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Abstract

This paper presents a new framework for solving geomet-
ric structure and motion problems based on L.,-norm. In-
stead of using the common sum-of-squares cost-function, that
is, the La-norm, the model-fitting errors are measured us-
ing the Lo,-norm. Unlike traditional methods based on Lo,
our framework allows for efficient computation of global es-
timates. We show that a variety of structure and motion prob-
lems, for example, triangulation, camera resectioning and
homography estimation can be recast as a quasi-convex op-
timization problem within this framework. These problems
can be efficiently solved using Second Order Cone Program-
ming (SOCP) which is a standard technique in convex op-
timization. The proposed solutions have been validated on
real data in different settings with small and large dimen-
sions and with excellent performance.

1. Introduction

Structure and motion problems form a class of geometric re-
construction problems where the goal is to infer the scene
structure (often 3D points) and/or the camera motion, given
image data. Let P;, ¢ = 1, ..., m, denote a set of 3 X 4 cam-
era matrices, Uj, j = 1,...,n, a set of 3D points, and u;; the
projected image points, all represented in homogeneous co-
ordinates. So, given u;;, the objective is to recover P; and/or
U; under a pinhole camera model u;; ~ P;Uj.

The correct procedure for reconstructing the unknowns
(again, either structure or motion, and in some cases both) is
to find the solution which reproduces the images as closely as
possible. In other words, we want to minimize the geometric
distances between the measured image points and the repro-
jected structure and motion parameters. Let d(-,-) denote
the geometric distance between two image points and let r

be the residual vector r = [..., d(u;;, P;U;), ... ]T containing
all such mn distances. Whence, one is led to the following
optimization problem: min ||r||, where || - || is usually the

Ls-norm. The purpose of this paper is to investigate what
simplifications can be obtained if the L-norm is replaced by
the L.,-norm, thus analyzing: min ||7||s.

The main contribution of this paper is the introduction of

Centre for Mathematical Sciences
Lund University, Sweden

a L,-framework which allows for efficient computations of
global estimates for a wide class of geometric vision prob-
lems. The solutions are invariant with respect to projective
transformations of the world coordinate system and to simi-
larity transformations in the image plane, which follows from
the well-known fact that the image metric d(-, -) itself is in-
variant to such transformations. Therefore, there is no need
for normalization of the image coordinates which is prereq-
uisite for all algebraic methods. Another important contribu-
tion is the introduction of the optimization framework of sec-
ond order cone programming (SOCP) and how SOCP can be
applied to reconstruction problems involving rational poly-
nomials. The technique may have applications in other areas
of computer vision.

Solving for structure and motion with Ls-norm is a hard
non-convex problem. Globally optimal estimates can only
be computed for rare instances of the problem. For example,
a solution to the triangulation problem for two views was
given in [4] for Ly-norm and in [10] for L.,-norm. Another
important example is the factorization algorithm [14], but it
is limited to the affine camera model. The projective gen-
eralizations of the factorization approach do not generally
optimize the Ly-norm, cf. [13, 6]. Although there are re-
cent and promising attempts of computing global estimates
of non-convex problems [2, 7], they are limited to problems
of small dimensions that are computationally demanding and
rather cuambersome to implement.

In general, one has to rely on local, iterative techniques,
so-called bundle adjustment methods [16]. In turn, such
methods are reliant on good initialization in order to avoid
local minima. However, the initialization techniques fre-
quently used, e.g., the eight-point algorithm [9, 15], optimize
some algebraic cost-function which simplifies the problem,
but it has no geometrical or statistical meaning. When sig-
nificant measurement noise is present, such estimates may be
far from the global optimum.

L,-optimization can be regarded as something in be-
tween the statistically optimal L-methods and linear algo-
rithms. The L,-framework inherits good properties from
both of these alternative approaches. For example, global es-
timates are guaranteed with a geometrically meaningful cost-
function and at a reasonable computational cost. A potential



disadvantage is that the L,-norm is not robust to outliers.
The ultimate test for this is to try the method on real data and
evaluate its performance.

