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Abstract

Previous work has demonstrated that the image variations
of many objects (human faces in particular) under variable
lighting can be effectively modeled by low dimensional lin-
ear spaces. Basis images spanning this space are usually
obtained in one of two ways: A large number of images of
the object under different conditions is acquired, and prin-
cipal component analysis (PCA) is used to estimate a sub-
space. Alternatively, a 3-D model (perhaps reconstructed
from images) is used to render virtual images under either
point sources from which a subspace is derived using PCA
or more recently under diffuse synthetic lighting based on
spherical harmonics. In this paper, we show that there
exists a configuration of nine point light source directions
such that by taking nine images of each individual under
these single sources, the resulting subspace is effective at
recognition under a wide range of lighting conditions. Since
the subspace is generated directly from real images, poten-
tially complex intermediate steps such as PCA and 3D re-
construction can be completely avoided; nor is it necessary
to acquire large numbers of training images or physically
construct complex diffuse (harmonic) light fields. We pro-
vide both theoretical and empirical results to explain why
these linear spaces should be good for recognition.

1. Introduction
To build a robust and efficient face recognition system, the
problem of lighting variation is one of the main techni-
cal challenges facing system designers. In the past few
years, many appearance-based methods have been proposed
to handle this problem, and new theoretical insights as well
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as good recognition results have been reported in various
publications, e.g. [1, 2, 3, 4, 5, 6]. The main insight gained
from these results is that there are both empirical and an-
alytical justifications for using low dimensional linear sub-
spaces to model image variations of human faces under dif-
ferent lighting conditions. Early work showed that the vari-
ability of images of a Lambertian surface in fixed pose, but
under variable lighting where no surface point is shadowed,
is a three-dimensional linear subspace [1, 7, 8]. What has
been perhaps more surprising is that even with cast and at-
tached shadows, the set of images is still well approximated
by a relatively low dimensional subspace, albeit with a bit
higher dimension [2].

Under the Lambertian assumption, the set of images of
an object under all possible lighting conditions forms a
polyhedral cone, the illumination cone, in the image space
[3]. In a follow-up paper [9], it was reported that the illu-
mination cones of human faces can be approximated well
by low-dimensional linear subspaces. More recently, using
spherical harmonics and techniques from signal-processing,
Basri and Jacobs have shown that for a convex Lamber-
tian surface, its illumination cone can be accurately ap-
proximated by a 9-dimensional linear subspace [6]. The
magic number of nine comes from the number of spherical
harmonics with degree less than three. The major contri-
bution of their work is to treat Lambertian reflection as a
convolution process between two spherical harmonics rep-
resenting the lighting condition and the Lambertian kernel.
By observing that the Lambertian kernel contains only low-
frequency components, they deduce that the first nine (low
frequency) spherical harmonics capture more than 99% of
the reflection energy. Using this nine-dimensional linear
subspace, a straightforward recognition scheme can be de-
veloped and results obtained in [6] are excellent.

The starting point of our paper is to understand this nine-
dimensional space proposed by Basri and Jacobs in the con-
text of the illumination cone and face recognition and to
explore other ways to construct this linear subspace. The
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importance of this 9-dimensional linear subspace for face
recognition is confirmed by the good recognition results re-
ported in [6]. In their approach, the 9-dimensional linear
subspaceH, the harmonic plane, is formed by simulating
nine harmonic images: the images of the model under the
lighting condition specified by spherical harmonics. These
nine harmonic images form the basis ofH. In order to sim-
ulate harmonic images, the model’s 3D structure, or at least
its normals and albedos, has to be known in advance. On
the other hand, simple linear algebra tells us that any set of
nine linearly independent vectors (or images) inH is suf-
ficient to recover the plane. This hints at the possibility of
an easier way to obtain the linear subspace: that is, can we
find a set of nine real images such that the linear subspace
spanned by them coincides with the harmonic plane? For all
practical purpose, the answer to this question is ’no’. Since
any real image inH requires a smooth lighting condition
specified by a linear combination of the first nine spherical
harmonics, it is very difficult to reproduce the exact lighting
condition in a common laboratory environment. However,
one can ask a different but related question: is there another
9-dimensional linear subspaceR which can also provide a
good representation for face recognition? CanR be con-
structed in some canonical fashion, perhaps with nine phys-
ically and easily realized lighting conditions?

