- Graph Learning
 Fusion Improved Cuts Flow 2D-CLG CBF

Figure 6: Comparison with optical flow algorithms from Middlebury website on Backyard dataset. We show the interpolated image generated using our
technique, the zoom-ups of the marked region along with the ground truth and the top ten optical flow methods from the website on these images. Note that we
are able to preserve the ball and prevent ghosting artifacts whereas all other methods split it in two. A slight blurring can be seen near the occlusion boundary
in our method, since we are not computing sub-pixel flows.

Ground Truth Our Method Spatially Variant JIF - Reg F-TV-L1 Horn & Schunck

Fusion TV-L1-Improved Graph Cuts Learning Flow 2D-CLG CBF

Dumptruck - Our Interpolation Zoom Ups (Low Resolution Images From Middlebury Website)

Figure 7: Comparison with optical flow algorithms from Middlebury website on Dumptruck dataset. We show the brightness enhanced zoom-ups of the marked
region along with the ground truth and top ten optical flow methods from the website on these images. We are able to handle occlusions well and preserve the
frequency content. Note the blurring of tires and the ghosting on the back window visible in other methods.

at the pixels where forward flow (vA) and backward flow (vB) are
incompatible. Consider one such pixel p in Fig. 5e. We follow
interpolation with forward flow (shown in red) till we reach the
boundary point at time t ′. Note that we can easily determine the
boundary in A as the point where the forward flow changes. We then
directly go over to occluded pixel p in image B. The correct path
is shown in Fig. 5f. The path estimation for the general occlusion
case, with both regions moving, is shown in the appendix.

4.4 Moving Gradients For Interpolation
Once we have found the visually plausible path ω at pixel p = (x,y),
we can find the k interpolated values (intermediate frames) I(p, t),
t = 0 : k−1 at p by moving the pixels in k uniform steps along this
path and copying their values at p. We would like to point out that
k is a variable. Once we have a path, we can discretize into any
number of steps and hence can produce a continuous interpolation
at any frame rate. In order to copy values from the sub-pixel loca-
tions (due to division of path in k uniform steps), we use bilinear
interpolation. Instead of interpolating the intensities we actually
interpolate the gradients. As discussed earlier, working in the gra-
dient domain preserves edges better.

Let G(p, t) = (Gx,Gy,Gt) denote respectively the x, y and temporal
gradient of the interpolated frames that we want to estimate from
the paths. The spatial gradients (Gx,Gy) can be computed by copy-
ing the gradients in image A and B as we move along the path. The
temporal derivative Gt(p, t) can be found by computing the rate of
change of intensities in the images A and B in the direction of the
path as we move along it.5

Once we get the derivative field G, we solve the 3D Poisson equa-
tion [Wang et al. 2004]

∇
2I = ∇·G, (10)

5In order to incorporate the effect of discretization of the path into k
steps, we actually scale the temporal derivative Gt by k−1

d where d is the
path length.

where ∇2I = ∂ 2I
∂x2 + ∂ 2I

∂y2 + ∂ 2I
∂ t2 is the Laplacian operator and the gra-

dient ∇·G = (∂Gx
∂x + ∂Gy

∂y + ∂Gt
∂ t) is the divergence operator, with the

boundary conditions,

I(p,0) = A I(p,k−1) = B. (11)

5 Evaluation
We now evaluate different aspects of our technique. We will first
compare it with the state-of-the-art optical flow based interpolation
algorithms. We will then discuss the importance of various aspects
of our algorithm such as arbitrary transition point, robust occlusion
handling and working in the gradient domain.

5.1 Comparison with Optical Flow
Our method has several advantages over standard optical flow tech-
niques for interpolation. Figures 6 and 7 show our interpolation
result on two of the images from the optical flow datasets available
at http://vision.middlebury.edu/flow/. The website contains results
and evaluations of the state of the art optical flow algorithms [Baker
et al. 2007] and has been widely accepted as a benchmark for these
methods. While their primary focus, and that of most algorithms, is
on evaluating the flow itself, interpolated images are also available.

Since our aim is to do visually plausible interpolation, we focus
on the qualitative analysis. The publicly available portion of the
website provides a low-resolution version of ground truth and re-
sults from various optical flow methods, that suffices for a direct
visual comparison. In general, we find that our method provides
visually superior interpolation with minimal artifacts in most cases,
although the quantitative flow does not yet match the accuracy of
other methods (nor is this our goal).