The most closely related work is [3] and it was an in-
spiration for the present paper. It was shown that the L -
triangulation problem for an arbitrary number of views can
have only one (local) minimum and hence it is the global
minimum. Then, the problem of reconstructing 3D points
and camera centres using an angular image norm was inves-
tigated. An algorithm based on line search was described,
but it did not work well for problems with many degrees of
freedom. Also, no experimental results were given. We gen-
eralize their work in several directions. First of all, a class
of geometric reconstruction problems is handled within our
framework using the L.,-norm of the reprojection errors. At
all times, the solutions are invariant with respect to coordi-
nate transformations of the image and the world. And per-
haps most importantly, an efficient algorithm is presented
based on standard convex optimization techniques, capable
of handling large-scale problems.

This paper is organized as follows. In the next section,
an introduction to the necessary machinery of convex opti-
mization is introduced. Then, the framework of SOCP and
quasiconvex functions is applied to the triangulation problem
(Section 3), the estimation of homographies and camera pose
(Section 4) and multiview reconstruction problems in Sec-
tion 5. Finally, experimental results are given in Section 6
followed by a concluding discussion.

2. Convex Optimization

In this section, some notations and concepts of convex op-
timization are presented. For more details, the reader is re-
ferred to the excellent book [1] or [8] for SOCP problems.

A function f : R" — R is convex if its domain, domf, is
a convex set and for all z,y € domf, and # with0 < 0 <1,
we have

[0z +(1-0)y) <0f(x) + (1 -0)f(y).

A convex optimization problem is one of the form

min fo(z)

subjectto  fi(z) <b;, i=1,...,m.

Here z € R™ and both the objective function fo(z) : R” —
R and the constraint functions f; : R” — R are convex
functions. A function f : R” — R is called quasiconvex if
its domain and all its sublevel sets

{z e domf | f(z) < a}

for all @ € R are convex. All convex functions are also
quasiconvex, but the opposite is not necessarily true. Such
an example is given in Figure 1. The following two proper-
ties of quasiconvex functions will be play an important in the
proceeding sections.
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Figure 1: A quasiconvex function f on R, which is not
convex. All sublevel sets of f are convex and in the one-
dimensional case, these sets are intervals.

Lemma 2.1 (Quasiconvex functions).

1. If fi(z),..., fm(z) are quasiconvex functions, then
max; f;(z) is also quasiconvex.

2. Let fi(z), i = 1,2,3 be affine functions, i.e., fi(z) =
alz + b;. Then

fi(2)* + fo(z)?
f3(z)?

with domain { « | f3(x) > 0} is quasiconvex.

Proof. We need to prove that the sublevel sets are convex. 1.
For any a, the sublevel set { z | max; f;(z) < a} is equal
o {z]fi(e) < ayi = 1,...,m} = N{a | fi(z) < a}.
Thus the set can be written as the intersection of m convex
sets and it is therefore convex.

2. Consider the sublevel set

{$| fi(z)® + fa(x)?

f3(33)2 Sa,f3($)>0}

with a > 0 (otherwise the set is empty) or equivalently
{z] fi(z)? + f2(2)* < fa(2)%a, fs(z) > 0}. Since f3(z)

is positive, the set can be expressed using the standard Eu-
clidean norm || - || as

{z [ I[f1(2), f2(2) ]Il < Vafs(z), fs(z) >0}

which is a convex (positive) cone. O

Given that the objective function fj(z) is quasiconvex and
that the constraint functions are convex, the problem may
have locally optimal points, but still the global optimum can
be efficiently computed via a sequence of convex feasibility
problems. Let fj denote the (unknown) optimal value of the
quasiconvex object function. Given v € R, if the convex



feasibility problem!
find x
subjectto  fo(z) < v (D

fz(:v) S bi, 1= 1,...,m,

is feasible, then we have fJ < <. Conversely, if the above
problem is infeasible, then we can conclude f; > . Thus
we can check whether the optimal value fg is less or more
than a given value «. This observation is the basis of a sim-
ple algorithm for solving quasiconvex optimization problems
using bisection, solving a convex feasibility problem at each
step. It works in the following way.

Algorithm 2.1 (Bisection).

given: optimal value f§ € [y, v.] and tolerance € > 0.
repeat

Loy= (4 7)/2

2. Solve the convex feasibility problem (1).

3. if feasible, v, := 7, else vy, := 1.
until v, — v < e

A particular class of convex optimization problems, where
the constraint functions are of the form

||Asz + bi|| < cle + d;

are called second order cone programs (SOCP). Here A; €
R ™ b, € R", c; € R® and d; € R. The unit second-
order, convex cone of dimension k is defined as

o= {[ V] wemtieri < of.

