
Object Categorization using Co-Occurrence, Location and Appearance

Carolina Galleguillos Andrew Rabinovich Serge Belongie
Department of Computer Science and Engineering

University of California, San Diego
{cgallegu,amrabino,sjb}@cs.ucsd.edu

Abstract

In this work we introduce a novel approach to object
categorization that incorporates two types of context – co-
occurrence and relative location – with local appearance-
based features. Our approach, named CoLA (for Co-
occurrence, Location and Appearance), uses a conditional
random field (CRF) to maximize object label agreement ac-
cording to both semantic and spatial relevance. We model
relative location between objects using simple pairwise fea-
tures. By vector quantizing this feature space, we learn
a small set of prototypical spatial relationships directly
from the data. We evaluate our results on two challeng-
ing datasets: PASCAL 2007 and MSRC. The results show
that combining co-occurrence and spatial context improves
accuracy in as many as half of the categories compared to
using co-occurrence alone.

1. Introduction
Real world scenes often exhibit a coherent composition

of objects, both in terms of relative spatial arrangement and
co-occurrence probability. This type of knowledge can be
a strong cue for disambiguating object labels in the face of
clutter, noise and variation in pose and illumination. Infor-
mation about typical configurations of objects in a scene has
been studied in psychology and computer vision for years,
in order to understand its effects in visual search, localiza-
tion and recognition performance [1, 2, 3, 11, 17, 28]. Bar
et al. [1] examined the consequences of pairwise spatial re-
lations between objects that typically co-occur in the same
scene on human performance in recognition tasks. Their
results suggested that (i) the presence of objects that have a
unique interpretation improve the recognition of ambiguous
objects in the scene, and (ii) proper spatial relations among
objects decreases error rates in the recognition of individual
objects.

Some recently developed computational models have ap-
pealed to observation (i) in order to identify ambiguous ob-
jects in a scene. Torralba et al. [25] suggested a low level

Figure 1. Illustration of an idealized object categorization system
incorporating semantic and spatial context. First, the input image
is segmented, and each segment is labeled by the recognizer. Next,
semantic context is used to correct some of the labels based on
object co-occurrence. Finally, spatial context is used to provide
further disambiguation based on relative object locations.

representation of an image called the “Gist” as a contex-
tual prior for object recognition. Along these lines, other
approaches have also considered global image features as
a source of context; either by using the correlation of low
level features across images that contain the object or across
the category [8, 14, 23, 27, 29]. Most recent methods in-
corporate co-ocurrence of high level features to enforce
contextual constraints [4, 18]; information from an exter-
nal knowledge base may be used instead of learned co-
occurences [18].

With respect to observation (ii), several object recogni-
tion models have been proposed that consider spatial rela-
tionships. Spatial context has been incorporated from inter-
pixel statistics [8, 23, 26, 29] and from pairwise relations
between regions in images [9, 24]. To our knowledge, how-
ever, such models have not yet incorporated the use of ex-
plicit spatial context between objects in a scene. While the
work of [18] employs semantic context1 to improve recogni-

1Throughout the paper we will use semantic context and co-occurence
interchangeably.
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tion accuracy by maximizing label agreement of the objects
in a scene with respect to co-occurrence, it does not place
constraints on the relative locations of the objects.

As an illustration of this idea, consider the flow chart
in Figure 1. An input image containing an aeroplane,
trees, sky and grass (top left) is first processed through
a segmentation-based object recognition engine. The rec-
ognizer outputs an ordered shortlist of possible object la-
bels; only the best match is shown for each segment (top
right). Without appealing to context, several mistakes are
evident. Semantic context in the form of probable object
co-occurrence allows one to correct the label of the aero-
plane, but leaves the labels of the sky and grass incorrect
(bottom right). Finally, spatial context asserts that sky is
more likely to appear above grass than vice versa (bottom
left).

