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Abstract as good recognition results have been reported in various
publications, e.g. [1, 2, 3, 4, 5, 6]. The main insight gained

Previous work has demonstrated that the image variations from these results is that there are both empirical and an-
of many objects (human faces in particular) under variable alytical justifications for using low dimensional linear sub-
lighting can be effectively modeled by low dimensional lin- spaces to model image variations of human faces under dif-
ear spaces. Basis images spanning this space are usuallyerent lighting conditions. Early work showed that the vari-
obtained in one of two ways: A large number of images of ability of images of a Lambertian surface in fixed pose, but
the object under different conditions is acquired, and prin- under variable lighting where no surface point is shadowed,
cipal component analysis (PCA) is used to estimate a sub-is a three-dimensional linear subspace [1, 7, 8]. What has
space. Alternatively, a 3-D model (perhaps reconstructed been perhaps more surprising is that even with cast and at-
from images) is used to render virtual images under either tached shadows, the set of images is still well approximated
point sources from which a subspace is derived using PCApy a relatively low dimensional subspace, albeit with a bit
or more recently under diffuse synthetic lighting based on higher dimension [2].
spherical harmonics. In this paper, we show that there  ynder the Lambertian assumption, the set of images of
exists a configuration of nine point light source directions gn object under all possible lighting conditions forms a
such that by taking nine images of each individual under polyhedral cone, the illumination cone, in the image space
these single sources, the resulting subspace is effective af3]. In a follow-up paper [9], it was reported that the illu-
recognition under a wide range of lighting conditions. Since mjination cones of human faces can be approximated well
the subspace is generated directly from real images, poten-py |ow-dimensional linear subspaces. More recently, using
tially complex intermediate steps such as PCA and 3D re- spherical harmonics and techniques from signal-processing,
construction can be completely avoided; nor is it necessary Basri and Jacobs have shown that for a convex Lamber-
to acquire large numbers of training images or physically tian surface, its illumination cone can be accurately ap-
construct complex diffuse (harmonic) light fields. We pro- proximated by a 9-dimensional linear subspace [6]. The
vide both theoretical and empirical results to explain why magic number of nine comes from the number of spherical

these linear spaces should be good for recognition. harmonics with degree less than three. The major contri-
] bution of their work is to treat Lambertian reflection as a
1. Introduction convolution process between two spherical harmonics rep-

) . . resenting the lighting condition and the Lambertian kernel.
To build a robust and efficient face recognition system, the gy ghserying that the Lambertian kernel contains only low-
problem of lighting variation is one of the main techni-  fequency components, they deduce that the first nine (low
cal challenges facing system designers. In the past feWgequency) spherical harmonics capture more than 99% of
years, many appearance-based methods have been proposgg, refiection energy. Using this nine-dimensional linear
to handle this problem, and new theoretical insights as We”subspace, a straightforward recognition scheme can be de-
*Support was provided by the National Science Foundation EIA 00- Veloped and results obtained in [6] are excellent.
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importance of this 9-dimensional linear subspace for face mination cone. This is particularly applicable for acquiring
recognition is confirmed by the good recognition results re- training images of individuals in a controlled environment
ported in [6]. In their approach, the 9-dimensional linear such as a driver’s license office, a bank, or a security office.
subspacédd, the harmonic plane, is formed by simulating This paper is organized as follows. In the next section,
nine harmonic images: the images of the model under thewe briefly summarize the idea of [6] using a harmonic plane
lighting condition specified by spherical harmonics. These H for face recognition. The relationship betweghand
nine harmonic images form the basisif In order to sim-  the illumination cone [3] is explained. Our algorithms for
ulate harmonic images, the model’s 3D structure, or at leastcomputingR and the universal configuration are described
its normals and albedos, has to be known in advance. Onin Section 3 and 4, respectively. The final section contains
the other hand, simple linear algebra tells us that any set ofa brief summary and conclusion of this paper.

nine linearly independent vectors (or images)dnis suf-

ficient to recover the plane. This hints at the possibility of . .