Since we know thatH is good for face recognition, it is
probably a good idea to find a planeR close toH. From
the recognition standpoint, it is also preferable to require
that the intersection betweenR and the illumination coneC
is as large as possible. That is, we want to find a 9-D lin-
ear subspaceR generated by elements in the illumination
coneC such that the distance betweenR andH is mini-
mized (in some way) while the (unit)-volumeR∩C is max-
imized. In Section 3, we formulate the problem in terms
of maximizing an objective function defined on the set of
extreme rays on the cone. Our end result is a set of nine
extreme rays that spanR and the nine source directions cor-
responding to these nine extreme rays. It turns out that the
resulting nine light source directions are qualitatively very
similar for different individuals. By averaging the objective
functions for different individuals and maximizing this new
objective function, we obtain a configuration of nine light
source directions, the universal configuration, such that on
average, the linear space spanned by the corresponding ex-
treme rays is a good approximation to the illumination cone.
We demonstrate that by using this universal configuration of
nine directional sources, good face recognition results can
be obtained using the linear subspace spanned by the result-
ing nine images.

From a practical standpoint, acquiring image under a sin-
gle distant and isotropic light source is much easier and less
costly than alternatives. That is, the linear subspaceR is
lot easier to obtain than the harmonic planeH or an illu-

mination cone. This is particularly applicable for acquiring
training images of individuals in a controlled environment
such as a driver’s license office, a bank, or a security office.

This paper is organized as follows. In the next section,
we briefly summarize the idea of [6] using a harmonic plane
H for face recognition. The relationship betweenH and
the illumination cone [3] is explained. Our algorithms for
computingR and the universal configuration are described
in Section 3 and 4, respectively. The final section contains
a brief summary and conclusion of this paper.

2 Harmonic Images and the Illumi-
nation Cone

2.1 Lambertian Reflection and Spherical
Harmonics

In this section, we briefly summarize the recent work pre-
sented in [6, 10, 11]. Consider a convex Lambertian object
with uniform albedo illuminated by distant isotropic light
sources, andp is a point on the surface of the object. Pick a
local(x, y, z) coordinates systemFp centered atp such that
the z-axis coincides with the surface normal atp, and let
(θ, φ) denote the spherical coordinates centered atp. Un-
der the assumption of distant and isotropic light sources,
the configuration of lights that illuminate the object can be
expressed as a non-negative functionL(θ, φ). The reflected
radiance atp is given by

r(p) = λ
∫ ∫

S
k(θ)L(θ, φ)dA

= λ
∫ 2π

0

∫ π
0
k(θ)L(θ, φ)sinθdθdφ

(1)

with λ the albedo andk(θ) = max(cos θ, 0), the Lamber-
tian kernel. A similar integral can be formed for any other
point q on the surface to compute the reflected radiance
r(q). The only difference between the integrals atp andq is
the lighting functionL: at each point,L is expressed in a lo-
cal coordinate system (or coordinate frameFp) at that point.
Therefore, considered as a function on the unit sphere,Lp
andLq differ by a rotationg ∈ SO(3) that rotates the frame
Fp to Fq. That is,Lp(θ, φ) = Lq(g(θ, φ)).

The spherical harmonics are a set of functions that form
an orthonormal basis for the set of all square-integrable (L2)
functions defined on the unit sphere. They are the analogue
on the sphere to the Fourier basis on the line or circles. The
spherical harmonics,Ylm, are indexed by two integersl and
m obeyingl ≥ 0 and−l ≤ m ≤ l:

Ylm(θ, φ) = NlmP
|m|
l (cos(θ))eimφ (2)

whereNlm is a normalization factor guaranteeing that the
integral ofYlm ∗ Yl′m′ = δmm′δll′ , andP |m|l is the associ-

2



ated Legendre functions (its precise definition is not impor-
tant here; however, see [12]). In particular, there are nine
spherical harmonics withl < 3. One significant property of
the spherical harmonics is that the polynomials with fixedl-
degree form an irreducible representation of the symmetry
groupSO(3), that is, a rotated harmonic is the linear super-
position of spherical harmonics of samel-degree. For a 3D
rotationg ∈ SO(3):

Ylm(g(θ, φ)) =
l∑

n=−1

glmnYln(θ, φ). (3)

