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Abstract

Image blur is caused by a number of factors such as mo-
tion, defocus, capturing light over the non-zero area of the
aperture and pixel, the presence of anti-aliasing filters on a
camera sensor, and limited sensor resolution. We present an
algorithm that estimates non-parametric, spatially-varying
blur functions (i.e., point-spread functions or PSFs) at sub-
pixel resolution from a single image. Our method handles
blur due to defocus, slight camera motion, and inherent as-
pects of the imaging system. Our algorithm can be used to
measure blur due to limited sensor resolution by estimating
a sub-pixel, super-resolved PSF even for in-focus images.
It operates by predicting a “sharp” version of a blurry in-
put image and uses the two images to solve for a PSF. We
handle the cases where the scene content is unknown and
also where a known printed calibration target is placed in
the scene. Our method is completely automatic, fast, and
produces accurate results.

1. Introduction

Image blur is introduced in a number of stages in a cam-
era. The most common sources of image blur are motion,
defocus, and aspects inherent to the camera, such as pixel
size, sensor resolution, and the presence of anti-aliasing fil-
ters on the sensor.

When blur is undesirable, one can deblur an image using
a deconvolution method, which requires accurate knowl-
edge of the blur kernel. In applications where blur is de-
sirable and essential, such as shape from defocus, it is still
necessary to recover the shape and size of the spatially vary-
ing blur kernel.

Recovering a PSF from a single blurred image is an in-
herently ill-posed problem due to the loss of information
during blurring. The observed blurred image provides only
a partial constraint on the solution, as there are many com-
binations of PSFs and “sharp” images that can be convolved
to match the observed blurred image.

Prior knowledge about the image or kernel can disam-
biguate the potential solutions. Early work in this area sig-
nificantly constrained the form of the kernel [6], while more
recently, researchers have put constraints on the underlying
sharp image [3]. In our work, we take the latter approach;
however, instead of using statistical priors, we leverage our
prior assumption more directly. Specifically, we present an
algorithm for estimating regions of a sharp image from a
blurry input—if one can estimate the sharp image, recover-
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Figure 1. Sharp Edge Prediction. A blurry image (top left) and the
1D profile normal to an edge (top right, blue line). We predict a
sharp edge (top right, dashed line) by propagating the max and min
values along the edge profile. The algorithm uses predicted and
observed values to solve for a PSF. Only observed pixels within a
radius R are used. (bottom left) Predicted pixels are blue and valid
observed pixels are green. (bottom right) The predicted values.

ing the blur kernel is possible.
The key insight of our work is that with certain types of

image blur, the location of image features such as edges are
detectable even if the feature strength is weakened. When
the scene content is unknown, we detect edges and predict
the underlying sharp edges that created the blurred obser-
vations, under the assumption that detected edge was a step
edge before blurring. Each pair of predicted and blurred
edges gives information about a radial profile of the PSF.
If an image has edges spanning all orientations, the blurred
and predicted sharp image contain enough information to
solve for a general two-dimensional PSF.

For situations where the scene content can be controlled,
we have designed a printed calibration target whose image
is automatically aligned with a known representation of the
target. We then use this pair to solve for an accurate PSF.

Our method has several advantages over previous ap-
proaches: it measures the entire PSF of an image system
from world to image, it is fast and accurate, and it can solve
for spatially varying PSFs at sub-pixel resolution using only
a single image.

We show results for both unknown scenes and images
of our calibration target. We present deconvolution results
using the recovered PSFs to validate the blur kernels and
show a synthetic experiment to further evaluate the method.
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Figure 2. Image Formation Model. The imaging model consists of two geometric transforms as well as blur induced by motion, defocus,
sensor anti-aliasing, and finite-area sensor sampling. We solve for an estimate of the continuous point-spread function at each discretely
sampled (potentially blurry and noisy) pixel.

We also show that by solving for spatially varying, per-color
channel PSFs combined with per-channel radial distortion
corrections, we can remove chromatic aberrations artifacts.

2. Related Work

The problem of blur kernel estimation and more gener-
ally blind deconvolution is a longstanding problem in com-
puter vision and image processing. The entire body of pre-
vious work in this area is beyond what can be covered here.
For a more in depth study of much of the earlier work in
blur estimation, we refer the reader to the survey paper by
Kundur and Hatzinakos [6].

