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Abstract
In this work we take a novel view of nonlinear
manifold learning. Usually, manifold learning
is formulated in terms of finding an embedding
or ‘unrolling’ of a manifold into a lower dimen-
sional space. Instead, we treat it as the prob-
lem of learning a representation of a nonlinear,
possibly non-isometric manifold that allows for
the manipulation of novel points. Central to this
view of manifold learning is the concept of gen-
eralization beyond the training data. Drawing on
concepts from supervised learning, we establish
a framework for studying the problems of model
assessment, model complexity, and model selec-
tion for manifold learning. We present an exten-
sion of a recent algorithm, Locally Smooth Mani-
fold Learning (LSML), and show it has good gen-
eralization properties. LSML learns a represen-
tation of a manifold or family of related man-
ifolds and can be used for computing geodesic
distances, finding the projection of a point onto
a manifold, recovering a manifold from points
corrupted by noise, generating novel points on a
manifold, and more.

1. Introduction
A number of methods have been developed for dealing with
high dimensional data sets that fall on or near a smooth
low dimensional nonlinear manifold. Such data sets arise
whenever the number of modes of variability of the data
is much smaller than the dimension of the input space, as
is the case for image sequences. Unsupervised manifold
learning refers to the problem of recovering the structure of
a manifold from a set of unordered sample points. Usually,
the problem is formulated in terms of finding an embedding
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Figure 1. Given the linear subspace (manifold) found by PCA, it
is straightforward to project points onto the manifold, measure the
distance between a point and the manifold, measure distance be-
tween points after projection, and to predict the structure of the
manifold in regions with little or no data. In this work we present
an extension of LSML that treats manifold learning as a problem
of generalizing to unseen portions of a manifold and can be used
much like PCA but for nonlinear manifolds. Also, unlike nonlin-
ear embedding methods, LSML can be used with non-isometric
manifolds like the one above.

or ‘unrolling’ of a manifold into a lower dimensional space
such that certain geometric relationships between the origi-
nal points are preserved, as in the seminal works of ISOMAP
(Tenenbaum et al., 2000) and LLE (Roweis & Saul, 2000).

Although good embedding results have been obtained for
a number of manifolds, embedding methods are limited in
two fundamental ways. First, they are by definition well
suited only for manifolds that are isometric (or conformal)
to a subset of Euclidean space. There is little reason to be-
lieve that many manifolds of interest have this property, e.g.
a sphere does not. Secondly, embedding methods are de-
signed to describe a fixed set of data and not to generalize to
novel data. Although out-of-sample extensions have been
proposed (Bengio et al., 2004), these are typically appli-
cable only in regions of a manifold that have already been
sampled densely. Such methods cannot be used to predict
manifold structure where no samples are given, even if the
manifold has a smooth, consistent form.
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Consider classical MDS, used to find a distance preserv-
ing embedding from a matrix of Euclidean distances, and
PCA, which finds a low dimensional subspace that explains
observed data (Hastie et al., 2001). Although both are de-
signed to deal with linear subspaces, classical MDS is used
primarily for data visualization and exploration while PCA
is used for finding a low dimensional subspace that can be
used to analyze novel data. PCA tends to be more versatile
than MDS: given the linear subspace (manifold) found by
PCA, it is straightforward to project points onto the mani-
fold, measure the distance between a point and the mani-
fold, measure distance between points after projection, and
to predict the structure of the manifold in regions with little
or no data.

Nonlinear embedding methods are used much like MDS but
for nonlinear manifolds; however, they cannot be used for
manipulating novel data. In this work we present an ex-
tension of LSML (Dollár et al., 2006), and and show that
it can be used much like PCA but for nonlinear manifolds
(see Figure 1). LSML treats manifold learning as a prob-
lem of generalizing to unseen portions of a manifold, and
is applicable to non-isometric cases. Instead of only finding
an embedding for visualization, LSML learns a representa-
tion of a manifold or family of related manifolds that can
be used for computing geodesic distances, finding the pro-
jection of a point onto a manifold, recovering a manifold
from points corrupted by noise, generating novel points on
a manifold, and more.

The remainder of the paper is broken down as follows. We
begin with an overview of related work, then in Section
2 we provide an overview of the original LSML and give
details of the extension proposed in this work. In Section
3 we introduce a methodology that allows us to perform
empirical studies of nonlinear manifold learning methods
and show how we can study the generalization properties
of LSML. Finally, in Section 4 we show a number of uses
for the manifold representation learned by LSML, including
projection, manifold de-noising, geodesic distance compu-
tation, and manifold transfer.