The coefficientsglnm are real numbers and determined byg.
Expanding the Lambertian kernelk(θ) in terms ofYlm,

one hask =
∑∞
l=0 klYl0. Becausek(θ) has noφ-

dependency, its expansion has noYlm components with
m 6= 0. An analytic formula forkl was given in [6, 10].
It can be shown thatkl vanishes for odd values ofl > 1,
and the even terms fall to zero rapidly; in addition, more
that 99% of theL2-energy ofk(θ) is captured by its first
three terms, those withl < 3. Because of these numerical
properties ofkl, by Equation 1, any high-frequency (l > 2)
component of the lighting functionL(θ, φ) will be severely
attenuated. That is, the Lambertian kernel acts as a low-pass
filter. Therefore, for a smooth lighting functionL, the result
of computing reflected radiance using Equation 1 can be ac-
curately approximated by the same integral withL replaced
by L′, obtained by truncating the harmonic expansion ofL
at l > 2. Since rotations preserve thel-degree of the spher-
ical harmonics (rf. Equation 3), the same truncatedL′ will
work at every surface point.

2.2 Harmonic Images

From the above discussion, it follows that the set of all
possible images of a convex Lambertian object under all
lighting conditions can be well approximated by nine ’har-
monic images’, ’images’ formed under lighting conditions
specified by the first nine spherical harmonics. Except for
the first spherical harmonic (which is a constant), all others
have negative values and therefore, they do not correspond
to real lighting conditions. The corresponding ’harmonic
images’ are not real images and as pointed out by [6]: “they
are abstractions.” Knowing the object’s geometry and albe-
dos, these harmonic images can be synthesized using stan-
dard techniques, such as the ray-tracing.

For spherical harmonics, the spherical coordinatesθ, φ
are a little bit complicated to work with. Instead, it is
usually convenient to writeYlm as a function ofx, y, z
rather than angles. Each spherical harmonicYlm(x, y, z)
expressed in terms of(x, y, z) is a polynomial in(x, y, z)
of degreel. The first nine spherical harmonics in the Carte-
sian coordinates are

1. 2. 3.

4. 5. 6.

7. 8. 9.

Fig. 1: The nine simulated harmonic images of a face from Yale
Database. The light gray and dark gray indicate the positive and
negative pixel values. Since theY00 is a constant, the correspond-
ing harmonic image simply scales the albedo values as shown
in Picture 1. Pictures 4 is the harmonic image corresponds to
Y1−1 = z, which gives positive values for all pixels. Here, the
image plane is defined as thexy-plane.

Y00 = 0.2821; (4)

(Y11;Y10;Y1−1) = 0.4886(x; y; z); (5)

(Y21;Y2−1;Y2−2) = 1.093(xz; yz;xy); (6)

Y20 = 0.3154(3z2 − 1); (7)

Y22 = 0.5462(x2 − y2); (8)

Figure 1 shows the rendered harmonic images for a face
taken from the Yale Database. These synthetic images are
rendered by sampling 1000 rays on a hemisphere, and the
final images are the weighted sum of 1000 ray-traced im-
ages. Unlike [6] which only accounted for attached shad-
ows, these harmonic images also include the effects of cast
shadows arising from non-convex surfaces. Therefore, all
nine harmonic images contain 3D information (i.e., the
shadows) of the face. The values of the spherical harmon-
ics at a particular point is computed easily using Equations
4–8.

2.3 Relation to the Illumination cone

From the discussion above, we can conclude a few things
about the relationship between the linear subspaceH gen-
erated by the harmonic images and the illumination cone
C [3]. We letP denote the interior of the positive orthant:
P = {(x1, . . . , xn)|xi > 0 for 1 ≤ i ≤ n }, wheren is the
dimension of the image space, i.e. the number of pixels.

First, H approximates well the images obtained under
smooth diffuse lighting. Images resulting from this type
of lighting typically lie inP . That is, every pixel is illumi-
nated. In fact, The polynomialf(x, y, z) =

√
3−(x+y+z)
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Fig. 2: Cross section of the illumination coneC. The solid circles
denote the extreme rays of the cone. A) The intersectionC ∩ H
is shown as the dashed line. Notice that the intersection does not
contain extreme rays andH is parallel to the direction in which
C is the thickest. B). A possible 9-dimensional space which is
good for face recognition. C) A PCA plane obtained by choosing
extreme raysp andq as samples.

is a non-negative function on the unit sphere. The image of
a human face resulted from a lighting condition specified by
f has no pixel with zero intensity value. The proof is simple
since the the zero set off are lines on the unit sphere. That
is, the intersection ofH with the interior of the coneC ∩P
is non-empty : the necessary condition forH to be a good
approximation ofC. Second, the good recognition results
reported by [6] suggest the following two possibilities.