The reason for the name is that the set of points satisfying a
second-order cone constraint is the inverse image of the unit
second-order cone under an affine mapping:

|| Aiz + bi| < Tz +d; & [ Aqi ]m+ [ bi ] € Cn;

C; dl

and hence the SOCP is a convex optimization problem.

SOCP includes linear programming (LP) as a special case.
On the other hand, it is less general than semidefinite pro-
gramming (SDP). Solving SOCPs via SDP is not a good idea,
however. The time complexity is much better for an SOCP
algorithm than for an SDP algorithm [8].

3. The Triangulation Problem

We will start with one of the simplest geometric reconstruc-
tion problems where the goal is to infer the 3D structure
given measured image points. Still, it is a fundamental prob-
lem in computer vision and there has been so far no satisfac-
tory solution published for more than two views.

IThe feasibility problem has no objective function, only convex con-
straints.

3.1. Problem Formulation

Let P;,, ¢« = 1,...,m, denote a set of 3 X 4 camera matri-
ces and u; the measured image points, all represented in
homogeneous coordinates. Further, let U = [z,1]T =
[21, T2, 73,1]T denote the unknown 3D point. This leads
us to the following minimization problem:

min max; d(u;, P;U(z))

subject to Ai(z) >0 i=1,..,m. (2)

Here d(-,-) is the Euclidean image distance and A;(z) is
the depth of the point in image i. The inequality constraint
makes sure that the point is in front of the camera. Given a
perspective camera model, it follows easily that the squared
image distance is a rational function of z:
2 _ fi(2)* + fo(2)?
dlu, PU@))? = =
where f1(z), f2(z) and A(z) are affine functions in z and
with coefficients determined by u and P.

From Lemma 2.1, we know that d(u, PU(z))? is qua-
siconvex and trivially, so is d(u, PU(z)). Using the max-
property in Lemma 2.1, it follows that problem (2) is indeed
a quasiconvex optimization problem.

Remark. In the case of uncalibrated cameras, it may not
be possible to determine the region of space that lies in front
of all cameras. As pointed out in [3], the m principal planes
- that is the plane of each camera consisting of points that
map to infinity in the image - divide projective space P* into
M., = ('3) + (") regions. To find the minimum of the cost-
function, it is necessary to find the minimum of each of the
M, regions. Once it is known that some point U lies in one
of these regions, all other points must also lie in this region.

3.2. An Improved Bisection Method

Suppose that v is an upper bound of the objective func-
tion in problem (2). It follows immediately that this upper
bound also holds for each residual, d(u;, P;U(z)) < « for
¢t = 1,...,m. Revisiting the proof of Lemma 2.1, we see
that this inequality can be formulated as a second order cone
constraint using the convex cone C3. Based on these obser-
vations, problem (2) can be reformulated as the following
problem:

min v
subjectto [ f1i(z), f2i(2) ][] < YAi(z) 3)
Ai(z) >0 i=1,..,m.

If vy is considered to be known, the above problem can also
be regarded as an SOCP feasibility problem, cf. (1):
find x

[ fri(2), f2i(2) ]| < yAi(2) )

subject to

1=1,..,m.



Assume that the optimal «* is lower than some thresh-
old of v, pixels, then evidently v* € [0,+,]. Now, algo-
rithm 2.1 can be directly applied, by solving the convex feasi-
bility problem (4) at each iteration. However, we will make a
small adjustment which will accelerate the bisection scheme
significantly. Every time a feasible solution z is obtained
for a given vy, one can compute the actual maximum image
distance max; d(u;, P;U(z)) and this bound is always less
than or equal to 7. In practice, we have found that it is often
close to v*. So, instead of step 3 in the standard bisection
algorithm 2.1, it is better to replace it with:

3’. if feasible, v, := max; d(u;, P;U(z)) else v, := 7.