Our primary contribution in this paper is a new method
of object categorization that incorporates both of the above
types of context into a unified framework. Our approach,
named CoLA (for Co-occurrence, Location and Appear-
ance), uses a conditional random field (CRF) formulation
in order to maximize contextual constraints over the object
labels. Co-occurrence and spatial context are learned simul-
taneously from the training data in an unsupervised manner,
and models for spatial relationships between objects are dis-
covered, rather than defined a priori as in [9, 24].

Our approach leverages the use of multiple stable seg-
mentations as pre-processing step [13, 18, 21]. This rep-
resentation provides a natural spatial grouping of pixels in-
side candidate object regions, thereby leading to improved
performance of simple recognition approaches such as Bag
of Features (BoF), and additionally, it readily lends itself
to object-based contextual reasoning [19]. Additionally,
multiple stable segmentations are a convenient substrate for
object-based contextual reasoning.

The remainder of this paper is organized as follows.
Section 2 describes our proposed model for learning spa-
tial relationships between objects. In Section 3 we present
and formalize the CoLA object categorization framework.
Section 4 presents experimental results for two challenging
databases, PASCAL 2007 and MSRC. Finally, in Section 5,
we present our conclusions and discuss future work.

2. Learning Spatial Context
Biederman et al. [3] proposed that physical and semantic

changes in a coherent scene interfere with and cause delays
in object recognition. Conversely, object recognition can
be facilitated by the use of relationships that support the
definition of a coherent scene.

In the area of object recognition and scene understand-
ing, several works have incorporated the use of spatial re-
lationships as a source of context. The work of Singhal et
al. [24] combines probabilistic spatial context models and

material detectors for scene understanding. These models
are based on pre-defined pixel level relationships between
image regions, where spatial context information is repre-
sented as a binary feature of each specified relationship.
Kumar and Hebert [9] model interactions among pixels,
regions and objects using a hierarchical CRF. In their ap-
proach, the computed regions and objects are a result of the
CRF itself. Although it is possible to capture a variety of
different low level pixel groupings in the first level of their
hierarchy, the authors only consider a single equilibrium
configuration and propagate it (along with its uncertainty)
to the level of regions and objects.

In contrast, our approach employs a decoupled segmen-
tation stage that extracts a shortlist of stable (and possi-
bly overlapping) segments as input to a subsequent context
based reasoning stage. As a result, the latter stage – also
CRF-based – has at its disposal a variety of shortlists of
possible objects and labels over which to perform inference
based on co-occurrence and spatial relationships. These re-
lationships, which in our case are unknown a priori, char-
acterize the nature of object interaction in real world im-
ages and reveal important information to disambiguate ob-
ject identity.

Our sources of information for learning spatial config-
urations on pairs of objects are the MSRC and PASCAL
training databases. In particular, these datasets provide us a
collection of multiply labeled images I1, . . . , In, each con-
taining at least two objects belonging to different categories,
ci, cj ∈ C s.t. i 6= j; an object i is labeled by a bounding
box or pixel mask βi. We define the following simple pair-
wise feature to capture a specific object configuration as a
three dimensional spatial context descriptor:

Fij = (µij , Oij , Oji)> ∀ i, j ∈ C, i 6= j, (1)

Oij =
βi /βj

βi
and µij = µyi − µyj (2)

where µij is the difference between the y component of
the centroids (in normalized coordinates) of the objects la-
beled ci and cj , and Oij is the overlap percentage of the
object with label cj with respect to the object with label
ci. We omit the x component of the centroid since relative
horizontal position does not carry any discriminative infor-
mation for the objects in PASCAL or MSRC.