1.1. Related Work

We begin with a brief overview of literature on nonlin-
ear manifold learning. Traditional methods include self
organizing maps, principal curves, and variants of multi-
dimensional scaling (MDS) among others, see (Hastie et al.,
2001) for a brief introduction to these methods. In recent
years, the field has seen a number of interesting develop-
ments. (Schölkopf et al., 1998) introduced a kernelized
version of PCA. A number of related embedding meth-
ods have also been introduced, representatives include LLE
(Saul & Roweis, 2003), ISOMAP (Tenenbaum et al., 2000),
h-LLE (Donoho & Grimes, 2003), and more recently MVU

(Weinberger & Saul, 2006). Broadly, such methods can be
classified as spectral embedding methods (Weinberger &
Saul, 2006); the embeddings they compute are based on an
eigenvector decomposition of an n × n matrix that repre-
sents geometrical relationships of some form between the
original n points. Out-of-sample extensions have been pro-
posed (Bengio et al., 2004).

Four methods that LSML shares inspiration with are (Brand,
2003; Keysers et al., 2001; Bengio & Monperrus, 2005;
Rao & Ruderman, 1999). Brand (2003) employs a novel
charting based method to achieve increased robustness to
noise and decreased probability of pathological behavior
vs. LLE and ISOMAP; we exploit similar ideas in the con-
struction of LSML but differ in motivation and potential
applicability. Bengio and Monperrus (2005) proposed a
method to learn the tangent space of a manifold and demon-
strated a preliminary illustration of rotating a small bitmap
image by about 1◦. Although our approach to the prob-
lem differs, the motivation for LSML is based on similar in-
sights. Work by Keysers et al. (2001) is based on the notion
of learning a model for class specific variation, the method
reduces to computing a linear tangent subspace that models
variability of each class. Rao and Ruderman (1999) shares
one of our goals as it addresses the problem of learning
Lie groups, the infinitesimal generators of certain geomet-
ric transformations.

Finally, there is a vast literature on computing distances be-
tween objects undergoing known transformations (Miller &
Younes, 2001; Simard et al., 1998), which is essentially the
problem of computing distances between manifolds with
known structure.

2. LSML

Here we give details of the extended version of LSML
(Dollár et al., 2006). The basic motivation and general
structure of the algorithm is similar to previous work, how-
ever, the details differ. We define a new error function and
motivate the use of a new regularization term. The mini-
mization of the error is made more efficient, although some
details are omitted for space. For an introduction to LSML
see Figure 2.

2.1. Motivation and Error Function

Let D be the dimension of the input space, and assume the
data lies on a smooth d-dimensional manifold (d � D).
For simplicity assume that the manifold is diffeomorphic
to a subset of Rd, meaning that it can be endowed with a
global coordinate system (this requirement can easily be re-
laxed) and that there exists a continuous bijective mapping
M that converts coordinates y ∈ Rd to points x ∈ RD

on the manifold. The goal is to learn a warping function
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(a) (b) (c) (d) (e)

Figure 2. Overview. Twenty points (n=20) that lie on 1D curve (d=1) in a 2D space (D=2) are shown in (a). Black lines denote
neighbors, in this case the neighborhood graph is not connected. We apply LSML to trainH (with f = 4 RBFs). H maps points in R2 to
tangent vectors; in (b) tangent vectors computed over a regularly spaced grid are displayed, with original points (blue) and curve (gray)
overlayed. Tangent vectors near original points align with the curve, but note the seam through the middle. Regularization fixes this
problem (c), the resulting tangents roughly align to the curve along its entirety. We can traverse the manifold by taking small steps in the
direction of the tangent; (d) shows two such paths, generated starting at the red plus and traversing outward in large steps (outer curve)
and finer steps (inner curve). In (e) two parallel curves are shown, with n=8 samples each. Training a commonH results in a vector field
that more accurately fits each curve than training a separateH for each (if their structure was very different this need not be the case).

W that can take a point on the manifold and return any
neighboring point on the manifold, capturing all the modes
of variation of the data. Define W(x, ε) = M(y + ε),
where y = M−1(x) and ε ∈ Rd. Taking the first order
approximation of the above gives: W(x, ε) ≈ x +H(x)ε,
where each column H·k(x) of the matrix H(x) is the par-
tial derivative of M w.r.t. yk: H·k(x) = ∂/∂ykM(y).
This approximation is valid given ε small enough.