In the computer vision literature, classical shape-from-
defocus [10] addresses PSF estimation using a parametric
model for blur that is either a “pillbox” or 2D Gaussian
function with a single parameter for the PSF size, i.e., fo-
cal length or kernel radius. For more complex blurs, such
as motion blur, many recent single-image estimation tech-
niques model blurs as a collections of 1D or 2D box blurs
and use segmentation techniques to handle multiple mo-
tions [7, 4, 2]. Shan et al. [12], on the other hand, use a
low-parameter model to remove motion blur due to an ob-
ject translating and rigidly rotating about an axis parallel
to the camera’s optical axis. In contrast with this previous
work, we do not use a parametric model for the PSF and
solve for spatially varying kernels without performing any
explicit segmentation.

There is significantly less work in the area of single im-
age blur estimation using non-parametric kernels. The work
by Fergus et al. [3] is perhaps the most notable method of
this type. Fergus et al. use natural image statistics to derive
an image prior that is used in a variational Bayes formula-
tion. In contrast, we leverage prior assumptions on images
to directly predict the underlying sharp image. We consider
our approach complementary to that of Fergus et al., as our
method excels at accurately computing smaller kernels, and
it can be used for lens and sensor characterization. Their
method is not as well suited to these applications, but excels
at computing large kernels due to complex camera motion,
which is outside the scope of our work.

Our work is conceptually most similar to slant-edge cal-
ibration [11, 1]. These methods recover 1D blur profiles by
imaging a slanted edge feature and finding the 1D kernel

normal to the edge profile that gives rise to the blurred ob-
servations of the known step edge. Reichenbach et al. [11]
note that one can combine several 1D sections to estimate
a 2D PSF. We take a similar approach philosophically to
slant-edge techniques, with three major differences: we ex-
tend the method to directly solve for 2D PSFs, we solve
for spatially varying PSFs, and we present a blind approach
where the underlying step edge is not know a priori.

A related area is modulation transfer function (MTF)
estimation for lenses that uses images of random dot pat-
terns [8]. In theory, infinitesimal dot patterns are useful for
PSF estimation, but in practice, it is not possible to create
such a pattern. In contrast, creating sharp step edges is rela-
tively easy and thus generally preferable [11]. An additional
advantage of our work relative to using dot patterns is that
by using a grid-like structure with regular, detectable cor-
ner features, we can compute a radial distortion correction
in addition to estimating PSFs.

3. Image Formation Model

We now give a brief overview of relevant imaging and
optics concepts needed for PSF estimation. As illustrated
in Figure 2, the imaging model consists of two geomet-
ric transforms: a perspective transform (used when pho-
tographing a known planar calibration target) and a radial
distortion. There are several sources of blur induced by mo-
tion, defocus, sensor anti-aliasing, and pixel sampling area
(fill factor and active sensing area shape). We model all
blur as a convolution along the image plane and account for
depth dependent defocus blur and 3D motion blur by allow-
ing for the PSF to be spatially varying.

Our method estimates a discretely sampled version of
the continuous PSF by either matching the sampling to the
image resolution (which is useful for estimating large blur
kernels) or using a sub-pixel sampling grid to estimate a
detailed PSF, which captures effects such as anti-aliasing
of the sensor and allows us to do more accurate image
restoration. In addition, by computing a sub-pixel PSF, we
can perform single-image super-resolution by deconvolving
up-sampled images with the recovered PSF.

Geometric Transformations: The world to image
transformation consists of a perspective transform and a



radial distortion. With the blind method, we ignore the
perspective transform and operate in image coordinates.

With the non-blind method, where we photograph a
known calibration target, we model the perspective trans-
formation as a 2D homography to map known feature loca-
tions F k on the grid pattern to detected feature points from
the image F d. We use a standard model for radial distor-
tion: (F ′

x, F ′
y)T = (Fx, Fy)T (a0+a1r

2(x, y)+a2r
4(x, y)),

where r(x, y) =
√

F 2
x + F 2

y is the radius relative to the im-
age center.

Given a radial distortion function R(F ) and warp
function which applies a homography H(F ), the full
alignment process is F d = R(H(F k)). We compute the
parameters that minimize the L2 norm of the residual
||F d − R(H(F k))||2. Computing these parameters cannot
be done simultaneously in closed form. However, the
problem is bilinear, and thus we solve for the parameters
using an iterative approach.