In order to capture the prevalent spatial arrangements
among objects in the databases, we vector quantize the fea-
ture space into 4 groups. Choosing a small number of
groups translates into simpler relations that can explain in-
teractions that are well represented across many object pairs
and scenes. We used the ground truth segmented regions
and bounding box labels from MSRC and PASCAL 2007,
respectively, to compute the spatial context descriptors. A
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Figure 2. Four different groups represent four different spatial relationships: above, below, inside and around. The axes Oij , Oji and
µij are defined in Equation 2. (a) For MSRC we observe many more pairwise relationships that belong to vertical arrangements. (b) For
PASCAL 2007 we observe comparatively more pairwise relationships that belong to overlapping arrangements. Please view in color.

closer look at the resultant clusters, shown in Figure 2, sug-
gests the pairwise relationships above, below, inside and
around, illustrated for an example image in Figure 3 con-
taining grass, water and cow. Learning the relationships
between pairs of objects, rather than defining them a pri-
ori, yields a more generic and robust description of spatial
interactions among objects.

The distributions we observe in Figure 2 have compara-
ble overall shapes, and the clusters representing the spatial
relations are found in similar locations in the feature space.
In the case of MSRC, the above and below relationships
are predominant, as many objects remain in vertically con-
sistent locations relative to other objects (e.g., sky, water,
grass). In contrast, PASCAL’s biggest clusters correspond
to the spatial relationships inside and around, since most
of these objects are found interposed with respect to one
another. Also, as PASCAL object labels are specified by
bounding boxes, rather than pixel-resolution ground truth
masks, this results in larger average overlap values.

Figure 3. Illustration of four basic spatial relationships that exist
among objects within an MSRC image. Labels in red indicate the
object that possesses the relationship with respect to the object
with the white label, e.g, the grass, in red, is below water, in white.
Please view in color.

3. Contextual Object Categorization Model
In this section we present the details of our proposed

model. At a high level, we begin by computing multiple sta-
ble segmentations for the input image, resulting in a large
collection of segments. Each segment is considered as an
individual image and is used as input to a BoF model for
recognition. Each segment is assigned a list of candidate la-
bels, ordered by confidence. The segments are modeled as
nodes of a CRF, where location and object co-occurence
constraints are imposed. Finally, based on local appear-
ance, contextual agreement and spatial arrangements, each
segment receives a category label. A flow diagram of this
model is shown in Figure 4, and the details are provided
next.

Figure 4. Object categorization using semantic and spatial context.
Semantic and spatial information are unified in the same level in
a conditional random field in order to constrain the location and
co-ocurrence of objects in the image scene.

3.1. Appearance

BoF is a widely used discriminative model for recogni-
tion [7, 16]. Empirically, it has been shown to be rather
powerful, however, it is highly sensitive to clutter, because



no distinction between object and background is made. In
the raw formulation of BoF, there is no regard for spatial
arrangement among pixels, patches, or features. A number
of methods have been proposed to incorporate spatial infor-
mation into BoF [10, 13, 18, 19]. In this work we adopt
the approach of [19], which demonstrates an improvement
in categorization accuracy using multiple stable segmenta-
tions.

We integrate segmentation into the BoF framework as
follows. Each segment is regarded as a individual im-
age by masking and zero padding the original image. As
in regular BoF, the signature of the segment is computed,
but features that fall entirely outside of segment boundary
are discarded. The image is represented by the ensemble
of the signatures of its segments. This simple idea has a
number of effects: (i) by clustering features in segments,
we incorporate coarse spatial information; (ii) the masking
step generally enhances the contrast of the segment bound-
aries, thereby making features along the boundaries more
shape-informative; (iii) computing signatures on segments
improves the signal-to-noise ratio. More details of combin-
ing stable segmentations with BoF can be found in [18].

3.2. Location and Co-Ocurrences

To incorporate spatial and semantic context into the
recognition system, we use a CRF to learn the conditional
distribution over the class labeling given an image segmen-
tation. Previous works in object recognition, classification
and labeling have benefited from CRFs [8, 9, 14, 23]. Our
CRF formulation uses a fully connected graph between
segment labels instead of a sparse one, which yields a much
simpler training problem, since the random field is defined
over a relatively small number of segments rather than a
huge number of raw pixels or small patches.