4. Projective Transformations and Pro-
jections

Projective geometry is a cornerstone of modern vision geom-
etry. The basic tools for describing perspective mappings are
projective transformations and projections. In this section
we will show how the L.,-framework can be applied to es-
timate such mappings. Although applications for mappings
of higher dimensions than three exist in the vision literature
[18], we will concentrate on plane-to-plane mappings, i.e.,
P? — P2 and projections P? — P2,

4.1. Points on a Plane

Let U;,+ = 1,...,m denote a set of planar points in space,
represented by homogeneous plane coordinates. Given cor-
responding image features u;, ¢ = 1, ..., m, also represented
by homogeneous coordinates, the two point sets are related
by the relation u; ~ HU; where H is a projective transfor-

mation (also called a homography) represented by a 3 x 3
matrix. Let H = [%% %g %2] and suppose the point coordi-
nates are oriented in such a way as to comply with the posi-
tive depth constraint. Analogous to (2), the problem at hand

becomes:

min  max; d(u;, H(z)U;)

subject to Ai(z) >0 i=1,....,m. (5
The only difference compared to the triangulation problem is
that z € R® and that the coefficients of the affine functions
f1i(z), f2i(z) and \;(z) in problem (3) are now determined
by U; and u;. The global solution can be obtained with the
bisection scheme, solving the SOCP feasibility problem (4)
at each iteration.

Given image correspondences in two views of a set of (at
least) four coplanar 3D points, the above procedure can also
be used to estimate the inter-image homography (though the
method is not symmetrical since all errors are assumed to be
in one image).

4.2. Camera Resectioning

Another important problem is that of solving for camera pose
given known 3D points and measured image points, which is
also known as camera resectioning.

Let U; denote a set of 3D points, and u; the corresponding
image points for : = 1,...,m, and as usual represented by
homogeneous coordinates. The objective is to find a 3 x 4
projection matrix P such that u; ~ PU;. Similar to the ho-

mography above, the projection matrix can be parametrized
1 T2 T3 Ta

by P = [ms Te T7 Ts } Now, z € R and the correspond-

To 10 Z11 1
ing affine functions f1;(z), f2i(z) and A;(z) in problem (3)
are determined by U; and u;.

4.3. A Further Improved Bisection Method

The bisection method as described in algorithm 2.1 including
the improvement in Section 3.2 can be further accelerated in
terms of the number of iterations.

Note that in the homography and camera resectioning
problems, the depth functions \;(z), ¢ = 1,...,m depend
only on the last row of the homography matrix H and the pro-
jection matrix P, respectively. So, given a feasible solution
z, one can do better than setting v,, := max; d(u;, P;U(z)).
If the variables of \;(z) are considered to be fixed (or
known), one can estimate the remaining variables in x and
v, simultaneously, by solving problem (3) which now has
become a standard SOCP problem.

5. Multiview Geometry

We now turn to reconstruction problems with an arbitrary
number of points and cameras.

5.1. Cameras with Known Rotation

In order to be able to apply the L..-framework for multi-
view reconstruction, we first assume that the rotational part
of each camera is determined in advance. There are several
scenarios where this is a reasonable assumption. For exam-
ple, where the cameras are known to be purely translating
or the rotation angles can be obtained from another sensor.
Another setting is where the rotation matrix is pre-computed
from an independent method, cf. [17].

Let P =[R t] where R is a 3 X 3 matrix, assumed to be
known, and ¢ = [ 1, z2, 3 ]T an unknown 3-vector. Further,
let U = [x4, x5, 76, 1]7 represent an unknown 3D point and
u the measured image point. Then, the squared image resid-
ual can be expressed as W where f1(z), f2(z) and
A(z) are affine functions with coefficients determined by R
and u. Hence, the problem of recovering multiple instances
of (i) camera translations and (ii) 3D points is a quasiconvex
problem and can thus be solved via a series of SOCP feasi-
bility proplems using the bisection method of algorithm 2.1.



In the above parametrization, there is a coordinate ambi-
guity. The reconstructed parameters are determined up to an
unknown translation and scaling. Experimentally, it has been
observed that the SOCP optimization may transform the co-
ordinates to extreme values, thereby losing numerical accu-
racy. One possible way to fix the coordinate system is to set
the coordinates of the first 3D point to U; = [0,0,0,1] and
scale the first camera translation vector to t; = [x,%,1]7
(where * denotes an unknown variable). This ensures that
the positive depth constraint is fulfilled as well.