In Figs. 6 and 7, we show our interpolation results, and zoom-ups
in interesting areas, to compare to ground truth, and the top ten opti-
cal flow algorithms in terms of the numerical error from the website.
For the backyard scene (Fig. 6), with a ball dropping rapidly on the
left, no other method is able to keep the ball together, without split-
ting into two. On the other hand, we are able to avoid the ghosting

Basketball Dataset (Middlebury Website)

Ground Truth Our Method

 Jif-Reg F-TV-L1
 (Anonymous) (Wedel et. al 2008)

Figure 8: Middlebury’s basketball dataset. This is a difficult case which
violates our two region occlusion assumption near the hand. There are three
regions involved in occlusions near the hand: ball, hand and background.
Note that other methods also do not perform well on this example.

as well as handle most of the occlusions near the ball accurately. A
few blurring artifacts can be seen near the occlusion edges, because
there is a one pixel ambiguity in locating the occlusion boundaries
(including sub-pixel matching in our technique would likely resolve
this in future). Similarly, in Fig. 7, we are able to handle complex
occlusions between the cars and truck, as compared to other algo-
rithms. Note the blurring of the tire and ghosting artifacts on the
back window of the car visible in other methods.

Note that large regions of the image such as the background will
have small motion without significant occlusions. In these regions
we expect optical flow algorithms to perform quantitatively better
since they compute flows to sub-pixel accuracy. However, the inter-
polated images produced by optical flow and our method are iden-
tical qualitatively in these simple regions. Our major benefits are
in areas with large motion and occlusions, e.g., the ball in Fig. 6.
In these regions the optical flow interpolation has visual artifacts
whereas we are able to preserve the visually salient features.

Figure 8 shows a complicated example from the Middlebury dataset
where our assumptions are violated. The occlusions with the hand
are complex since there are three contributing regions instead of
two: hand, background and ball. Note that these regions are difficult
for any algorithm, and violate the assumptions of most optical flow
techniques. Our results are thus comparable to other methods.

5.2 Evaluation of Components: Transition points, Oc-
clusion handling and Poisson blending

Our algorithm involves a few simple, yet critical and novel design
decisions such as arbitrary transition points, robust occlusion han-
dling, and working in the gradient domain. In order to show the
importance of each step, we add these features incrementally. Fig-
ure 9 shows zoom-ups of the regions of the backyard scene in Fig. 6,
along with a table showing which features are being added. Fig-
ure 9a shows images with fixed transition (in the middle of the
path), no gradient blending and no explicit occlusion handling.
Note that there are lots of artifacts. Allowing for arbitrary tran-
sition points (Fig. 9b) considerably improves image quality, espe-
cially in Row 3. Similarly, doing Poisson blending (Fig. 9c) gives
better results, e.g. in Rows 1 and 2. However, note that there are
still artifacts. In Fig. 9d, we allow both for arbitrary transition
points as well as Poisson blending. This further improves the in-
terpolation quality, especially in Row 2. Note the improvement in
the high frequency artifacts on the leg (Fig. 9b) and missing foot
(Fig. 9c). However, the ball in the top row is properly handled
only when we turn on the post-process occlusion handling (Fig. 9e
which focuses on transition points and occlusions, while turning
off the Poisson blending). Figure 10 shows the occlusion map we
compute using our post-process occlusion handling. The blue color

(a) (b) (c) (d) (e) (f)

x
(a) (b) (c) (d) (e) (f)

 Transition
x
x x

x x
x

x
x

R
ow

 3

 R
ow

2

 R

ow
1

(a) (b) (c) (d) (e) (f)

Occlusions
 Poisson

Figure 9: Importance of different steps of our technique. As shown in the
table, we incrementally add various features of our method in the backyard
scene of Fig. 6 to show their importance. Note that transition point, occlu-
sion handling and Poisson reconstruction all play a crucial role in removing
artifacts from the interpolation, and hence are crucial for our method.