The goal of LSML is to learn the function Hθ : RD →
RD×d parameterized by a variable θ. Only data points
xi sampled from one or several manifolds are given. For
each xi, the set N i of neighbors is then computed (e.g.
using variants of nearest neighbor such as kNN or εNN),
with the constraint that two points can be neighbors only if
they come from the same manifold. The original formula-
tion of LSML was based on the observation that if xj is a
neighbor of xi, there then exists an unknown εij such that
W(xi, εij) = xj , or to a good approximation:

Hθ(xi)εij ≈ ∆i
·j , (1)

where ∆i
·j ≡ xj−xi. An interpretation of the above is that

∆i
·j is the un-centered estimate of a directional derivative at

xi. However, ∆i
·j could also serve as the centered estimate

of the directional derivative at xij ≡ xi+xj

2 :

Hθ(xij)εij ≈ ∆i
·j . (2)

xij may lie slightly off the manifold, however, as Hθ is a
smooth mapping over all of RD, this does not pose a prob-
lem. Although the change is subtle, in practice use of (2)
provides significant benefit, as the centered approximation
of the derivative has no second order error. So, roughly
speaking (1) is valid if locally the manifold has a good lin-
ear approximation while (2) is valid where a quadratic ap-
proximation holds.

To solve forHθ, we define the following error:

err(θ) = min
{εij}

∑
i,j∈N i

∥∥Hθ(xij)εij −∆i
·j
∥∥2

2
. (3)

We want to find the θ that minimizes this error. The εij

are additional free parameters that must be optimized over;
they do not affect model complexity.

2.2. Regularization

We can explicitly enforce the mapping Hθ to be smooth
by adding a regularization term (in addition to implicit
smoothness that may come from the form ofHθ itself). For
each i, the learned tangents at two neighboring locations
xij and xij′

should be similar, i.e. ‖Hθ(xij)−Hθ(xij′
)‖2F

should be small. Note that this may not always be possible,
e.g. the Hairy Ball Theorem states there is no non-trivial
smooth vector field on a sphere. To ensure that theHθ’s do
not get very small and the ε’s very large, ‖εij‖22 must also
be constrained. We add the following term to (3):

λE

∑ ∥∥εij
∥∥2

2
+ λθ

∑ ∥∥∥Hθ(xij)−Hθ(xij′
)
∥∥∥2

F
. (4)

The overall error can be rewritten using a single λ if for any
scalar a > 0 we treat Hθ and aHθ as essentially the same.
The error ofHθ with regularization parameters (λE , λθ) is
the same as the error of aHθ with regularization parameters
(a2λE , 1

a2 λθ). Thus there is a single degree of freedom,
and we always set λE = λθ = λ.

2.3. Linear Parametrization

Although potentially any regression technique is applica-
ble, a linear model is particularly easy to work with. We
use radial basis functions (RBFs) to define additional fea-
tures for the data points (Hastie et al., 2001). The num-
ber of basis functions, f , is an additional parameter that
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controls the smoothness of the final mapping Hθ. Let f ij

be the f features computed from xij . We can then define
Hθ(xij) =

[
Θ1f ij · · ·ΘDf ij

]>
, where each Θk is a d× f

matrix. Re-arranging (3) gives:

err(θ) = min
{εij}

∑
i,j∈N i

D∑
k=1

(
f ij>Θk>εij −∆i

kj

)2

. (5)

Solving simultaneously for the ε’s and Θ’s is complex, but
if either the ε’s or Θ’s are fixed, solving for the remaining
variables becomes a least squares problem (details omitted
for space). We use an alternating minimization procedure,
with random restarts to avoid local minima.

2.4. Radial Basis Functions

For the features we use radial basis functions (RBFs)
(Hastie et al., 2001), the number of basis functions, f , be-
ing an additional parameter. Each basis function is of the
form f j(x) = exp(−‖x − µj‖22/2σ2) where the centers
µj are obtained using K-means clustering on the original
data with f clusters and the width parameter σ is set to be
twice the average of the minimum distance between each
cluster and its nearest neighbor center. The feature vectors
are then simply f i = [f1(xi) · · · fp(xi)]>. The parameter
f controls the smoothness of the final mapping Hθ; larger
values result in mappings that better fit local variations of
the data, but whose generalization abilities to other points
on the manifold may be weaker (see Section 3.2).