an easier way to obtain the linear subspace: thatis, canwe?2 Harmonic Images and the Illumi-

find a set of nine real images such that the linear subspace nation Cone

spanned by them coincides with the harmonic plane? For all
practical purpose, the answer to this questionis no’. Since 5 1 | ampertian Reflection and Spherical
any real image inH requires a smooth lighting condition

specified by a linear combination of the first nine spherical Harmonics

harmonics, it is very difficult to reproduce the exact lighting |n this section, we briefly summarize the recent work pre-
condition in a common laboratory environment. However, gented in [6, 10, 11]. Consider a convex Lambertian object
one can ask a different but related question: is there anothefyijth uniform albedo illuminated by distant isotropic light
9-dimensional linear subspa¢zwhich can also provide a  sources, ang is a point on the surface of the object. Pick a

good representation for face recognition? Qare con-  |ocal (z,y, z) coordinates systerfi, centered ap such that
structed in some canonical fashion, perhaps with nine phys-+he »-axis coincides with the surface normalatand let
ically and easily realized lighting conditions? (0, ) denote the spherical coordinates centereg. atn-

Since we know thaf{ is good for face recognition, itis ~ der the assumption of distant and isotropic light sources,
probably a good idea to find a pladeclose toH. From the configuration of lights that illuminate the object can be
the recognition standpoint, it is also preferable to require expressed as a non-negative functigid, ¢). The reflected
that the intersection betweéhand the illumination coné' radiance ap is given by
is as large as possible. That is, we want to find a 9-D lin-
ear subspac®& generated by elements in the illumination B
coneC such that the distance betwe&hand H is mini- () =AJ Jsk(O)L(6, 9)dA 1)

ed (i - : - =\ [T [T k(0)L(6, ¢)sinddod
mized (in some way) while the (unit)-volunfeN C' is max- =Mo" Jo F(O)L(O, ¢)sin ¢
imized. In Section 3, we formulate the problem in terms . B )
of maximizing an objective function defined on the set of With A the albedo and(0) = max(cos0,0), the Lamber-
tian kernel. A similar integral can be formed for any other

extreme rays on the cone. Our end result is a set of nine_ . .
extreme rays that spad and the nine source directions cor- point ¢ on the §urface to compute the reflected ra(_:ilance
responding to these nine extreme rays. It turns out that the;sq)l'. 'I;:e orf\Iy dlﬁeE.an betr\:vee.n thg mtegral@;a;llw.dq I‘T’
resulting nine light source directions are qualitatively very T '9 g!g E{JI’IC 'Ot -ateac rc)qunE[L |fs expretstshe tm a to-
similar for different individuals. By averaging the objective cal coordinate system (or coor inate ramg a \atpoint.
Therefore, considered as a function on the unit sphige,

functions for different individuals and maximizing this new dL. differ b tati SO(3) that rotates the f
objective function, we obtain a configuration of nine light andL, difier by a rotatiory & (3) thatrotates the frame
F,t0 F,. Thatis,L,(0, ¢) = L,(9(0, ®)).

source directions, the universal configuration, such that on h herical h . £ of funcii that f
average, the linear space spanned by the corresponding ex- t?] sP erlclab a_rrr;ontlﬁs ar(: a;Sﬁ 0 unc_l(ins alz;? orm
treme rays is a good approximation to the illumination cone. an arthonormal basis for the set of all square-integrakit (

We demonstrate that by using this universal configuration of fun;:#onsr?eflntedtr?n It:he gmtbsphere. ;I;]hel)./ are th? alnalo_lg_]#e
nine directional sources, good face recognition results canO the sphere o the Founier basis on the fine orcircles. the

be obtained using the linear subspace spanned by the resul?—pheric‘f’1I harmonicsy,., are ind.exed by two integetsind
ing nine images. m obeyingl > 0and—Il <m < [:

Fr_om a pract_lcal sta_nd_pomt, acquiring image u_nder asin- Vi (0, ) = Nlmpl\ml (cos(B))ei™® @)
gle distant and isotropic light source is much easier and less _ o _
costly than alternatives. That is, the linear subspde  Where Ny, is a normalization factor guaranteeing that the
lot easier to obtain than the harmonic plakeor an illu- integral of Y, * Vi = 8pmpmr Su1r, andPl‘m| is the associ-



ated Legendre functions (its precise definition is not impor-
tant here; however, see [12]). In particular, there are nine
spherical harmonics with< 3. One significant property of
the spherical harmonics is that the polynomials with fiked
degree form an irreducible representation of the symmetry
groupSO(3), that is, a rotated harmonic is the linear super-
position of spherical harmonics of samiidegree. For a 3D
rotationg € SO(3):

l
Yim(9(0,0)) = Y ghunYin(0,9). ®)

n=-—1

7.