1. The volume of the intersectionC ∩H is large.

2. The intersectionC ∩ P is ’concentrated’ nearC ∩H.

That is the illumination coneC is thick in the directions par-
allel toH while it is thin in directions perpendicular toH.
If none of the above conditions is true, it will be difficult to
explain the good recognition results reported in [6]. A gen-
eral picture emerged from these observations is depicted in
Figure2(a). It is then natural to ask the questions: Is there
another 9-dimensional linear subspaceRwhich is also good
for face recognition? CanR be constructed so that it is, in
some way, intrinsic to the illumination cone? Expressed
differently, is there a canonical procedure to determineR
directly from the illumination cone? And considering the
complexity of the illumination cone, how do we compute
R, if it exists? This is depicted in Figure 2(b). In the fol-
lowing sections, we provide our (partial) solutions to these
questions.

Of course, there are many ways to arrive at a 9-
dimensional linear subspace. The most common and
straightforward way is to sample images in the cone and use
the principal component analysis. However, principal com-
ponent analysis depends heavily on the sample images used
to define the correlation matrix, whose eigenvectors define
the resulting PCA plane. A biased set of samples (e.g. small
number of samples) would produce a PCA plane that is not
effective for face recognition, as shown in Figure 2.

3 Low Dimensional Linear Approxi-
mation of Illumination Cone

In this section, we detail our algorithm for computingR.
Recall that our overall aim is to find a 9-dimensional linear
subspaceRwhich can provide a basis for a good face recog-
nition method; in addition, we would like to have some
canonical procedure that can determineR directly from the
illumination cone. Given a model (human face), we assume
that we have the detailed knowledge of its surface normals
and albedos. Using the methods outlined in the previous
section, we can construct its harmonic planeH. Let C
andEC denote the model’s illumination cone and the set
of (normalized) extreme rays in the cone, respectively. By
a normalized extreme ray, we mean the unique point on the
extreme ray with magnitude1. For notational reason, we
will not make any distinction between a (normalized) ex-
treme ray (which is an image) and the direction of the corre-
sponding light source; therefore, depending on the context,
an element ofEC can denote either an image or a direction.

3.1 Computing the Linear SubspaceR

SinceR is meant to provide a basis for a good face recog-
nition method, we requireR to satisfy the following two
conditions:

1. The angular distance betweenR andH should be min-
imized.

2. The (unit) volumeC ∩ R should be maximized. (The
unit volume is defined as the volume of the intersection
of C ∩R with the unit ball).

Note thatC ∩ R is a subcone ofC. Therefore, the second
condition is equivalent to maximizing the angle subtended
by the subconeC ∩ R. Since we know thatH is good for
face recognition. It is reasonable to assume that any sub-
space close toH would likewise be good for recognition;
hence the first condition.

In [3], it was shown that the number of extreme rays is
m(m − 1) wherem is the number of distinct surface nor-
mals -m is typically greater than1000. Therefore, in most
cases, the full illumination coneC is too difficult to com-
pute. This implies that a linear subspaceR satisfying the
two conditions above is also likely to be difficult to com-
pute. Instead, we compute aR as a sequence of nested lin-
ear subspacesR0 ⊆ R1 ⊆ . . . ⊆ Ri · · · ⊆ R9 = R with
Ri, i > 0 a linear subspace of dimensioni andR0 ≡ ∅ as
follows. First, we letECi denote the set obtained by delet-
ing i extreme rays fromEC. It follows thatEC0 = EC.
We will defineRi andECi inductively. Assume thatRi−1

andECi−1 have been defined (or computed). The setsECi
andRi are defined iteratively as follows:
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Let xi denote the element inECi−1 such that

xi = arg max
x∈ECi−1

dist(x,Ri−1)
dist(x,H)

. (9)

Ri is defined as the space spanned byxi andRi−1, and the
setECi is defined asECi−1\xi. The algorithm terminates
afterR9 ≡ R is computed. Note that sinceH is the har-
monic plane,dist(x,H) is always non-zero for allx ∈ ECi.
When computingR1, we definedist(x,R0) = dist(x, ∅) to
be1. Therefore, the first elementx1 is the extreme ray inC
that is closest to the harmonic planeH.