3. Analyzing Manifold Learning Methods
In this section we seek to develop a methodology for an-
alyzing nonlinear manifold learning methods without re-
sorting to subjective visual assessment of the quality of an
embedding. The motivation is twofold. First, we wish to
have an objective criterion by which to compare LSML to
existing manifold learning methods. Second, and more im-
portantly, in order to work with non-isometric manifolds
(which may not have meaningful embeddings), we need
to establish some guidelines for how to properly control
the complexity and evaluate the performance of a manifold
learning method.

A key issue in supervised learning is the generalization per-
formance of a learning method, defined by its prediction er-
ror computed on independent test data (Hastie et al., 2001).
Such a notion is of central importance for supervised learn-
ing because it provides a principled approach for choosing
among learning methods, controlling their complexity, and
evaluating their performance. We will show how some of
these ideas can be applied in the context of nonlinear man-
ifold learning.

3.1. Model Evaluation

A number of works have established the theoretical rela-
tionships between various manifold embedding methods
(Bengio et al., 2004; Xiao et al., 2006). Also, asymptotic
guarantees exist for ISOMAP, h-LLE and MVU, and con-
ceivably similar bounds could be shown for other methods.
Here, however, we are more interested in how these meth-
ods perform with a finite sample. We begin by introducing
a simple yet intuitive evaluation methodology.

By definition, if a manifold is isometric to a convex subset
of a low dimensional Euclidean space, there exists a diffeo-
morphism that maps the metric of such a manifold, defined
by geodesic distance, to the Euclidean metric. A natural
measure of the quality of an embedding for this class of
manifolds is how closely distance is preserved1. Given a
sufficient number of samples from an isometric manifold,
geodesic distance can be estimated accurately, and this es-
timate is guaranteed to converge as the number of samples
grows (this forms the basis for ISOMAP, we refer the reader
to Tenenbaum et al. (2000) for details). We evaluate finite
sample performance, using a much larger sample to obtain
ground truth distances. This methodology is applicable for
manifolds that can be sampled densely, for example for toy
data or for image manifolds where we know the underlying
transformation or generative model for the manifold.

We assume we are given two sets of samples from the man-
ifold, Sn containing n points, which serves as the training
data, and a very large set S∞, used only during the eval-
uations stage. The ground truth geodesic distances dij for
each pair of points i, j in Sn are computed using S∞. Let
d′ij denote the Euclidean distance between points i, j in a
given embedding. We define the error of an embedding as:

errGD ≡
1
n2

∑
ij

|dij − d′ij |
dij

. (6)

All experiments presented here were averaged over 10 tri-
als. Reasonable effort was made to maximize the perfor-
mance of each method tested. We compared LSML to three
embedding methods: ISOMAP (Tenenbaum et al., 2000),
LLE (Roweis & Saul, 2000) and (fast) MVU (Weinberger
& Saul, 2006), each of which has code available online.
The embedding methods require a fully connected neigh-
borhood graph; we simply discarded data that resulted in
disconnected graphs. We sampled at most 1000 pairs of
neighboring points to train LSML, under these conditions
training takes around two minutes regardless of n or the
number of neighbors k. Details of how to use the learned

1
LLE, MVU and LSML are applicable to larger classes of manifolds. However,

any method should work with isometric manifolds. There have also been some re-
sults on conformal embeddings (which preserve angles but not distances); a simi-
lar methodology could be developed for this case. Finally, note that LLE finds an
embedding that can differ by an affine transformation from a distance preserving
embedding, and so must be adjusted accordingly.
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Figure 3. Finite sample performance. Performance of various
algorithms, measured by errGD as n is varied. All results shown
are averaged over 10 repetitions. Left: S-curve error for various
methods (k chosen optimally for each data point). ISOMAP, MVU

and LSML all performed well for large n. LSML performed quite
well even with n=25. Qualitatively similar results were obtained
for other manifolds. Right: ISOMAP (geodesic distance computa-
tion only) and LSML results on a hemisphere. Here k = 5 was
fixed, preventing ISOMAP from converging to a lower error solu-
tion. LSML’s performance did not improve after n=100 because
of sampling (see text).

model for geodesic distance computation are given in Sec-
tion 4.3. Since computing pairwise distances is time con-
suming for large n, we sample 100 landmark points.