The coefficientg!,,,, are real numbers and determinedgoy

Expanding the Lambertian kernk(6) in terms ofY},,, Fig. 1: The nine simulated harmonic images of a face from Yale
one hask = > ,° kY. Becausek(§) has no¢- Database. The light gray and dark gray indicate the positive and
dependency, its expansion has Fg, components with  negative pixel values. Since th@, is a constant, the correspond-
m # 0. An analytic formula fork; was given in [6, 10]. ing harmonic image simply scales the albedo values as shown
It can be shown thak; vanishes for odd values &f> 1, in Picture 1. Pictures 4 is the harmonic image corresponds to

Yi-1 = z, which gives positive values for all pixels. Here, the

and the even terms fall to zero rapidly; in addition, more . :
image plane is defined as thg-plane.

that 99% of the L2-energy ofk(6) is captured by its first
three terms, those with< 3. Because of these numerical
properties of;, by Equation 1, any high-frequency$ 2)
component of the lighting functiofi(6, ¢) will be severely Yoo = 0.2821; (4)
attenuated. That is, the Lambertian kernel acts as a low-pass
filter. Therefore, for a smooth lighting functidh the result (Y115 Y103 Y1-1) = 0.4886(2; 3 2); ®)
of computing reflected radiance using Equation 1 can be ac- (Ya1;Ya_1; Yo o) = 1.093(x2; yz; zy); (6)
curately approximated by the same integral witreplaced 2 )

by L', obtained by truncating the harmonic expansiord. of Yoo = 0.3154(32" —1); (7)
at! > 2. Since rotations preserve thelegree of the spher- Yoo = 0.5462(z” — y?); (8)
ical harmonics (rf. Equation 3), the same truncatéavill

_ Figure 1 shows the rendered harmonic images for a face
work at every surface point.

taken from the Yale Database. These synthetic images are

rendered by sampling 1000 rays on a hemisphere, and the

2.2 Harmonic Images final images are the weighted sum of 1000 ray-traced im-
ages. Unlike [6] which only accounted for attached shad-

From the above discussion, it follows that the set of all ows, these harmonic images also include the effects of cast

possible images of a convex Lambertian object under all shadows arising from non-convex surfaces. Therefore, all

lighting conditions can be well approximated by nine ’har- nine harmonic images contain 3D information (i.e., the

monic images’, 'images’ formed under lighting conditions shadows) of the face. The values of the spherical harmon-

specified by the first nine spherical harmonics. Except for ics at a particular point is computed easily using Equations

the first spherical harmonic (which is a constant), all others 4-8.

have negative values and therefore, they do not correspond

_to real !lghtlng cond_ltlons. The corre;pondlng harrpgmc 2.3 Relation to the lllumination cone

images’ are not real images and as pointed out by [6]: “they

are abstractions.” Knowing the object’s geometry and albe- From the discussion above, we can conclude a few things

dos, these harmonic images can be synthesized using starabout the relationship between the linear subsgéagen-

dard techniques, such as the ray-tracing. erated by the harmonic images and the illumination cone

For spherical harmonics, the spherical coordin#&tes C [3]. We let P denote the interior of the positive orthant:
are a little bit complicated to work with. Instead, it is P = {(z1,...,2,)|z; > 0for1l <i <n }, wheren is the
usually convenient to writd,, as a function ofz,y, z dimension of the image space, i.e. the number of pixels.
rather than angles. Each spherical harmdiig(z, v, 2) First, H approximates well the images obtained under
expressed in terms dfc, y, z) is a polynomial in(z, y, 2) smooth diffuse lighting. Images resulting from this type
of degred. The first nine spherical harmonics in the Carte- of lighting typically lie in P. That is, every pixel is illumi-
sian coordinates are nated. In fact, The polynomidl(z, y, 2) = v/3—(z+y+2)