3.2 Discussion

From the recognition standpoint, the optimal linear plane
R should be the plane that maximizes the unit volume of
the intersectionR ∩ C. To formulate this problem more
precisely, letGR(n, 9) denote the space of9-dimensional
linear subspaces ofIRn, the Grassmannian. The unit vol-
ume of the intersectionS ∩ C of eachS ∈ GR(n, 9) with
the illumination coneC defines a continuous functionvol
on GR(n, 9) and the optimal linear planeR is simply a
global maximum ofvol. Since the dimension ofGR(n, 9)
is 9(n − 9) andn is the number of pixels, direct computa-
tions onGR(n, 9) is out of question. Instead, we restrict
our domain to a subsetID of GR(n, 9) consisting of9-
dimensional linear subspaces generated by the extreme rays
of C. That is, each linear space inID has a basis consist-
ing of only extreme rays of the cone. The maximization
problem is now equivalent to maximizing the “solid angles”
subtended by the extreme ray basis. The spaceID is discrete
and contains at mostC(e, 9) points (e is the number of ex-
treme rays). Ife is small, we can enumerate every point in
ID and compute the maximal intersection. This, again, is
not possible in general.

A straightforward approach, using a greedy algorithm, is
similar to the iterative steps we outlined above. However,
the greedy algorithm can not guarantee that a global max-
imum is reached at the end; nevertheless, one expects the
resulting linear spaceR should have “large” intersection
R ∩ C. Starting with any extreme ray, we can iteratively
find a sequence of extreme rays such that the successive lin-
ear spaces spanned by these rays intersect the cone in some
’maximal way’. We formulate this in terms of maximiz-
ing the distance between a normalized extreme rayx and
the current linear spaceRi as in the numerator of Equa-
tion 9. Of course, the resulting linear subspace generated
by this process depends on the initial extreme ray. Figure 3
illustrates two possibilities. If the number of extreme rays
is small, we can perform the same iterative process with
every extreme ray as the initial ray. Unfortunately, this is
computationally impossible in our case because of the large
number of extreme rays. Therefore, it is important to have

Fig. 3: Both figures depict a cross section of the illumination cone
with the dashed line indicating the harmonic plane. A) Ifp is
chosen as the initial ray, the resulting linear subspace intersects the
cone only on the boundary. B) Ifq is chosen instead, the resulting
linear space is the optimal one.

a good initial ray to start with. In our case, our starting ray
x1 is the extreme ray that is closest to the harmonic plane
H. According to our observation,H should be parallel to
the directions in which the cone is thickest and more than
likely, there is an almost optimalR which is close to it. This
almost proves the fact that an almost optimal plane is very
likely to contain our initial rayx1. That is, our iterative
process will start at the right initial value.

In a sense, condition 1 is not necessary if the number of
extreme rays is small. However, if this is not the case, for
computational reason, it is necessary to have a good starting
ray. Condition 1 or more precisely, the harmonic planeH
provides us with a good guess.

3.3 Experiments and results

In our implementation,EC, the full set of extreme rays of
C, is replaced by a subset of200 extreme rays. Follow-
ing [5] we obtain these200 rays by uniformly sampling
the hemisphere. For each sampled direction, we produce
the corresponding extreme ray by rendering an image un-
der a single directional source emanating from this direc-
tion (with intensity set to1). The azimuthφ and elevationθ
angles are defined on the hemisphere such that for these200
images,θ varies between−180◦ and180◦ andφ goes from
0◦ to 87◦. This set of200 sampled extreme rays is used
to define the domain for the maximization procedure spec-
ified by Equation 9. We have implemented our algorithm
for computing the linear subspaceR using the Yale Face
Database B. For ten individuals, the Yale database contains
a 3D model and45 images under different lighting condi-
tions of each person.