The first experiments examine finite sample performance
(see Figure 3). The performance of the embedding methods
ranked as ISOMAP � MVU � LLE, with the performance
of LLE being quite bad even for large n. To be fair how-
ever, LLE can recover embeddings for classes of manifolds
where MVU and ISOMAP cannot (and likewise MVU is more
general than ISOMAP). LSML performed better than these
embedding methods, especially for small n. LSML-U refers
to the version of LSML from (Dollár et al., 2006), it gener-
ally performs similarly to LSML, except for small n or large
k (when curvature is non-negligible).

3.2. Model Complexity

The first step of many embedding methods is to construct
a neighborhood graph of the data, using for example the
k-nearest neighbors of each point. Thus all these meth-
ods have at least one parameter, k, usually set by hand. If
k is too small estimates of local geometry may have high
error or variance, either due to noise or lack of informa-
tion. If k is too large estimates of local geometry may be
biased by manifold curvature. For the trivial case of a lin-
ear subspace, which has no curvature, increasing k should
continuously decrease error since there is no bias term.

In these terms the choice of k is reminiscent of the classic
bias-variance tradeoff in supervised learning. Another view
of the tradeoff is that enlarging k increases the number of
constraints on the embedding, except that additional con-
straints become increasingly inaccurate. See Figure 4 for
the effects of neighborhood size and noise on performance
for each method.
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Figure 4. Bias-Variance Tradeoff. Top: Effects of neighborhood
size. Left: Error as a function of k for n=400 points from S-
curve; note ‘U’-shaped curves. Note also the robustness of LSML

to very small (k=1) and very large (k=100) neighborhood sizes
(eventually LSML does break down, not shown). The reason for
this robustness is due to use of the centered error (LSML-U is not
quite as robust for large k), see Section 2.1. Right: Best value of
k for each method as a function of n. For all but MVU k increases
sub-linearly with n. Bottom: Effects of noise. Left: As the amount
of noise σ increases, the error of each method increases. LSML

performs well, even without the de-noising introduced in Section
4.2. Right: Best value of k for each method as a function of σ.
For MVU and ISOMAP k increases to compensate for additional
noise, LSML always prefers fairly large k given noise.

In addition to k, LSML has two more smoothing parame-
ters: the number of RBF’s and the regularization parameter
λ. LLE also has a regularization term whose effects can
be significant and MVU has a parameter ω that balances
between maximizing variance and penalizing slack. Ide-
ally, we would like some way of automatically performing
model selection; i.e. automatically selecting the value for
each of these parameters for a given problem instead of re-
lying on a visual assessment of the final embedding.

3.3. Model Selection

errGD can be used to analyze model complexity in certain
settings, as above. However, in general there is no large
sample set available from which to compute ground truth
distances, in which case errGD cannot be used to perform
model selection. Also, for the same reasons that in general
the quality of an embedding cannot be evaluated, neither
can the quality of out-of-sample extension, so this does not
provide an answer2. The key difficulty stems from the fact

2Bengio et al. (2004) evaluated the out-of-sample extension of various methods
by seeing how consistent the out-of-sample prediction was compared to simply in-
cluding the point in the original embedding. However this is only a partial solution
since consistency does not imply accuracy (consider a trivial embedding which maps
all points to the origin).
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Figure 5. LSML Test Error. When errGD can be computed it is
strongly correlated with errLSML, supporting our use of errLSML to
perform model evaluation. Left: Points drawn from a Möbius
strip, a manifold with d = 2, with a small amount of noise added.
Right: errLSML and errGD, each normalized to lie between 0 and
1, as the number of RBFs was varied. Of 500 points, 2

3
were

used for training, 1
3

for testing. According to both error measures
approximately 10 to 20 RBFs was best.

that most manifold embedding methods make no testable
predictions.

If manifold learning can be posed in such a way that it
makes testable predictions, the quality of the predictions
can potentially be used to perform model selection. For ex-
ample, if in addition to an embedding the reverse mapping
back to RD is also learned, error can be measured by how
well a test point is encoded. This principle formed the basis
for auto-encoding neural nets (DeMers & Cottrell, 1993).