Modeling the Discrete Point-Spread Function: The
equation for the observed image B is a convolution of a
kernel K and a potentially higher resolution sharp image
I , plus additive Gaussian white noise, whose result is
potentially down-sampled:

B = D(I ⊗K) + N, (1)
where N ∼ N (0, σ2). D(I) down-samples an image by
point-sampling IL(m, n) = I(sm, sn) at a sampling rate s
for integer pixel coordinates (m, n). In our formulation, the
kernel K models all blurring effects, which are potentially
spatially varying and wavelength dependent.

4. Sharp Image Estimation

The blurring process is formulated as an invertible linear
system, which models the blurry image as the convolution
of a sharp image with the imaging system’s PSF. Thus, if
we know the original sharp image, recovering the kernel is
straightforward. The key contribution of our work is a re-
liable and widely applicable method for predicting a sharp
image from a single blurry image. In the following sec-
tion, we present our methods for predicting the sharp im-
age. In Section 5, we discuss how to formulate and solve
the invertible linear system to recover the PSF. In the fol-
lowing discussion, we consider images to be single channel
or grayscale; in Section 6, we discuss color images.

4.1. Blind Estimation

For blind sharp image prediction, we assume blur is due
to a PSF with a single mode (or peak), such that when an
image is blurred, the ability to localize a previously sharp
edge is unchanged; however, the strength and profile of the
edge is changed, as illustrated in Figure 1. Thus, by localiz-
ing blurred edges and predicting sharp edge profiles, locally
estimating a sharp image is possible.

We assume that all observed blurred edges result from
convolving an ideal step edge with the unknown kernel.
Our algorithm finds the location and orientation of edges
in the blurred image using a sub-pixel difference of Gaus-
sians edge detector. It then predicts an ideal sharp edge by
finding the local maximum and minimum pixel values, in
a robust way, along the edge profile and propagates these
values from pixels on each side of an edge to the sub-pixel
edge location. The pixel on the edge itself is colored accord-
ing to the weighted average of the maximum and minimum
values according to the distance of the sub-pixel location to
the pixel center, which is a simple form of anti-aliasing (see
Figure 1).

To find the maximum value, our algorithm marches
along the edge normal, sampling the image looking for a lo-
cal maximum using hysteresis. Specifically, the maximum
location is the first pixel that is less than 90% (as opposed to
strictly less than) of the previous value. Once this value and
location are identified, we store the “maximum” value as
the mean of all values along the edge profile that are within
10% of the initial maximum value. An analogous approach
is used for the minimum.

Since we can only reliably predict values near edges, we
only use observed pixels within a radius of the predicted
sharp values. These locations are stored as valid pixels in a
mask, which is used when solving for the PSF, as discussed
in Section 5. At the end of the prediction process, we have
a partially estimated sharp image, as shown in Figure 1.

4.2. Non-Blind Estimation

For non-blind sharp edge prediction, we want to com-
pute the PSF given that we know the sharp image. Since
we anticipate using this technique in a controlled lab setup,
we designed a special calibration pattern for this purpose
(Figure 3). We take an image of this pattern and align
the known grid pattern to the image to get the sharp/blurry
pair needed to compute the PSF accurately. The grid has
corner (checkerboard) features so that it can be automati-
cally detected and aligned, and it also has sharp step edges
equally distributed at all orientations within a tiled pattern,
so that it provides edges that capture every radial slice of
the PSF. (Alternatively, we can say that the calibration pat-
terns provides measurable frequencies at all orientations.)
Furthermore, we represent the grid in mathematical form
(the curved segments are 90◦ arcs), which gives us a very
precise definition for the grid, which is advantageous for
performing alignment.

For non-blind prediction, we continue to assume that ker-
nel has no more than a single peak. Thus even when the
pattern is blurred, we can detect corners on the grid with a
sub-pixel corner detector. Because our corners are actually
balanced checkerboard crossings (radially symmetric), they
do not suffer from “shrinkage” (displacement) due to blur-



Figure 3. Non-Blind Estimation. (left) The tiled calibration pat-
tern, (middle) cropped section of an image of a printed version of
the grid, and (right) the corresponding cropped part of the known
grid warped and shaded to match the image of the grid.

ring. Once corners are found, the ground truth pattern is
aligned to the acquired image. To obtain an accurate align-
ment, we correct for both geometric and radiometric aspects
of the imaging system.