Some results of computing the 9-dimensional linear sub-
spaceR for each person in the database are shown in Figure
4. For each extreme ray forming a basis vector ofR, we plot
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Fig. 4: The first row displays two of the ten uncropped faces in
the Yale database. The second row is the corresponding plots of
the nine directions produced by our algorithm. The polar axis is
the elevation angleφ and the azimuth angleθ goes to the usualθ
in the 2D polar coordinates. The circles represent the circles with
φ = 25◦, 50◦ and75◦, respectively.

the direction of the corresponding light source. It is worth-
while to note that the set of nine extreme rays chosen by the
algorithm has a particular type of configuration. First, the
frontal direction (withθ = φ = 0◦) is always present. In
fact, it is always the first basis vectorx1, the one closest to
the harmonic planeH. Second, besides the frontal image,
there are another2 to 3 “interior” images, i.e. those pro-
duced by the lighting directions with|θ|, φ ≤ 65◦ Third,
the other directions are concentrated on the sides (rather
than above or below) and with directions|θ|, φ ≥ 65◦. It
is well known that these directions produce large shadows
on human faces, and makes face recognition more difficult
[9]. Our results seem to tell us the obvious: more samples
are needed on the part of the hemisphere that is most likely
to produce difficult images to recognize. It is important to
note that it is by no mean clear a priori that our algorithm
based on the two conditions explained in Section 3.1 will
favor such type of configurations.

4 Nine Points of Light

The results in the previous section demonstrate that, for
each individual, there exists a configuration of nine lighting
directions such that the linear subspace spanned by these
images is a good linear approximation of the illumination
cone. The configurations are qualitatively similar for dif-
ferent individuals with small variations in each lighting di-
rection. It is then logical to seek a fixed configuration of
nine lighting directions for all individuals such that for each

Fig. 5: The plot (the projection from the hemisphere(φ, θ) onto
thexy-plane in polar coordinates(r, θ) is: φ → r, θ → θ) of the
universal configuration of nine light source directions with all 200
sample points. The circles represent the circles on the hemisphere
with φ = 25◦, 50◦ and75◦, respectively.

individual, on average, the linear space spanned by the cor-
responding extreme rays is a good linear approximation to
the illumination cone.

To find such a configuration (or an approximate of it), we
can modify our previous method slightly by computing the
average of the quotient in Equation 9 over all the available
training models. With all the notations defined as above, we
find the nested linear subspacesR0 ⊆ R1 ⊆ . . . ⊆ Ri · · · ⊆
R9 = R by computing eachxi such that

xi = arg max
x∈ECi−1

l∑
k=1

dist(xk,Rk
i−1)

dist(xk,Hk)
. (10)

Since we are computing Equation 9 for all the available face
models simultaneously, the setEC denotes the set of 200
sample points on the hemisphere and for eachx ∈ EC,
xk denotes the image of modelk taken under a single light
source with directionx. ECi denotes the set obtained by
deletingi elements fromEC. k indexes the available face
models. Hk denotes the harmonic plane of modelk and
Rki−1 represents the linear subspace spanned by the im-
ages{xk1 , · · · , xki } of modelk under light source directions
{x1, · · · , xi}.

We call the resulting configuration of nine direc-
tions the universal configuration. These directions are{
(0, 0), (68, 90), (74, 108), (80, 52), (85,−42), (85,−137),
(85, 146), (85,−4), (51, 67) }. They along with the200
samples on the hemisphere are plotted in Figure 5.
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Fig. 6: Images of one of the10 individuals under the 4 subsets of
lighting. See [5] for more examples.

4.1 Recognition Results

Next we apply the previous result in a recognition experi-
ment to see if the configuration of nine directions leads to
effective face recognition compared to using either the il-
lumination cone or eigenfaces. Using this set of nine di-
rections, we construct a linear subspace for each of the ten
persons by rendering the images of each person under these
lighting conditions. In practice, the nine images should be
real; however, due to the lack of samples, we have opted
for rendering instead. We call our method the Nine Points
of Light (9PL) method. The recognition results of 9PL us-
ing this particular configuration of nine lighting directions
given above together with other methods reported previ-
ously in [13] are shown in Table 4.1.

For the recognition test, real images of ten faces each un-
der45 different lighting conditions are used, and the test is
performed on all of the450 images. The results are grouped
into 4 subsets according to the lighting angle with respect to
the camera axis. The first two subsets cover angles0◦−25◦,
third 25◦ − 50◦, and the fourth50◦ − 77◦.