Occlusion Maps

Figure 10: Occlusion maps computed using our post-processing. The oc-
cluded regions are shown in blue. Note that occlusions near the ball and
other edges are detected correctly

shows the occluded regions. Note that occlusions near the ball and
other edges are detected correctly. Finally, in the right-most column
(Fig. 9f),we switch on all our features and get better quality inter-
polation. Thus, all three steps (flexible transition points, occlusion
handling, and working in the gradient domain) play a crucial role.

6 Applications
We now show a wide range of applications that can be handled by
our method: view interpolation, temporal interpolation of video se-
quences with complex non-rigid motions, and the animation of still
images. The values of various parameters and image resolution for
these and other examples in the paper are shown in Fig. 11.

Example Resolution λ δ Pyramid Levels
Wink (Figs. 1, 14) 270×270 10 20 1
Elephant (Fig. 12) 643×525 5 2 3
Milk Video (Fig. 13) 420×220 5 2 2
Cat (Fig. 15) 295×164 10 20 2
Middlebury (Figs. 6-8) 480×640 5 2 3

Figure 11: Parameter values for the examples.

6.1 View Interpolation
Figure 12 shows interpolation between two different views of an
elephant figurine. The maximum disparity or motion between the
images is 30 pixels, more than most of the previous view interpo-
lation techniques. Figure 12a shows one of the intermediate frames

(b) Input Images

(a) Our View Interpolation (c) Our Method (d) Ground Truth

Figure 12: Figure showing view interpolation between two images us-
ing our method. The interpolated frame (a,c) computed using our method
matches closely with the ground truth (d), preserving the spatial frequencies
of the input images (b). We are also able to handle occlusions properly at
most of the occlusion boundaries, with only a few artifacts near the left ear.

generated using our method. Figure 12c shows a zoom into the
trunk. For evaluation purposes, we skipped a number of frames
between the input images in the original database, comparing the
closeup of our result (Fig. 12c) with the ground truth (Fig. 12d). We
preserve the spatial frequencies of the input images. We can han-
dle comparatively larger disparity with better occlusion handling as
compared to the current methods for two input images.

6.2 Temporal Interpolation of Videos
One of the main applications of our framework is temporal up-
sampling and interpolation of video sequences. In many scenar-
ios, especially when the original frame rate is lower, interpolated
videos where the scene varies slowly and smoothly are visually
more pleasing. Typically a video contains complex non-rigid mo-
tion and most of the current optical flow algorithms fail to inter-
polate these effects correctly if the motions are large between the
frames. Although our method interpolates between only two im-
ages, we can actually do a full sequence by interpolating between
successive video frames.

Figure 13 shows the interpolation between two frames of a video
sequence with fixed viewpoint. This is a challenging sequence in-
volving complex non-rigid motions. For evaluation purposes, we
used the first and third frames (Figs. 13a and b), generating and
comparing our result (Figs. 13c and e) to the actual second frame
(ground truth, Fig. 13d). Note that the interpolated frame gener-
ated using our method matches very closely with the ground truth.
We also used the commercial implementation in Adobe After Ef-
fects (Fig. 13f) with default settings, an optical flow algorithm sim-
ilar to [Brox et al. 2004] (Fig. 13g) and simple linear blending
(Fig. 13h) of the input images for interpolating these frames. These
methods lead to ghosting and other artifacts near the occlusion
edges. In comparison, our interpolation does not suffer from se-
rious ghosting artifacts and also handles occlusion edges correctly.
For this sequence, we insert 8 intermediate frames to slow down the
video 9 times and allow for smoother playback.

6.3 Animating Still Images
Given two still images, animating them is a hard and under-
constrained problem. Consider the two images of a face in Fig. 1.
Going from normal (Fig. 1a) to a smiling and winking face (Fig. 1c)
involves complex local deformations of the skin (e.g., dimple for-
mation) and is in general very difficult to capture from just two
images automatically. Image morphing techniques can be used, but
they are not automatic and require user-specified correspondences.

Figure 1b shows the three intermediate frames produced by our
method. We are able to capture the local deformations to produce
a plausible interpolation of the face. The smooth animation, shown
in the accompanying video, looks very natural.

Figure 14 shows the interpolation between four different face emo-
tions – normal, smile, wink, and wink plus smile. Assuming these
four faces to be the vertices of a square, we can find any face emo-
tion within the square by first using the input images to interpo-
late along the edges and then interpolating the interpolated frames
themselves. In the figure, we show three interpolated faces within
the square and the interpolation looks plausible.