We perform geometric alignment using the corrections
discussed in Section 3. We fit a homography and radial dis-
tortion correction to match the known feature locations on
the grid pattern to corners detected with sub-pixel precision
on the acquired (blurry) image of the printed grid.

We also must account for the lighting and shading in the
image of the grid. We do this by first aligning the known
grid to the image. Then, for each edge location (as known
from mathematical form of the ground truth grid pattern),
the algorithm finds the maximum and minimum values on
the edge profile and propagates them just as in the non-blind
approach. We shade the grid for pixels within the blur ra-
dius of each edge. By performing the shading operation,
our algorithm has corrected for shading, lighting, and radial
intensity falloff. Figure 3 shows the results of the geometric
warp and shading transfer.

5. PSF Estimation

Once the sharp image is predicted, we estimate the PSF
as the kernel that, when convolved with the sharp image,
produces the blurred input image. We formulate the estima-
tion using a Bayesian framework solved using a maximum a
posteriori (MAP) technique. In MAP estimation, one tries
to find the most likely estimate for the blur kernel K given
the sharp image I and the observed blurred image B, using
the known image formation model and noise level.

We express this as a maximization over the probability
distribution of the posterior using Bayes’ rule. The result is
minimization of a sum of negative log likelihoods L(.):

P (K|B) = P (B|K)P (K)/P (B) (2)
argmax

K
P (K|B) = argmin

K
L(B|K) + L(K). (3)

The problem is now reduced to defining the negative log
likelihood terms. Given the image formation model (Equa-
tion 1), the data term is:

L(B|K) = ||M(B)−M(I ⊗K)||2/σ2. (4)

(The downsampling term D in (1) will be incorporated in
Section 5.1.) M(.) is a masking function such that this term

is only evaluated for “known” pixels in B, i.e., those pixels
that result from the convolution of K with properly esti-
mated pixels I , which form a band around each edge point,
as described in Section 4.1.

The remaining negative log likelihood term, L(K), mod-
els prior assumptions on the blur kernel and regularizes the
solution. We use a smoothness prior and a non-negativity
constraint. The smoothness prior penalizes large gradients
and thus biases kernel values to take on values similar to
their neighbors: Ls(K) = λγ||∇K||2. λ controls the
weight of the smoothness penalty, and γ = (2R + 1)2 nor-
malizes for the kernel area (R is the kernel radius). Since
the kernel should sum to one (as blur kernels are energy
conserving) the individual values decrease with increased
R. This factor is needed to keep the relative magnitude of
kernel gradient values on par with the data term values re-
gardless of kernel size.

We minimizing the following error function:

L = ||M(B)−M(I ⊗K)||2/σ2 + λγ||∇K||2, (5)

subject to Ki ≥ 0, to solve for the PSF using non-negative
linear least squares using a projective gradient Newton’s
method. We currently estimate the noise level σ using a
technique similar to that of Liu et al. [9], and we have em-
pirically found λ = 2 to work well.

5.1. Computing a Super-Resolved PSF

By taking advantage of sub-pixel edge detection for
blind prediction and sub-pixel corner detection for non-
blind prediction, we can estimate a super-resolved blur ker-
nel by predicting a sharp image at a higher resolution than
the observed image.

For the blind method, in the process of estimating the
sharp image, it is necessary to rasterize the predicted sharp
edge-profile back onto a pixel grid. By rasterizing the sub-
pixel sharp-edge profile onto an up-sampled grid, we can es-
timate a super-resolved sharp image. In addition, at the ac-
tual identified edge location (as before), the pixel color is a
weighted average of the minimum and maximum, where the
weighting reflects the sub-pixel edge location on the grid.

For the non-blind method, we also must rasterize the
grid pattern at a some desired resolution. Since we detect
corners at sub-pixel precision, the geometric alignment is
computed with sub-pixel precision. Using the mathemati-
cal description of our grid, we can choose any upsampled
resolution when rasterizing the predicted sharp image. We
also perform anti-aliasing, as described in Section 4.2.