Given a notion of test error, standard techniques from su-
pervised learning, such as cross-validation, can be used for
performing model selection and evaluation for manifold
learning. However, although any testable prediction gives
rise to an error measure, not all error measures are neces-
sarily useful. errGD gives a way to evaluate performance
in certain scenarios; at minimum prediction error should
roughly correlate with errGD when it is available.

3.4. LSML Test Error

LSML predicts the tangent planesH at all points on a man-
ifold. We can define the test error of LSML according to
how well the predicted tangent planes fit unseen data (see
Eq. (2)). Given unseen test points xi, the error is:

errLSML ≡
∑

i

min
εii′

∥∥∥Hθ(xii′)εii′ − (xi − xi′)
∥∥∥2

2
, (7)

where xi′ is the closest neighbor of xi, either another test
point or a training point.

errLSML is strongly correlated with errGD both for isometric
and non-isometric manifolds. For example, in Figure 5 we
show the effect of changing the number of RBFs on both
errors for data that lies on a Möbius strip; note that the
minima of the errors occur at roughly the same spot. This
correlation is important, because it allows us to use errLSML

in place of errGD to perform model evaluation, select model

Figure 6. Manifold De-noising. Red (square) points are the
noisy training data used to learn Hθ . After, the de-noising pro-
cedure from Section 4.2 was applied to recover the blue (circular)
points. Original manifolds shown in gray. Left: Circle (D=2, d=1,
n=200). Right: S-curve, side view (D=3, d=2, n=500).

parameters, etc. Although we can only prove the utility of
errLSML for manifolds for which errGD is defined, errLSML is
most useful when errGD cannot be computed.

Finally, note that errLSML cannot be used to choose d, since
as d increases errLSML will decrease. This is the same chal-
lenge as choosing k in K-means clustering. A simple rule
of thumb is to choose the smallest value of d such that fur-
ther increasing d results in only a small decrease in error.

4. Working withHθ

We now develop a number of uses for the representa-
tion Hθ learned by LSML, including projection, manifold
de-noising, geodesic distance computation, and manifold
transfer. For all experiments we use errLSML to select model
parameters, including the number of RBF’s, k, and the reg-
ularization parameter λ. Given low test error, we expect
geodesic distance computation, de-noising, etc. to be accu-
rate (see Section 3.4).

Hθ is a function defined everywhere on RD, not just for
points from the original manifold. This allows us to work
with points that don’t lie precisely on the manifold. Finally,
note that in addition to Hθ at least one training point is
necessary to identify a manifold, and in practice keeping
more training points is useful.

4.1. Projection

The projection of a point onto a linear subspace is unique
and can be computed in closed form. For nonlinear man-
ifolds this is in general not the case. x′ is an orthog-
onal projection of a point x onto a manifold if it mini-
mizes ‖x − x′‖22 in an open neighborhood. We can find
such a point by initially setting x′ to be some point from
the manifold and then performing gradient descent, being
careful not to leave the support of the manifold. x′ is
therefore bound to only follow the projection of the gra-
dient on the local tangent space defined by Hθ(x′). Let
H ′ ≡ orth(Hθ(x′)) be the d × D matrix that denotes the
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(a) (b) (c)
Figure 7. Geodesic Distance. We can find a geodesic path be-
tween two points by using a snake. The key idea is to start with
a discretized path between x and x′ and perform gradient descent
until the length of the path cannot decrease. (a) Initial path be-
tween two points on S-curve. (b) Locally shortest path (geodesic)
obtained after gradient descent. (c) Embedding computed using
classical MDS on geodesic distances (only applicable for isomet-
ric manifolds). Hθ was trained on the n=100 points shown.

orthonormalized tangent space at x′, and H ′H ′> the cor-
responding projection matrix. The update rule for x′ (with
step size α) is:

x′ ← x′ + αH ′H ′>(x− x′). (8)

There may be multiple orthogonal projections but we gen-
erally are interested in the closest one. A simple heuristic
is to initially set x′ to the nearest point in the training data.

4.2. Manifold De-noising

Assume we have learned or are given the mapping Hθ that
describes the tangent space of some manifold or family of
manifolds. Suppose we are also given samples xi from
a manifold that have been corrupted by noise so they no
longer lie exactly on the manifold (these can be the same
samples from which Hθ was learned). Here we show how
to recover a set of points χi that are close to the noisy sam-
ples xi but lie on a manifold consistent withHθ.