3 Low Dimensional Linear Approxi-
mation of lllumination Cone

P
PCA Plane

In this section, we detail our algorithm for computitigy
g Recall that our overall aim is to find a 9-dimensional linear
subspace? which can provide a basis for a good face recog-
Fig. 2: Cross section of the illumination cofie The solid circles ~ Nition method; in addition, we would like to have some
denote the extreme rays of the cone. A) The intersecfion H canonical procedure that can determidéirectly from the
is shown as the dashed line. Notice that the intersection does noillumination cone. Given a model (human face), we assume
contain extreme rays anH is parallel to the direction in which  that we have the detailed knowledge of its surface normals
C is the thickest. B). A possible 9-dimensional space which is and albedos. Using the methods outlined in the previous
good for face recognition. C) A PCA plane obtained by choosing section, we can construct its harmonic plaHe Let C'
extreme rayp andq as samples. and EC denote the model’s illumination cone and the set
of (normalized) extreme rays in the cone, respectively. By

] ) ) ) ) a normalized extreme ray, we mean the unique point on the
is a non-negative function on the unit sphere. The image of oytreme ray with magnitudé. For notational reason, we

a human face resulted from a lighting condition specified by \yjj| not make any distinction between a (normalized) ex-
f has no pixel with zero intensity value. The proofis simple yreme ray (which is an image) and the direction of the corre-
since the the zero set gfare lines on the unit sphere. That sponding light source; therefore, depending on the context,

is, the intersection off with the interior of the con€’ N P an element of2C can denote either an image or a direction.
is non-empty : the necessary condition férto be a good

approximation ofC. Second, the good recognition results
reported by [6] suggest the following two possibilities.

3.1 Computing the Linear Subspacer

SinceR is meant to provide a basis for a good face recog-

1. The volume of the intersectiafi N H is large. nition method, we requiré? to satisfy the following two
conditions:
2. The intersectiod@ N P is 'concentrated’ neat’ N H. 1. The angu|ar distance betweBrandH should be min-
imized.
Thatis the |Ilum|nat|on anéj. is thICk in the dire.ctions par- 2. The (unit) volume” N R should be maximized. (The
allel to H while it s thin in directions perpendicular &. unit volume is defined as the volume of the intersection

If none of the above conq_itions is true, it will b_e difficult to of C' N R with the unit ball).
explain the good recognition results reported in [6]. A gen-
eral picture emerged from these observations is depicted inNote thatC' N R is a subcone of'. Therefore, the second
Figure2(a). Itis then natural to ask the questions: Is therecondition is equivalent to maximizing the angle subtended
another 9-dimensional linear subspdtwhichis alsogood by the subcon€ N R. Since we know thaf! is good for
for face recognition? CaR be constructed so thatitis, in  face recognition. It is reasonable to assume that any sub-
some way, intrinsic to the illumination cone? Expressed space close tdZ would likewise be good for recognition;
differently, is there a canonical procedure to determihe  hence the first condition.
directly from the illumination cone? And considering the In [3], it was shown that the number of extreme rays is
complexity of the illumination cone, how do we compute ,(m — 1) wherem is the number of distinct surface nor-
R, if it exists? This is depicted in Figure 2(b). In the fol- mals -m is typically greater than000. Therefore, in most
lowing sections, we provide our (partial) solutions to these cases, the full illumination con€' is too difficult to com-
questions. pute. This implies that a linear subspagesatisfying the
Of course, there are many ways to arrive at a 9- two conditions above is also likely to be difficult to com-
dimensional linear subspace. The most common andpute. Instead, we computefaas a sequence of nested lin-
straightforward way is to sample images in the cone and useear subspaceBy C R; C ... C R;--- C R9 = R with
the principal component analysis. However, principal com- R;,i > 0 a linear subspace of dimensiomnd Ry = () as
ponent analysis depends heavily on the sample images usefbllows. First, we letEC; denote the set obtained by delet-
to define the correlation matrix, whose eigenvectors defineing i extreme rays fronEC. It follows that ECy = EC.
the resulting PCA plane. A biased set of samples (e.g. smallWe will define R; and EC; inductively. Assume thaR;_,
number of samples) would produce a PCA plane that is notand EC;_; have been defined (or computed). The d&t%
effective for face recognition, as shown in Figure 2. andR; are defined iteratively as follows:



Let z; denote the element iBC;_; such that

diSt(X, R,171)
x; =arg max ——————=
! 8 oeBen, dist(x, H)

©)