Figure 15 shows the interpolated frames for a yawning cat. This is
a challenging example since artifacts like blur are easily noticeable
on textures like fur and wood. Our method produces reasonable
interpolation and the animation looks quite natural. A few blur-
ring artifacts near the whiskers and tongue are due to the fact that
these features are not clearly visible in the input image A. Figure 16
shows a comparison of one of our intermediate frames with the one
produced by the commercial implementation in Adobe After Ef-
fects. Note the blurring of the fur and the wood texture and ghosting
artifacts near the nose and tongue in the After Effects interpolation.

7 Conclusions and Future Work
We have presented a method for the plausible interpolation of im-
ages. We move gradients in the input images along a general linear
path with arbitrary transition points between the images, to solve
simultaneously for all the intermediate frames and produce tem-
porally consistent interpolation. Our path framework also allows
us to correctly address many of the common occlusion effects in a
relatively easy and deterministic manner. We can handle complex
non-rigid motions, different viewpoints and animate still images.
We also preserve the frequency content of the original images and
do not suffer from artifacts like ghosting and blur.

In the future, we would like to increase the generality of our path
framework. We would like to extend our path framework to in-
terpolate other visual data like light fields and images with dif-
ferent illuminations for light transport computations. One of the
potential ways to do this is to find some intrinsic decomposi-
tion/representation of the images, e.g., separation of diffuse and
specular components and interpolate these components separately.
We would also like to generalize our occlusion framework to han-
dle more complex effects and boundaries involving more than two
layers of motion.

Image interpolation is a problem of significant interest in both com-
puter graphics and computer vision. In this paper, we have intro-
duced a novel path-based algorithm, based on moving gradients,
with a wide range of applications. Our method, may be rele-
vant in many other applications such as finding correspondences
for stereo and optical flow with occlusion detection. In summary,
we believe our work to be a significant step towards addressing
the long-standing problems of temporal interpolation of video se-
quences, view interpolation, and animation of still images.

Acknowledgements
This work was supported in part by an ONR Young Investigator
Award N00014-07-1-0900 on Mathematical Models of Illumina-
tion and Reflectance for Image Understanding and Machine Vi-
sion, ONR PECASE grant N00014-09-1-0741, and a generous gift
from Adobe. We also acknowledge NSF grants (CCF 03-03522,
03-25867, 04-46916, 05-41259, 07-01775), a Sloan Research Fel-
lowship, and equipment donations from Intel and NVIDIA. We also
acknowledge Peter Sand for running the optical flow comparisons
and the reviewers for providing their valuable feedback on the work.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,

(a) Input Image A (b) Input Image B (c) Interpolated Image - Our Method

(d) Ground Truth (e) Our Method (f) Adobe After Effects (g) Optical Flow (h) Linear Blending

Figure 13: Temporal interpolation of a video sequence. (c) shows one of our interpolated frames between two input frames (a) and (b). While we show only a
single frame above, we are solving simultaneously for 8 intermediate frames. For purposes of evaluation, we used the first and third frames of the sequence,
generating and comparing the closeup of our result (e) to the actual second frame (ground truth) (d) of the sequence. This is a challenging video sequence
involving complex non-rigid motions, and previous methods such as the commercial implementation in Adobe After Effects (f) with default settings, an optical
flow algorithm similar to Brox et al. 2004 (g) and simple linear blending (h) lead to ghosting and other serious artifacts.

Normal Smile

 Wink Wink + Smile

Figure 14: Animation of face emotions. We interpolate between four different face emotions – normal, smile, wink, and wink plus smile. Assuming these faces
to be the vertices of a square, we can find any face emotion within the square. We show three such faces and the interpolation looks plausible.

Input Images Input Image A Interpolated Frames - Our Method Input Image B

Figure 15: Animation of a yawning cat. This is a challenging sequence since artifacts like blurring are easily noticeable on textures like fur and wood. We
show two of the interpolated frames generated using our method. We are able to animate the sequence, making it look natural.