To solve for the PSF using the super-resolved predicted
sharp image IH and the observed (vectorized) blurry im-
age b, we modify Equation 4 to include a down-sampling
function according to our image model (Equation 1). We
consider b̂H = AHkH to be super-resolved sharp image
blurred by the super-resolved kernel kH , where AH is the
matrix form of IH . Equation 4 is then ||b−DAHkH ||2 (we
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Figure 4. Recovering Blur Kernels of Different Sizes and Orientations. We convolved the sharp original version of the image shown in
Figure 1 with kernels of 13 and 17 pixels for three different orientations. Each set is a side by side comparisons of the ground truth (left),
our recovered kernel (middle), and the result of running Fergus et al.’s [3] method (right).

have left out the masking function for readability). D is a
matrix reflecting the down-sampling function: B̂L(m, n) =
B̂H(sm, sn).

5.2. Computing a Spatially Varying PSF

Computing a spatially varying PSF is straightforward
given our formulation—we simply perform the MAP esti-
mation process described in the previous section for sub-
windows of the image. The process operates on any size
sub-window as long as enough edges at different orienta-
tions are present in that window. In the limit, we could com-
pute a PSF for every pixel using sliding windows. We have
found, in practice, that such a dense solution is not neces-
sary, as the PSF tends to vary spatially relatively slowly.

Our method requires enough edges to be present at most
orientations. When using the entire image, this is not usu-
ally an issue; however, when using smaller windows, the
edge content may under-constrain the PSF solution. We
have a simple test that avoids this problem. We ensure
that (a) the number of valid pixels in the mask described
in Equation 4 is greater than the number of unknowns in the
kernel, and (b) we compute a histogram of 10 degree bins
of the detected edges orientations and ensure that each bin
contains at least 100 edges. When this check fails, we do
not compute a kernel for that window.

6. Chromatic Aberration

In the previous sections, we did not explicitly address
solving for PSFs for color images. To handle color, one
could convert the image to grayscale. In many cases this is
sufficient; however, it is more accurate to solve for a PSF
for each color channel. This need arises when chromatic
aberration effects are apparent.

Due to the wavelength-dependent variation of the in-
dex of refraction of glass, the focal length of a lens varies
continually with wavelength. This property causes longi-
tudinal chromatic aberration (blur/shifts along the optical
axis), which implies that the focal depth, and thus amount
of defocus, is wavelength dependent. It also causes lateral
chromatic aberration (blur/shifts perpendicular to the opti-

cal axis). We refer the reader to the paper by Kang [5] for a
more detailed discussion of these artifacts.

By solving for a PSF per color channel, we can model the
longitudinal aberrations; we use a per-color channel radial
distortion correction to handle the lateral distortions. We
correct for lateral distortions by first performing edge detec-
tion on each color channel independently and only keeping
edges that are detected within 5 pixels of each other in R,
G, and B. We then compute a radial correction to align the
R and B edges to the G edges and then perform blind sharp
image prediction.

To correct for any residual radial shifts, we use the green
edge locations for all color channels so that all color bands
have sharp edges predicted at the same locations. One could
perform this last step without correcting radial distortion
first and allow the shifts to be entirely modeled within the
PSF; however, we have found the two stage approach is bet-
ter, as it removes some aberration artifacts even when there
is not enough edge information to compute a PSF, and by
removing the majority of the shift first, we can solve for
smaller kernels.

If we have access to RAW camera images, we can com-
pute more accurate per-channel PSFs by accounting for the
Bayer pattern sampling during PSF computation instead of
using the demosaicked color values. We solve for a PSF at
the original image resolution, which is 2x the resolution for
each color channel and use the point sampling function dis-
cussed in Section 3, where the sampling is shifted according
to the appropriate Bayer sample location.

7. Results

To validate our blind prediction method, we synthetically
blurred a sharp image with oriented Gaussian kernels of 13
and 17 pixels in diameter for three different orientations,
added Gaussian white noise with standard-deviation 0.01
(where 0=black and 1=white), and then estimated the blur
kernel using our blind method. Figure 4, shows a compari-
son of the ground truth kernels, our recovered kernels, and
the result of running Fergus et al.’s method. Our blind algo-
rithm recovers the size and shape of each kernel accurately.
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Figure 5. Defocus and Slight Motion-Blur. (a) The original blurred image and (b) the deconvolved output using our recovered PSF. (c–d)
Zoomed-in versions of the original and deconvolved image respectively. (e) The kernel recovered using the method of Fergus et al. [3] and
(f) our recovered kernel.