R; is defined as the space spannedcbgndR; 1, and the
setEC; is defined aFC;_1 \z;. The algorithm terminates
after Ry = R is computed. Note that sinc¥ is the har-
monic planedist(x, H) is always non-zero for alt € EC;.
When computing?;, we definedist(x, Rg) = dist(x, @) to
be 1. Therefore, the first elementi is the extreme ray it
that is closest to the harmonic plafie

Fig. 3: Both figures depict a cross section of the illumination cone
3.2 Discussion with the dashed line indicating the harmonic plane. Aplfs
chosen as the initial ray, the resulting linear subspace intersects the
From the recognition standpoint, the optimal linear plane cone only on the boundary. B) dfis chosen instead, the resulting
R should be the plane that maximizes the unit volume of linear space is the optimal one.
the intersection? N C. To formulate this problem more
precisely, letGR(n,9) denote the space @Fdimensional
linear subspaces dR", the Grassmannian. The unit vol- @ good initial ray to start with. In our case, our starting ray

ume of the intersectio§ N C of eachS € GR(n,9) with x1 is the extreme ray that is closest to the harmonic plane
the illumination coneC' defines a continuous functiarl H. According to our observatiort/ should be parallel to
on GR(n,9) and the optimal linear plan& is simply a  the directions in which the cone is thickest and more than
g|0ba| maximum ofvol. Since the dimension cﬁ;R(n7 9) ||ke|y, there is an almost Optlm&T which is close to it. This

is 9(n — 9) andn is the number of pixels, direct computa- almost proves the fact that an almost optimal plane is very
tions onGR(n,9) is out of question. Instead, we restrict likely to contain our initial rayxz;. That is, our iterative
our domain to a subsdb of GR(TL, 9) Consisting of9- process will start at the r|ght initial value.
dimensional linear subspaces generated by the extreme rays In @ sense, condition 1 is not necessary if the number of
of C. That is, each linear space In has a basis consist- €xtreme rays is small. However, if this is not the case, for
ing of only extreme rays of the cone. The maximization computational reason, itis necessary to have a good starting
problem is now equivalent to maximizing the “solid angles” ray. Condition 1 or more precisely, the harmonic pldie
subtended by the extreme ray basis. The sjfiacediscrete ~ Pprovides us with a good guess.
and contains at most(e, 9) points g is the number of ex-
treme rays). lfe is small, we can enume_rate every poir_lt iq 3.3 Experiments and results
ID and compute the maximal intersection. This, again, is
not possible in general. In our implementationEC, the full set of extreme rays of

A straightforward approach, using a greedy algorithm, is C, is replaced by a subset @00 extreme rays. Follow-
similar to the iterative steps we outlined above. However, ing [5] we obtain these00 rays by uniformly sampling
the greedy algorithm can not guarantee that a global max-the hemisphere. For each sampled direction, we produce
imum is reached at the end; nevertheless, one expects théhe corresponding extreme ray by rendering an image un-
resulting linear spacé should have “large” intersection der a single directional source emanating from this direc-
R N C. Starting with any extreme ray, we can iteratively tion (with intensity set td). The azimuthp and elevatior®
find a sequence of extreme rays such that the successive linangles are defined on the hemisphere such that for #iése
ear spaces spanned by these rays intersect the cone in sonimagesy varies betweenr-180° and180° and¢ goes from
'maximal way’. We formulate this in terms of maximiz- 0° to 87°. This set 0f200 sampled extreme rays is used
ing the distance between a normalized extremearand to define the domain for the maximization procedure spec-
the current linear spacf; as in the numerator of Equa- ified by Equation 9. We have implemented our algorithm
tion 9. Of course, the resulting linear subspace generatedor computing the linear subspade using the Yale Face
by this process depends on the initial extreme ray. Figure 3Database B. For ten individuals, the Yale database contains
illustrates two possibilities. If the number of extreme rays a 3D model and!5 images under different lighting condi-
is small, we can perform the same iterative process withtions of each person.
every extreme ray as the initial ray. Unfortunately, thisis ~ Some results of computing the 9-dimensional linear sub-
computationally impossible in our case because of the largespaceR for each person in the database are shown in Figure
number of extreme rays. Therefore, it is important to have 4. For each extreme ray forming a basis vectakpive plot



Fig. 4: The first row displays two of the ten uncropped faces in
the Yale database. The second row is the corresponding plots of
the nine directions produced by our algorithm. The polar axis is
the elevation angle and the azimuth angie goes to the usu#

in the 2D polar coordinates. The circles represent the circles with
¢ = 25°,50° and75°, respectively.