Context Model. Given an image I , its corresponding
segments S1, . . . , Sk, and probabilistic per-segment labels
p(ci|Si) (as in [18]), we wish to find segment labels
c1, . . . , ck ∈ C such that all agree with the segments’ con-
tent and are in contextual agreement with one other.

We model this interaction as a probability distribution:

p(c1 . . . ck|S1 . . . Sk) =
B(c1 . . . ck)

∏k
i=1 p(ci|Si)

Z(φ0, . . . φr, S1 . . . Sk)
,

with B(c1 . . . ck) = exp
( k∑

i,j=1

q∑
r=0

αrφr(ci, cj)
)
,

where Z(·) is the partition function, αr a parameter esti-
mated from training data and q is the number of pairwise
spatial relations. We explicitly separate the marginal terms
p(c|S), which are provided by the recognition system,
from the interaction potentials φr(·). To incorporate both

semantic and spatial context information into the CRF
framework, we construct context matrices, described next.

Location. Spatial context is captured by frequency matrices
for each of the four pairwise relationships (above, below,
inside and around). The matrices contain the occurrence
among objects labels in the four different configurations, as
they appear in the training data. An entry (i, j) in matrix
φr(ci, cj), with r = 1, . . . , 4, counts the number of times
an object with label i appears with an object label j for a
given relationship r.

Figure 5. Frequency matrix for spatial relationships above, below,
inside and around for MSRC database. Each entry (i, j) in a ma-
trix counts the number times an object with label i appears in a
training image with an object with label j according to a given
pairwise relationship.

Figures 5 and 6 illustrate the counts over the four
different relationships for MSRC and PASCAL. It is
worth noting that MSRC matrices exhibit more uniform
interactions between objects, while matrices of PASCAL
single out categories of very high activity (e.g., person).

Co-occurrence Counts. While the occurrence of category
labels are captured by the spatial context matrices above,
the appearance frequency – a parameter required for the
CRF – is not captured explicitly, since these matrices are
hollow. Using the existing spatial context matrices, object
appearance frequency can be computed as row sums of all
for matrices. Finally, the sum of all four matrices, including
the row sums, will result in a marginal (i.e., without regard
for location) co-occurrence matrix, equivalent to those pre-



Figure 6. Frequency matrix for spatial relationships above, below,
inside and around for PASCAL database. Each entry (i, j) in a
matrix counts the times an object with label i appears in a training
image with an object with label j given their pairwise relationship.

sented in [18]. An entry (i, j) in the semantic context matrix
counts the number of times an object with label i appears in
a training image with an object with label j. The diago-
nal entries correspond to the frequency of the object in the
training set:

φ0(ci, cj) = φ′(ci, cj) +
|C|∑

k=1

φ′(ci, ck)

where φ′(·) =
∑q

r=1 φr(ci, cj). Therefore the probability
of some labeling is given by the model

p(l1 . . . l|C|) =
1

Z(φ)
exp

( ∑
i,j∈C

q∑
r=0

lilj · αr · φr(ci, cj)
)
,

with li indicating the presence or absence of label i. We
wish to find a φ(·) that maximizes the log likelihood of
the observed label co-occurences. Since we must evaluate
the partition function, maximizing the co-occurence likeli-
hood directly is intractable. Therefore we approximate the
partition function using Monte Carlo integration [20]. Im-
portance sampling is used where the proposal distribution
assumes that the label probabilities are independent with
probability equal to their observed frequency. Every time
the partition function is estimated, 40, 000 points are sam-
pled from the proposal distribution. The likelihood of these
images turns out to be a function only of the number of im-
ages, n, and the co-occurence matrices φr(ci, cj) .