In Figures 5 and 7, we show results for estimating ker-
nels for images with real, unknown blurs, where there is
both defocus and camera motion blur. Our method pre-
dicts slightly asymmetric disk-like kernels that are consis-
tent with defocus and slight motion blur.

To qualitatively validate these kernels, we deconvolve
the input images using the Lucy-Richardson algorithm. We
chose this over other methods as it produces results with
a good balance of sharpness and noise reduction. Further-
more, the method is less forgiving than some newer meth-
ods, which allows for better validation. (Deconvolution
with a incorrect kernel leads to increased ringing artifacts,
as shown in Figure 6). Our resulting deconvolved images
are significantly sharper and show relatively minimal ring-
ing artifacts, which indicates that the kernels are accurate.

In Figure 5, we also compare our recovered kernel to a
result from running Fergus et al.’s code. The kernel ob-
tained by their method has more noise than ours, does not
have a shape consistent with defocus blur, and the size of
the non-zero area of the kernel does not match the amount
of blur seen in the input image. Fergus et al.’s method
took 21 minutes, while ours took 2.5 seconds for the origi-
nal resolution and 9.5 seconds at 2x super-resolution. Our
method is significantly faster as its running time scales with
the number of edges and kernel size, while the Fergus et al.
method is a multi-resolution approach whose speed scales
with image size and kernel size. Our method is a couple
seconds faster when using regular least-squares instead of a
non-negative version; however, more smoothing is needed
to suppress large negative values. Thus we prefer to enforce
non-negativity as it produces sharper PSFs.

Figure 8 displays an image with camera motion blur. Our
recovered kernel correctly shows the diagonal motion blur
that is apparent in the input image. The deconvolved image
is much sharper with minimal ringing.

Figure 6. Kernel Size and Orientation. Image deconvolved with
(left) our kernel, (middle) our kernel scaled 20% larger, and (right)
our kernel rotated by 45◦. The middle and right images have more
ringing (most apparent at the bottom of the word “Leicester”).

In Figure 9, we show super-resolution results where we
have taken a sharp image, bicubically down-sampled it by
4x, and then solved for a 4x super-resolved kernel from the
down-sampled input. We compare the original full resolu-
tion image to a bicubically up-sampled version of the low-
resolution image and to the upsampled image deconvolved
with our recovered kernel. The deconvolution results show
a sharpening and recovery of high-frequency texture that is
consistent with the full resolution images.

Figure 10 shows results for our calibration grid captured
with an 11 mega-pixel Canon 1Ds using a Canon EF 28-
200mm f3.5-5.6 lens at two apertures and focal lengths. For
each image, we computed spatially varying PSFs by com-
puting kernels for non-overlapping 220-pixel (the size of
one grid tile) windows across the image at 2x resolution,
i.e., two times the Bayer sampling resolution. Each PSF
is displayed according to the location of its corresponding
image window. The recovered PSFs show some interesting
properties. The PSFs should be images of the aperture, and
some kernels do show the shape of the aperture, which we
know from the lens specifications to have 6 blades. They

Figure 7. Defocus and Slight Motion-Blur. (top left) The original
blurred image and (top right) the deconvolved output with the re-
covered kernel displayed in the top right of the image (the kernel
has been enlarged by 10x for display). (bottom row) Zoomed-in
versions of the original and deconvolved image, respectively.



Figure 8. Motion Blur. (top row) The original blurred image (left)
and the deconvolved output (right) with the recovered kernel dis-
played in the top right of the image (the kernel has been enlarged
by 10x for display). (bottom row) Zoomed-in versions of the orig-
inal and deconvolved image, respectively.

also show “donut” artifacts that can occur at some settings
with lower-quality lenses. Perspective distortion across the
image plane and vignetting (clipping of the aperture) by
the lens barrel are also visible. For comparison we imaged
back-lit pinholes at the same camera settings. Imaging pin-
holes to measure PSFs has some inherent problems due to
the pinhole actually being a disk and not an infinitesimal
point and due to diffraction; however, these images validate
our recovered PSFs.