Fig. 5: The plot (the projection from the hemisphéee 0) onto

the zy-plane in polar coordinates, 0) is: ¢ — r,0 — 0) of the
universal configuration of nine light source directions with all 200
sample points. The circles represent the circles on the hemisphere

. . N . ith ¢ = 25°, 50° and75°, respectively.
the direction of the corresponding light source. It is worth- with ¢ PECEVEY

while to note that the set of nine extreme rays chosen by the
algorithm has a particular type of configuration. First, the individual, on average, the linear space spanned by the cor-
frontal direction (witht = ¢ = 0°) is always present. In  responding extreme rays is a good linear approximation to
fact, it is always the first basis vector, the one closestto  the illumination cone.
the harmonic plané/. Second, besides the frontal image,  To find such a configuration (or an approximate of it), we
there are anothez to 3 “interior” images, i.e. those pro-  can modify our previous method slightly by computing the
duced by the lighting directions wit{#|,# < 65° Third, average of the quotient in Equation 9 over all the available
the other directions are concentrated on the sides (rathefraining models. With all the notations defined as above, we
than above or below) and with directiof§, ¢ > 65°. It find the nested linear subspades C R1 C ... C R;--- C
is well known that these directions produce large shadowsr, — R by computing each; such that
on human faces, and makes face recognition more difficult
[9]. Our results seem to tell us the obvious: more samples dist(x*, Rk )
are needed on the part of the hemisphere that is most likely T; = arg max Z dist xk Hk . (10)
to produce difficult images to recognize. It is important to
note that it is by no mean clear a priori that our algorithm Since we are computing Equation 9 for all the available face
based on the two conditions explained in Section 3.1 will models simultaneously, the sBC’ denotes the set of 200
favor such type of configurations. sample points on the hemisphere and for eaca EC,
x¥ denotes the image of modeltaken under a single light
source with direction:. EC; denotes the set obtained by
4 Nine Points of Light deletingi elements fromEC'. k indexes the available face
models. H* denotes the harmonic plane of modehnd
The results in the previous section demonstrate that, forRY ; represents the linear subspace spanned by the im-
each individual, there exists a configuration of nine lighting ages{z¥,---, 2%} of modelk under light source directions
directions such that the linear subspace spanned by theséz,---,;}.
images is a good linear approximation of the illumination =~ We call the resulting configuration of nine direc-
cone. The configurations are qualitatively similar for dif- tions the universal configuration. These directions fre
ferent individuals with small variations in each lighting di- (0, 0), (68,90), (74,108), (80,52), (85, —42), (85, —137),
rection. It is then logical to seek a fixed configuration of (85,146), (85,—4), (51,67) }. They along with the200
nine lighting directions for all individuals such that for each samples on the hemisphere are plotted in Figure 5.



| COMPARISON OFRECOGNITION METHODS |
Error Rate (%) vs. lllum.

Method
Subset| Subset| Subset
1&2 3 4
Correlation 0.0 23.3 73.6
Fig. 6: Images of one of th&0 individuals under the 4 subsets of Eigenfaces 0.0 25.8 75.7
lighting. See [5] for more examples. Eigenfaces 0.0 19.2 66.4
w/o 1st 3

Linear subspace 0.0 0.0 15.0
Cones-attached 0.0 0.0 8.6
Next we apply the previous result in a recognition experi- 9PL 0.0 0.0 2.8
ment to see if the configuration of nine directions leads to Cones-cast 0.0 0.0 0.0
effective face recognition compared to using either the il-

lumination cone or eigenfaces. Using this set of nine di- Table 1: The recognition results using various different methods.
rections, we construct a linear subspace for each of the terfxcept for the Nine Points of Light (9PL) method, the data for all

persons by rendering the images of each person under thes¥Ner methods were taken from [9].