M. 2004. Interactive digital photomontage. ACM Trans. on
Graphics (SIGGRAPH 2004) 23, 3 (aug), 294–302.

ALVAREZ, L., DERICHE, R., PAPADOPOULO, T., AND SANCHEZ,
J. 2007. Symmetrical dense optical flow estimation with occlu-
sions detection. Int. Journal of Computer Vision 75, 3 (Decem-
ber), 371–385.

BAKER, S., SCHARSTEIN, D., LEWIS, J. P., ROTH, S., BLACK,
M. J., AND SZELISKI, R. 2007. A database and evaluation
methodology for optical flow. In Proc. IEEE Int. Conf. Computer
Vision, 1–8.

BARRON, J., FLEET, D., AND BEAUCHEMIN, S. 1994. Perfor-
mance of optical flow techniques. Int. Journal of Computer Vi-

sion 12, 1, 43–77.

BELHUMEUR, P., AND MUMFORD, D. 1992. A bayesian treat-
ment of the stereo correspondence problem using half-occluded
regions. Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition, 506–512.

BLACK, M., AND ANANDAN, P. 1996. The robust estimation of
multiple motions: Parametric and piecewise-smooth flow-fields.
Computer Vision and Image Understanding 63, 1 (January), 75–
104.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approx-
imate energy minimization via graph cuts. IEEE Trans. Pattern
Analysis and Machine Intelligence 23, 11, 1222–1239.

Our Method Adobe After Effects
Interpolated Frame

ghosting

blurring

Figure 16: Comparison of our method with Adobe After Effects for one of
the interpolated frames in Fig. 15. Note the blurring of the fur and the wood
texture and ghosting artifacts near the nose in the After Effects interpola-
tion, while our method has minimal artifacts.

BROX, T., BRUHN, A., PAPENBERG, N., AND WEICKERT, J.
2004. High accuracy optical flow estimation based on a the-
ory for warping. In Proc. European Conf. Computer Vision,
vol. 3024, 25–36.

CHEN, S., AND WILLIAMS, L. 1993. View interpolation for image
synthesis. In Proc. SIGGRAPH 93, 279–288.

FITZGIBBON, A. W., WEXLER, Y., AND ZISSERMAN, A.
2003. Image-based rendering using image-based priors. In
Proc. IEEE Int. Conf. Computer Vision, 1176–1183.

GEIGER, D., LADENDORF, B., AND YUILLE, A. 1992. Occlu-
sions and binocular stereo. In Proc. European Conf. Computer
Vision, 425–433.

GONZALEZ, AND WOODS. 2002. Digital Image Processing. Pren-
tice Hall Inc.

JIA, J., AND TANG, C. 2008. Image stitching using structure defor-
mation. IEEE Trans. Pattern Analysis and Machine Intelligence
30, 4, 617–631.

JIA, J., SUN, J., TANG, C., AND SHUM, H. 2006. Drag-and-drop
pasting. ACM Trans. on Graphics (SIGGRAPH 2006) 25, 3 (jul),
631–637.

KOLMOGOROV, V., AND ZABIH, R. 2001. Comput-
ing visual correspondence with occlusions using graph cuts.
Proc. IEEE Int. Conf. Computer Vision, 508–515.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. ACM Trans. on Graphics (SIGGRAPH 2003) 22, 3
(July), 277–286.

MCMILLAN, L., AND BISHOP, G. 1995. Plenoptic modeling:
An image-based rendering system. In In Proc. SIGGRAPH 95,
39–46.

MÉMIN, E., AND PÉREZ, P. 2002. Hierarchical estimation and
segmentation of dense motion fields. Int. Journal of Computer
Vision 46, 2, 129–155.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Trans. on Graphics (SIGGRAPH 2003) 22, 3 (jul),
313–318.

SCHARSTEIN, D., AND SZELISKI, R. 2002. A taxonomy and
evaluation of dense two-frame stereo correspondence algorithm.
Int. Journal of Computer Vision 47, 1, 7–42.

SCHÖDL, A., SZELISKI, R., SALESIN, D., AND ESSA, I. 2000.
Video textures. ACM Trans. on Graphics (SIGGRAPH 2000),
489–498.

SEITZ, S., AND DYER, C. 1996. View morphing. In In Proc.
SIGGRAPH 96, 21–30.

SUN, J., LI, Y., KANG, S., AND SHUM, H. 2005. Symmetric
stereo matching for occlusion handling. Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition 2, 399–406.