We also acquired a very sharply focused image, so that
we could measure sub-pixel blur. Figure 11 shows an image
of our grid from a 6 mega-pixel Canon 1D, using a high-
quality Canon EF 135mm f/2L lens. We show recovered
PSFs at 1x, 2x, 8x, and 16x sub-pixel sampling. The PSFs
using higher sub-pixel resolution show an interesting struc-
ture that results from a combination of diffraction, lens im-
perfections, and sensor anti-aliasing and sampling.

Figure 12 shows a result for performing blind chromatic

Figure 9. 4x Super-Resolution. (left) The original image and
zoom-in, (middle) the original image bi-cubically downsampled
and re-upsampled by 4x and zoom-in, (right) the upsampled image
deconvolved using the recovered 4x super-resolved kernel (dis-
played in the top right of the image–the kernel has been enlarged
by 10x for display) and a zoom-in on the bottom.

(a) 150mm f5.6 (b) 145mm f10

Figure 10. Different Apertures and Focal Lengths. (first row)
Cropped portions of the observed blurred images, (second row)
recovered spatially varying PSFs (green channel only), (third row)
images of pinholes at the same depths and settings, and (fourth
row) our recovered PSFs convolved with a disk the size of the pin-
hole. For (a) each PSF is 33 × 33 pixels and (b) they are 41 × 41
pixels. The PSFs reflect the shape of the aperture and show per-
spective distortion and vignetting across the image plane.

aberration correction for a JPEG image from a Canon S60
using a 5.8mm focal length at f8. After performing radial
distortion correction and piecewise deconvolution using the
spatially varying PSF, the aberration artifacts are signifi-
cantly reduced. Figure 13 shows chromatic aberration cor-
rection for our non-blind method.

To view full resolution versions of our results, including
additional examples, visit http://vision.ucsd.edu/kriegman-
grp/research/psf estimation/.

8. Discussion and Future Work

We have shown how to recover spatially varying PSFs at
sub-pixel precision that capture blur due to motion, defo-
cus, and intrinsic camera properties. Our method is fast,
straightforward to implement, and predicts kernels accu-
rately for a wide variety of images. Nevertheless, our
method does have some limitations, and there are several
avenues for future work.

The primary limitation of our method is that we can only
solve for kernels with a single peak. This limitation is due
to our reliance on an edge detector to find a single location
for every blurred edge. In the case of a multi-peaked ker-
nel, our method will incorrectly interpret the “ghost” copies
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Figure 12. Blind Chromatic Aberration. (a) Recovered spatially varying PSFs for red, green, and blue shown as a color image. PSFs are
only computed where there are enough edges observed. (b) The original image, (c) after radial correction and deconvolution the aberrations
are significantly reduced, and (d–e) zoomed-in versions and intensity profiles for (b–c).

of edges as independent edges. While we have shown
that single-peaked kernels model many commonly occur-
ring cases of blur, we would like to extend our method to
handle multi-modal kernels. One option is to group each
stronger edge with its weaker ghost edges using contour
matching. Once the ghost edges are identified, we could
perform sharp edge prediction only for the primary edges.

As each sharp edge profile gives information about a ra-
dial slice of the PSF, it is necessary for an image, or image
window, to have edges (or at least high-frequency content)
at most orientations. If some orientations are lacking, our
regularization terms can compensate; however, there is a
breaking point, and there may not always be enough edge
information to properly compute a PSF. In these cases, a
low parameter kernel model may be more appropriate, but
our sharp image prediction could still be be used to improve
more traditional parametric kernel estimation procedures.
We also plan to try using robust least squares to compensate
for erroneous edge detections or profile fits.

Lastly, we would like to characterize more lenses and
cameras. We would like to build a database that the vision
and photography community could contribute to by using
our pattern and code to take their own measurements.
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Figure 13. Chromatic Aberration. (left) The recovered spatially
varying PSFs for red, green, and blue shown as a color image.
The red and blue fringing is reflected in the PSF image and the
PSFs are larger towards the edge of the image and spread along
the direction orthogonal to the optical axis. (middle) Zoom-in on
the input image. (right) After radial correction and deconvolution
the aberrations are significantly reduced.