We use simple gradient descent to find a φ(·) that ap-
proximately optimizes the data likelihood. Due to noise in
estimating Z, it is hard to check for convergence; instead
training is terminated when 10 iterations of gradient descent
do not yield average improved likelihood over the previous
10.

4. Experimental Results
To evaluate categorization accuracy of the proposed

model and the relative importance of spatial context in this
task, we consider MSRC and PASCAL 2007 datasets. Ta-
ble 1 summarizes the performance of average categorization
per category.

Semantic
Categories Context CoLA

[18]
building 0.85 0.91

grass 0.94 0.95
tree 0.78 0.80
cow 0.36 0.41

sheep 0.55 0.55
sky 0.89 0.97

aeroplane 0.73 0.73
water 0.95 0.95

face 0.80 0.81
car 0.57 0.57

bike 0.59 0.60
flower 0.65 0.65

sign 0.54 0.54
bird 0.54 0.52

book 0.56 0.56
chair 0.42 0.42
road 0.94 0.96

cat 0.42 0.42
dog 0.46 0.46

body 0.75 0.77
boat 0.76 0.81

Semantic
Categories Context CoLA

[18]
aeroplane 0.63 0.63

bicycle 0.22 0.22
bird 0.18 0.14
boat 0.28 0.42

bottle 0.43 0.43
bus 0.46 0.50
car 0.62 0.62
cat 0.32 0.32

chair 0.37 0.37
cow 0.19 0.19

dining table 0.30 0.30
dog 0.32 0.29

horse 0.12 0.15
motorbike 0.31 0.31

person 0.43 0.43
potted plant 0.33 0.33

sheep 0.41 0.41
sofa 0.37 0.37
train 0.29 0.29

tv monitor 0.62 0.62

Table 1. Comparison of recognition accuracy between the models
for MSRC and PASCAL categories. Results in bold indicate an
increase in performance by our model. A decrease in performance
is shown in italics.

These results outperform current state-of-the-art ap-
proaches [6, 23] and the average categorization per database
is 68.38% for MSRC and 36.7% for PASCAL. What is of
more interest to us, however, is the per category accuracy
as a function of the type of context used. Specifically, we
notice that around half of the 21 categories in MSRC ben-
efit from using spatial context: an increase from 1%-8% in
recognition accuracy. For the rest of the categories, in turn,
spatial context did not harm the performance, except for a
small decrease in accuracy on category bird.

In the PASCAL database, the availability of spatial con-
text data is less uniform across categories. An improvement
is seen in only three categories, though in one case (for cat-
egory boat) this increase was rather high (14%). As with



MSRC, the other categories are largely unaffected by spatial
context, and only one category (bird) suffers from reduced
accuracy.

Figure 7. Difference in performance between semantic and seman-
tic+spatial framework for MSRC and PASCAL databases.

Figure 7 summarizes the relative improvement of cat-
egorization accuracy with the inclusion of spatial context
into the recognition model. Very few categories’ accuracies
are worsened by spatial context; most are either unchanged
or improved. Some examples of affected categories are
shown in Figures 8 and 9.

Run Time and Implementation Details. Stability based
image segmentation was implemented with normalized
cuts [5, 22], using brightness and texture cues. We con-
sidered 9 segmentations per test image, where the number
of segments per segmentation ranges from k = 2, . . . , 10.
The computation time for each segmentation is between 10-
20 seconds per image. As the individual segmentations are
independent of one another, we computed them all in par-
allel on a cluster. As a result, a computation of all stable
segmentations per image requires about 10 minutes.