WANG, H., RASKAR, R., AND AHUJA, N. 2004. Seamless video
editing. In Int. Conf. on Pattern Recognition, vol. 3, 858–861.

WANG, H., XU, N., RASKAR, R., AND AHUJA, N. 2005.
Videoshop: A new framework for spatio-temporal video edit-
ing in gradient domain. Proc. IEEE Conf. Computer Vision and
Pattern Recognition 2, 1201.

WOLBERG, G. 1990. Digital Image Warping. IEEE Press.

XIAO, J., CHENG, H., SAWHNEY, H., RAO, C., AND ISNARDI,
M. 2006. Bilateral filtering-based optical flow estimation with
occlusion detection. In Proc. European Conf. Computer Vision,
vol. 1, 211–224.

ZITNICK, C. L., JOJIC, N., AND KANG, S. B. 2005.
Consistent segmentation for optical flow estimation. In
Proc. IEEE Int. Conf. Computer Vision, 1308–1315.

Appendix: General Occlusion Case
We now consider a general case where both the foreground and
background are moving in the same direction (Fig. 17). The sce-
nario where both objects are moving in the opposite direction is
similar to the static flow case discussed in Sec. 4.3.

Consider a pixel p in Fig. 17a. Pixel p in image A belongs to the
foreground whereas it belongs to the background in image B. This
point is not occluded in either of the images. Note that this pixel
has valid forward (vA =−7) and backward flow (vB = 3), although
they both are different. Depending on whether the transition points
belong to the foreground or the background, there are two possible
path lengths at p shown in green and blue corresponding to forward
and backward flows respectively. At some pixel r, the path length
changes from 7 to 3 (The coherency cost in our optimization makes
sure that this transition occurs at only one point). This change will
occur before the boundary of the faster moving region.

We take these paths, estimate the flows vA and vB (Fig. 17a) using
Eq. 2 and then run the verification process (Fig. 17b) of Sec. 4.3.
Again our algorithm estimates at least one of the two flows at every
pixel. Note that all the occluded pixels in Image B (shown by the
red cross) are correctly labelled as inconsistent. However, unlike
the static case, some other pixels (shown by the blue cross) in the
two images are labelled as inconsistent. In these regions, p belongs
to the foreground in image A and background in image B and cor-
respondence exists for both of them in the other image. However,
from these estimates of the flow and verification we can directly
determine the occluded regions.

We observe that the marked regions in image A and B together form
a single connected component q− s (Fig. 17c). Further, the oc-
cluded region belongs to only one of the images (in this case to
image B). Since length | s− r |>| r−q |, we conclude that the oc-
cluded region belongs to Image B and hence remove the cross from
pixels in image A. We then run a local optimization to assign the
correct flow to these pixels in image A and correct the correspond-
ing pixels in image B. In the end, we are left only with the occluded
region in image B.

Path near the occluded region: Figure 18a shows our interpolation
for the general case. In this case once we reach the boundary point,
we project the point (p, t

′
) to image B using backward flow and

start moving towards p in image B with this flow (shown in green).

 (a) Possible Paths (b) Flow Verification (c) Connected Component Analysis

a b c d e f g h i j 4 5 6 7

p

tA

tBh i j 0 1 2 3 4 5 6 7 8 9 10
g h i j 1 2 3 4 5 6 7 8 9 10
f g h i j 1 2 3 4 5 6 7 8 9
e f g h i j 2 3 4 5 6 7 8 9
d e f g h i j 2 3 4 5 6 7 8
c d e f g h i j 3 4 5 6 7 8

 b c d e f g h i j 3 4 5 6 7

p

r
vA

7 7 7 7 7 3 3 3 3 3 7 7 7 7 vB

-7 -7 -7 -7 -7 -7-7 -7 -7 -3 -3 -3-3 -3

7 7 7 7 7 3 3 3 3 3 7 7 7 7

a b c d e f g h i j 4 5 6 7

h i j 0 1 2 3 4 5 6 7 8 9 10
g h i j 1 2 3 4 5 6 7 8 9 10
f g h i j 1 2 3 4 5 6 7 8 9
e f g h i j 2 3 4 5 6 7 8 9
d e f g h i j 2 3 4 5 6 7 8
c d e f g h i j 3 4 5 6 7 8