All of the other methods reported in the table require
considerable amount of off-line processing on training data.
For the Nine Points of Light method, there is no training in-
volved !! The work is almost minimal: only nine images are
needed. It is also interesting to observe that our method per-
forms much better than the eigenfaces method. It should be
pointed out that all the methods listed in Table 4.1 that re-
quire off-line processing were trained using all the images
of Subset1 and2, in particular, the eigenfaces and linear
subspace methods. Our nine rendered images are mostly
from Subset4 (seven images per person). Because of this, it
is expected that our method should perform better than most
of the other methods for Subset4 which is the most difficult
subset with great amount of shadow variations. This is in-
deed the case. However, for Subsets 1-3, our method still
performs equally well compared with all other methods.

4.2 Further Dimensional Reduction

We have demonstrated that there is a configuration of nine
light source directions which provide a good representation

COMPARISON OFRECOGNITION METHODS

Method
Error Rate (%) vs. Illum.

Subset Subset Subset
1&2 3 4

Correlation 0.0 23.3 73.6
Eigenfaces 0.0 25.8 75.7
Eigenfaces 0.0 19.2 66.4
w/o 1st 3

Linear subspace 0.0 0.0 15.0
Cones-attached 0.0 0.0 8.6

9PL 0.0 0.0 2.8
Cones-cast 0.0 0.0 0.0

Table 1: The recognition results using various different methods.
Except for the Nine Points of Light (9PL) method, the data for all
other methods were taken from [9].

for face recognition. As shown in [3], the actual dimension
of an illumination cone is the number of distinct surface
normals. Hence, for human faces, the actual dimension of
the illumination cone is quite large; nevertheless, the pre-
vious results show that the illumination cone for a human
face ( under a fixed pose) admits a good approximation by a
9-dimensional linear plane in the image space. The natural
extension of this conclusion is to further reduce the dimen-
sion of the linear approximation and observe the resulting
recognition rate.

We experimented with this type of dimensional reduc-
tion by successively using each linear subspace in the nested
sequence,R0 ⊆ R1 ⊆ . . . ⊆ Ri · · · ⊆ R9 = R, for
face recognition. The results are shown in Figure 7. It is
clear that the recognition result is still reasonably good even
when the dimension has been reduced down to only five.
However, the error rate becomes noticeable when the di-
mension is further reduced. These results corroborate well
with the much earlier results of [1, 2]. They have shown
that using5± 2 eigenimages is sufficient to provide a good
representation of the images of a human face under vari-
able lighting. The main distinctions between these earlier
results and ours are 1) the linear approximations provided
by the earlier work have always been characterized in terms
of eigenimages. In contrast, our linear approximations are
characterized by real images. 2) There is no report of recog-
nition results in these earlier work while we have demon-
strated that not only a good low-dimensional linear approx-
imation of the illumination cone is possible but it also pro-
vides reasonably good face recognition results.
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Fig. 7: Left : The Error rates for face recognition using succes-
sively smaller linear subspaces. The abscissa represents the di-
mension of the linear subspace while the ordinate gives the error
rate. In this experiment, the extended Yale Face Database, con-
taining1710 images of38 individuals, was used.Right: The total
error rate on all1710 images.

5 Conclusion and Future Work

We have shown that there exists a set of nine single light
source directions that is important for face recognition. The
linear subspace spanned by the corresponding extreme rays
is a good approximation to the illumination, and it provides
good face recognition results under variable lighting. We
obtain the set by maximizing a function defined on the set
of the extreme rays of the illumination cone. Our result pro-
vides a recipe for building a simple but robust face recog-
nition system. By taking nine images of each individual
with single light sources emanating from these nine direc-
tions, our results show that these nine images are already
sufficient for the task of recognizing faces under different
illumination conditions. The usual complicated intermedi-
ate steps, such as the 3D reconstruction of the model, can
be completely avoided.

One surprising conclusion of our work is that for mod-
eling theeffect of illuminationon human faces, linear su-
perposition of a few directional sources may very well be
as effective as linear superposition of smooth diffuse light
sources (the harmonic plane). This is surprising because
the directional sources (represented as delta functions) and
smooth diffuse sources (represented as smooth functions)
are, in some ways, completely opposite of each other. In any
function space with any reasonable norm, the delta func-
tions and smooth functions are certainly different. We be-
lieve that this seemingly paradoxical conclusion can be at-
tributed to the prominent geometric feature of human faces:
human faces are generally flat and the variation in normals
are generally small over a large portion of the face. Verify-
ing this claim will be one of the main themes in our future
research.
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