lighting conditions. In practice, the nine images should be

real; however, due to the lack of samples, we have opted

for rendering instead. We call our method the Nine Points

of Light (9PL) method. The recognition results of 9PL us-

ing this particular configuration of nine lighting directions

given above together with other methods reported previ- for face recognition. As shown in [3], the actual dimension
ously in [13] are shown in Table 4.1. of an illumination cone is the number of distinct surface
For the recognition test, real images of ten faces each Un,grmals. Hence, for human faces, the actual dimension of
der45 different lighting cqnditions are used, and the test is e illumination cone is quite large; nevertheless, the pre-
performed on all of the50 images. The results are grouped yjoys results show that the illumination cone for a human
into 4 subsets according to the lighting angle with respect to f5ce (under a fixed pose) admits a good approximation by a
the camera axis. The first two subsets cover arfijles25°, 9-dimensional linear plane in the image space. The natural
third 25° — 50°, and the fourtt50° — 77°. extension of this conclusion is to further reduce the dimen-

All of the other methods reported in the table require sjon of the linear approximation and observe the resulting
considerable amount of off-line processing on training data. recognition rate.

For the Nine Points of Light method, there is no training in-

volved ! The work is almost minimal: only nine images are

needed. Itis also interesting to observe that our method per- We experimented with this type of dimensional reduc-
forms much better than the eigenfaces method. It should betion by successively using each linear subspace in the nested
pointed out that all the methods listed in Table 4.1 that re- sequencefzy € Ry C ... C R;--- C Ry = R, for
quire off-line processing were trained using all the images face recognition. The results are shown in Figure 7. It is
of Subsetl and?2, in particular, the eigenfaces and linear clear that the recognition result s still reasonably good even
subspace methods. Our nine rendered images are mostiwhen the dimension has been reduced down to only five.
from Subset! (seven images per person). Because of this, it However, the error rate becomes noticeable when the di-
is expected that our method should perform better than mostmension is further reduced. These results corroborate well
of the other methods for Subsewhich is the most difficult ~ with the much earlier results of [1, 2]. They have shown
subset with great amount of shadow variations. This is in- that usings =+ 2 eigenimages is sufficient to provide a good
deed the case. However, for Subsets 1-3, our method stilllepresentation of the images of a human face under vari-

performs equally well compared with all other methods. able lighting. The main distinctions between these earlier
results and ours are 1) the linear approximations provided

4.2 Eurther Di . | Reducti by the earlier work have always been characterized in terms
: urther Dimensional Reduction of eigenimages. In contrast, our linear approximations are

We have demonstrated that there is a configuration of ninecharacterized by realimages. 2) There is no report of recog-

light source directions which provide a good representation Nition results in these earlier work while we have demon-
strated that not only a good low-dimensional linear approx-

imation of the illumination cone is possible but it also pro-
vides reasonably good face recognition results.

4.1 Recognition Results
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Fig. 7: Left: The Error rates for face recognition using succes-
sively smaller linear subspaces. The abscissa represents the di-
mension of the linear subspace while the ordinate gives the error
rate. In this experiment, the extended Yale Face Database, con-
taining1710 images oB8 individuals, was usedRight: The total

error rate on alll'710 images.

5 Conclusion and Future Work

We have shown that there exists a set of nine single light
source directions that is important for face recognition. The

linear subspace spanned by the corresponding extreme rayg6]

is a good approximation to the illumination, and it provides
good face recognition results under variable lighting. We
obtain the set by maximizing a function defined on the set
of the extreme rays of the illumination cone. Our result pro-
vides a recipe for building a simple but robust face recog-
nition system. By taking nine images of each individual
with single light sources emanating from these nine direc-
tions, our results show that these nine images are already
sufficient for the task of recognizing faces under different
illumination conditions. The usual complicated intermedi-
ate steps, such as the 3D reconstruction of the model, can
be completely avoided. [
One surprising conclusion of our work is that for mod-
eling theeffect of illuminationon human faces, linear su-
perposition of a few directional sources may very well be
as effective as linear superposition of smooth diffuse light

sources (the harmonic plane). This is surprising because,

the directional sources (represented as delta functions) an

smooth diffuse sources (represented as smooth functionsiml

are, in some ways, completely opposite of each other. In any
function space with any reasonable norm, the delta func-
tions and smooth functions are certainly different. We be-
lieve that this seemingly paradoxical conclusion can be at-
tributed to the prominent geometric feature of human faces:
human faces are generally flat and the variation in normals
are generally small over a large portion of the face. Verify-
ing this claim will be one of the main themes in our future
research.

[
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