 b c d e f g h i j 3 4 5 6 7

X

vA

XX

vB
XX XX XX X

s r q

-7 -7 -7 -7 -7 -7-7 -7 -7 -3 -3 -3-3 -3

s r q

a b c d e f g h i j 4 5 6 7

h i j 0 1 2 3 4 5 6 7 8 9 10
g h i j 1 2 3 4 5 6 7 8 9 10
f g h i j 1 2 3 4 5 6 7 8 9
e f g h i j 2 3 4 5 6 7 8 9
d e f g h i j 2 3 4 5 6 7 8
c d e f g h i j 3 4 5 6 7 8

 b c d e f g h i j 3 4 5 6 7

vA

vB
X XX X

tA

tB

-7 -7 -7 -7 -7 -7-7 -7 -7 -7 -3 -3-3 -3

7 7 7 7 7 3 3 3 3 3 7 7 7 7

s r q

s r q

Figure 17: General occlusion case. (a) shows two objects, foreground represented by alphabets and background represented by numbers both moving in the
same direction. The pixel p has different forward (vA =−7) and backward flow (vB = 3). However both pixels have well defined correspondences. As a result,
two possible paths corresponding to these flows exist (shown in green and blue). (b) shows the verification process discussed in Fig. 5 for these regions. Due
to existence of pixels like p in (a), pixels shown by blue crosses are labelled inconsistent although they have correspondence in the other image. (c) shows that
these regions in image A and B form a single connected components q− s, and, since | q− r |<| r− s |, we correct r− s and the corresponding pixels (shown
by green lines) in image B to be non-occluded.

a b c d e f g h i j 4 5 6 7 tA= 0

tB= 1h i j 0 1 2 3 4 5 6 7 8 9 10
g h i j 1 1 2 3 4 5 6 7 8 9
f g h i j 1 2 3 4 5 6 7 8 9
e f g h i j 1 2 3 4 5 6 7 8
d e f g h i j 2 3 4 5 6 7 8
c d e f g h i j 2 3 4 5 6 7

 b c d e f g h i j 3 4 5 6 7

vA

vB

t’

p

p

vA = 3

a b c d e f g h i j 4 5 6 7 tA= 0

tB= 1h i j 0 1 2 3 4 5 6 7 8 9 10
g h i j 1 1 2 3 4 5 6 7 8 9
f g h i j 1 2 3 4 5 6 7 8 9
e f g h i j 1 2 3 4 5 6 7 8
d e f g h i j 2 3 4 5 6 7 8
c d e f g h i j 2 3 4 5 6 7

 b c d e f g h i j 3 4 5 6 7

vA

vB

p

p

Boundary
 Point

Tr
an

sit
ion

(a) Our Interpolation (b) Corresponding Path

vA = -7

3 3 3 3 3 3 3 3 3 3 7 7 7 3 3 3 3 3 3 3 3 3 3 3 7 7 7 3

-7 -7 -7 -7 -7 -7-7 -7 -7 -7 -3 -3-3 -3-7 -7 -7 -7 -7 -7-7 -7 -7 -7 -3 -3-3 -3

Figure 18: Path for general occlusion case. (a) shows interpolation at one
such pixel. We interpolate using forward flow till we reach the boundary
point at time t

′
. We then start interpolating using the backward flow. (b)

shows the path corresponding to this interpolation. The transition occurs at
the boundary point in A. Note that the two images do not match at transition
points.

The corresponding corrected path is shown in Fig. 18b. Note that at
transition point, pixels no longer match because of discontinuities.
Hence we are able to interpolate the occlusions correctly.

Finite width objects: We can do a similar analysis for finite width
objects where the motion of the object is greater than its dimen-
sions. In this case the foreground moves over a background pixel
p and passes over it due to finite width. As a result, p in both the
images belongs to the background and is assigned the background
flow with no occlusions. Hence we interpolate at p using only back-
ward flow and hence in some intermediate frames where foreground
passes over it we do not interpolate correctly. Our path framework
allows us to detect such pixels in the intermediate frames by pro-
jecting the foreground flow and detecting its compatibility with the
flow assigned by our path framework at the intermediate pixels.