Remark. In constrast to many other methods, it is not
necessary that all points are visible in all images.

5.2. Using a Reference Plane

By assuming that a reference plane is visible in all images, it
is possible to estimate camera positions and 3D points up to
an unknown projective transformation in closed form. The
idea was pioneered in [11] where a linear method was devel-
oped based on an algebraic cost-function. We show here that
it is possible to get globally optimal solutions based on the
L ,-norm. The exposition is by necessity brief.

Suppose that (at least) four points on a reference plane in
3D space are visible in all views. Then, it is possible to com-
pute inter-image homographies between any two views with,
for example, the method described in Section 4.1. Denote
the inter-image homography mapping points from image 1
to image : by H; for: = 2,..., m and define H; = I. With-
out loss of generality, one can choose a projective coordinate
system such that the reference plane is given by the plane at
infinity, denoted by II..2. Then, it follows that the camera
matrices are given by

where ¢; is an unknown 3-vector. By parametrizing an un-
known 3D point by U = [z1, T2, z3, 1]T which is not on the
reference plane, we have a problem with exactly the same
appearance as the one described in Section 5.1. Hence, re-
constructing cameras and 3D points given a reference plane
is also a quasiconvex problem.

Note that 3D points on the reference plane need to be
parametrized by U = [z, T2, 23,0]7. Therefore, it is re-
quired that all points are classified according to whether they
belong to the reference plane or not. One way to determine
this classification is to use the inter-image homographies.
Points close the reference plane will have large magnitudes
in contrast to points far away from it. Unlike the algebraic
method of [11], our SOCP method is much less sensitive to
this coordinate scaling, since the L,-optimization criterion
is invariant to the world coordinate system. In practice, we
have not encountered any problems due to this phenomenon

2 A point in P3 lies on I, if and only if the last coordinate in the homo-
geneous coordinate vector is zero.

Figure 2: Examples of images in the corridor (top row) and
the dinosaur (bottom row) sequences.

in the SOCP optimization, even though coordinates may be
relatively large.

In an actual image sequence, the reference plane can be
either finite or infinite (which should not be confused with
the Il -parametrization). Typically, four coplanar points de-
termine a finite reference plane. Three orthogonal vanishing
points can be used to determine a reference plane at infinity.
See [11] for further details.

6. Experimental Validation

In order to test the proposed framework, we have made ex-
tensive use of two publicly available sequences with given
feature correspondences’. The first sequence consists of 11
images in a corridor, see Figure 2. There are 104 point cor-
respondences visible in all images. The other image set is a
turntable sequence of a dinosaur, containing 36 images and
in total 328 image correspondences with lots of occlusions.
In the experiments, the number of views and points have ar-
tificially been varied to test the performance in different set-
tings.

For comparison, we also applied standard linear algo-
rithms and bundle adjustment [5] (which optimizes the La-
norm) to exactly the same data. Proper normalization has
also been done as a preprocessing step for the linear algo-
rithms. It is not evident by which norm the algorithms should
be compared. On one hand, we wish to show that the bisec-
tion scheme computes the optimal estimates with respect to
the Lo,-norm. On the other hand, the L»-norm has a statis-
tical meaning and it would be valuable if our L, -estimates
perform well with respect to this norm as well. Therefore,
for the first experiment, we give results for both measures.
The Root Mean Squares (RMS) errors of the reprojected and
measured points are reported. The bundle adjustment has
been initialized with both the linear algorithm and the bisec-
tion method, and the one with lowest RMS error is kept.

Implementation. All the routines for L-optimization
have been collected in a toolbox which is publicly available®.

3See http://www.robots.ox.ac.uk/~vgg/data.html.

4See http://www.maths.Ith.se/matematiklth/personal/fredrik/download.html.



The bisection algorithm 2.1 (including the modification in
Section 3.2) for the proposed applications has been imple-
mented under the Matlab environment using SeDuMi [12]
which is a toolbox for optimizing over convex cones.
Typically, the interval length of [y, v,] is less than 1075
pixels within 5-10 iterations of the bisection method. Due to
this rapid convergence, the modification described in Sec-
tion 4.3 has not been evaluated. The computation times,
that is, the cputime for one call to SeDuMi, on a Pentium
4 with 2.8 GHz for the SOCP feasibility problem (4) vary
from 0.05 s for three-view triangulation to 1 s for a multiview
reference plane problem with 36 cameras and 2270 C3-cone
constraints (one cone for each visible image point).