15 and 30 training images were used for the MSRC and
PASCAL databases respectively. 5000 random patches at
multiple scales (from 12 pixels up to the image size) are
extracted from each image. The feature appearance is rep-
resented by SIFT descriptors [12] and the visual words are
obtained by quantizing the feature space using hierarchical
K-means with K = 10 at three levels [15]. The image
signature is a histogram of such hierarchical visual words,
L1 normalized and TFXIDF re-weighed [15]. The compu-
tation of SIFT and the relevant signature, implemented in
C, takes on average 1.5 seconds per segment. Training and
constructing the vocabulary tree requires less than 40 min-
utes for 20 categories with 30 training images in each cate-
gory, in the case of PASCAL. Classification of test images is
done in just a few seconds. Training the CRF takes 3 min-

utes for 315 training images for MSRC and 5 minutes for
600 images in PASCAL training dataset. Enforcing seman-
tic and spatial constraints on a given segmentation takes be-
tween 4-7 seconds, depending on the number of segments.
All the above operations were performed on a Pentium 3.2
GHz.

5. Conclusion and Future Work

We have presented a novel framework for object catego-
rization, named CoLA, that uses a CRF to maximize object
label agreement in the scene according to spatial and co-
ocurrence constraints. We express relative location between
objects using a simple pairwise feature. By vector quantiz-
ing the feature space, we learn four different spatial rela-
tionships corresponding to above, below, inside and around.
Incorporating spatial relationships into the categorization
model of [18] improves recognition accuracy in many cate-
gories and gives further insight into the challenges in object
categorization.

Clearly, spatial information that captures the relative ob-
ject location in an image is a strong visual cue. However,
unlike simple co-occurrence relationships, which can be
learned from auxiliary sources such as Google Sets, spatial
context must be learned directly from the training data. As
our experiments have shown, spatial context learned from
both MSRC and PASCAL datasets is highly nonuniform.
In particular, spatial interactions among different categories
are rather sparse, and many valid objects that appear in the
scenes are simply considered clutter, and thereby cannot
contribute contextual value. With the continued introduc-
tion of publicly available datasets possessing increasingly
detailed annotations over larger numbers of categories, our
proposed system is designed to scale favorably: stronger
semantic and spatial context will provide more avenues for
improving categorization accuracy.

In our ongoing work, we aim to integrate the proposed
model into systems for image retrieval, image annotation
and event classification. In addition, we are exploring
richer descriptions of object shape and alternative charac-
terizations of spatial relationships with finer granularity.

Acknowledgements: This work was funded in part by NSF
Career Grant #0448615, the Alfred P. Sloan Research Fel-
lowship, NSF IGERT Grant DGE-0333451 and the Google
Research Award.This is a corrected version of the paper ap-
peared in CVPR’08.

References
[1] M. Bar and S. Ullman. Spatial context in recognition. Perception.

25:343-352., 1993.
[2] I. Biederman. Perceiving real-world scenes. Science, 177(7):77–80,

1972.



SHEEP

GRASS

WATER

COW

GRASS

SKY

BIRD

WATER

BOAT

WATER

ROAD GRASS

AEROPLANE

WATER

TREE

ROAD GRASS

BUILDING

SKY

TREE

AEROPLANE

GRASS

WATER

BUILDING TREE

AEROPLANE

GRASS

SKY

BUILDING TREE

WATER

BIRD

WATER

BOAT

(a) (b) (c) (d)
Figure 8. Example results from the MSRC database. Spatial constraints have improved (first four rows) and worsened (last row) the
categorization accuracy. Full segmentations of highest average categorization accuracy are shown. (a) Original image. (b) Categorization
with co-occurrence contextual constraints [18]. (c) Categorization with spatial and co-occurence contextual constraints. (d) Ground Truth.

[3] I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz. Scene percep-
tion: Detecting and judging objects undergoing relational violations.
Cognitive Psychology, 14(2):143–177, April 1982.

[4] P. Carbonetto, N. de Freitas, and K. Barnard. A statistical model for
general contextual object recognition. ECCV, 2004.

[5] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multi-
scale graph decomposition. In CVPR, 2005.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results.

[7] R. Fergus, P. Perona, and A. Zisserman. Object Class Recognition
by Unsupervised Scale-Invariant Learning. In CVPR, 2003.
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