The key to the approach is the observation that, as in Eq.
(3), if χj is a neighbor of χi then there exists an unknown
εij such that ‖Hθ(χij)εij − (χi − χj)‖22 is small. We can
thus find a series of points χi that are close to the original
points xi and satisfy the above. The error to minimize is
the sum of two terms:

errM(χ) = min
{εij}

X

i,j∈N i




Hθ(χ
ij)εij − (χi − χj)





2

2
(9)

errorig(χ) =

nX

i=1




χi − xi





2

2
(10)

The second term is multiplied by a constant λnoise to weigh
the importance of sticking to the original points. We as-
sume that for a small change in χi, ∂Hθ

∂χi is negligible with
respect to the other quantities. Under such an assumption,

the gradient of errM(χ) can easily be rewritten as a prod-
uct of matrices. We find a minimum energy solution by
initially setting χi = xi for each i and then performing
gradient descent on the χi’s, this time using only the com-
ponent of the gradient that is orthonormal to the manifold
(we cannot correct the noise in the co-linear direction).

Manifold de-noising has received some attention in the lit-
erature (Park et al., 2004); the approach presented here is
simpler and does not suffer from the “trim the peak and fill
the valley” phenomenon. We show results in Figure 6.

4.3. Geodesic Distance

Given two points on a manifold, x and x′, we want to
compute the geodesic (locally minimal) distance between
them. To find such a minimal path we use an active contour
model, also known as a ‘snake’ (Kass et al., 1988; Blake &
Isard, 1998), where the length of a discretized path between
x and x′ is optimized by gradient descent.

Let χ1 = x and χm = x′, and χ1, . . . , χm de-
note a sequence of points on the manifold forming a
path between them. The length of the path is given by∑m

i=2

∥∥χi − χi−1
∥∥

2
. For computational reasons, we use

the following instead:

errlength(χ) =
m∑

i=2

∥∥χi − χi−1
∥∥2

2
. (11)

We minimize errlength via gradient descent, keeping the ends
of the snake fixed and again being careful not to leave the
support of the manifold. The update rule for each χi is very
similar to the update rule for projection given in Eq. (8).

To get an initial estimate of the snake, we apply Dijk-
stra’s algorithm to the original points (also the first step of
ISOMAP). To increase accuracy, additional points are lin-
early interpolated, and to ensure they lie on the manifold
they are ‘de-noised’ by the procedure from Section (4.2)
(with λnoise = 0 and neighbors being adjacent points).

Figure 7 shows some example snakes computed over an S-
curve. In Figure 8 we show an example snake that plausibly
crosses a region where no points were sampled.

4.4. Manifold Transfer

A related problem to learning the structure of a single man-
ifold is to simultaneously learn the representation of multi-
ple manifolds that may share common structure (cf . Fig-
ure 2e). Such manifolds can arise whenever a common
transformation acts on multiple objects, e.g. in the image
domain this is quite common. One possibility is to relate
representations learned separately for each manifold (El-
gammal & Lee, 2004), however, learning simultaneously
for all manifolds allows sharing of information.
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Figure 8. Missing Data. Hθ was trained on n=100 points sam-
pled from a hemisphere with the top portion removed. Hθ plausi-
bly predicted the manifold structure where no samples were given.
Shown are two views of a geodesic computed between two points
on opposite sides of the hole (see Section 4.3).

An even more interesting problem is generalizing to novel
manifolds. Given multiple sets of points, each sampled
from a single manifold, we can formulate the problem as
learning and generalizing to unseen manifolds. Once again
errLSML serves as the test error, except now it is computed
from points on the unseen manifolds. LSML can already
be trained on data of this form; two points being defined
as neighbors if they are close in Euclidean space and come
from the same manifold. Results of manifold transfer were
shown in Figure 6 of (Dollár et al., 2006).

5. Conclusion
In this work we presented a novel examination of nonlin-
ear manifold learning, posing it as the problem of learn-
ing manifold representations in a manner that allows for
the manipulation of novel data. Drawing on concepts
from supervised learning, we presented a theoretically
sound methodology for quantifying the generalization per-
formance of manifold learning approaches. With this for-
malism in hand, we presented an extended version of LSML
and showed how it can be applied to tasks including non-
linear projection, manifold de-noising, geodesic distance
computation and manifold transfer. In ongoing work we
are scaling the implementation of LSML to handle large
datasets, and tuning it for use in the image domain. In
future work we plan to investigate applications that entail
generalization to entire families of manifolds.
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