6.1. Triangulation

In order to test the triangulation method, the camera matrices
need to be pre-computed and they have been obtained with
the reference plane technique (including bundle adjustment),
cf. Section 6.4.

The results for triangulation are given in Figure 3. As ex-
pected, when the average L..-reprojection error is used to
compare the three algorithms, the L,-method is best. This
is in accordance with the theory as the estimates should be
globally optimal. When compared using RMS errors, the
bundle adjustment method optimizing the L.-method per-
forms best, also as expected.

6.2. Points on a Plane

In Figure 4, the errors for inter-image homography estima-
tion are shown with respect to the first image. In the corridor
sequence, 23 points out of the 104 points can be found on
the left frontal wall, and they were used as input data. In
the dinosaur images, the coplanar points are located on the
turntable and the number of visible points vary between 6
and 12 throughout the sequence. All three methods are very
similar in performance.

6.3. Camera Resectioning

In order to test the camera pose estimation, the 3D struc-
ture obtained from the reference plane technique was used,
cf. Section 6.4. Again, the L, -estimates are comparable to
those of Ly-minimization and the linear method is remark-
ably good in this case, cf. Figure 5.

6.4. Multiview Geometry

Given the computed inter-image homographies based on the
L,-norm (Section 6.2), it is now possible to estimate the
camera translations and the remaining 3D points for the two
sequences (Section 5.2). This works amazingly well - the
RMS errors are low and the global estimates are obtained
within seconds. Recall, for instance, that the dinosaur se-
quence contains 36 images and hundreds of points.

L_-optimization

L2—optimization
1500 1500

1000 1000

500 500

0,

-2 1 2 92
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-1 0 1
Image residuals (pixels)

Figure 6: Histograms of image residuals for the dinosaur
sequence with 36 images.

The RMS errors for the corridor and dinosaur sequences
are 0.43 pixels and 0.49 pixels, respectively. The correspond-
ing Loo-errors are 1.91 pixels and 1.86 pixels. After applying
bundle adjustment over all structure and motion parameters,
the corresponding RMS errors become 0.25 pixels and 0.31
pixels, and L. -errors become 1.46 pixels and 2.16 pixels,
respectively. Only four bundle adjustment steps were needed
to obtain the minimum for both sequences. In Figure 6, his-
tograms of the image residuals of z- and y-coordinates in
the dinosaur sequence are plotted. Notice that for the Lo-
optimization the residuals become more peaked compared to
the L.,-optimization.

7. Discussion

A geometric framework for computing globally optimal es-
timates with respect to the Lo,-norm has been introduced.
The estimates are invariant with respect to projective trans-
formations of the world coordinate system as well as simi-
larity transformations in the image plane. Unlike algebraic
methods, the cost-function has a clear geometric meaning
and there is no need for data normalization. Iterative refine-
ment techniques, such as bundle adjustment, can be used to
improve the estimates with respect to the Ly-norm. Though,
in practice, we have found that the L., -estimates are already
quite good.

An obvious criticism of using the L,,-norm is its sensi-
tivity to outliers, as pointed out by [3]. In a sense, we are
fitting the noisiest data. However, it is undeniable that out-
liers are also fatal to the ordinary Ls-norm as well as linear
algorithms. An interesting research direction would be to use
L.-optimizing for detecting outliers. The SOCP feasibility
problem is well-suited for that purpose. Another criticism is
that in certain situations, a linear algorithm may yield better
estimates with respect to the Ly-norm.

An advantage of the L.,-approach is that we have a fair
assurance of how well the data fits the model, while with L-
norm the data may be good, but the optimization has fallen
into a local minimum. Similarly with linear algorithms, the
data may be good, but the algebraic cost-function might pro-
duce an unreasonable estimate.
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errors increase in (a) is a bit unclear. It may be due to drift in the feature extraction when the points were tracked or non-linear

effects not modelled by the pinhole camera model.
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Figure 5: Estimation of camera poses. In both the corridor and the dinosaur sequence, all three methods perform well. The
linear method is in this case very close to the results of bundle adjustment.
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