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Abstract

We introduce an iterative algorithm for shape reconstruc-
tion from multiple images of a moving (Lambertian) object
illuminated by distant (and possibly time varying) light-
ing. Starting with an initial piecewise linear surface, the
algorithm iteratively estimates a new surface based on the
previous surface estimate and the photometric information
available from the input image sequence. During each iter-
ation, standard photometric stereo techniques are applied
to estimate the surface normals up to an unknown gener-
alized bas-relief transform, and a new surface is computed
by integrating the estimated normals. The algorithm essen-
tially consists of a sequence of matrix factorizations (of in-
tensity values) followed by minimization using gradient de-
scent (integration of the normals). Conceptually, the algo-
rithm admits a clear geometric interpretation, which is used
to provide a qualitative analysis of the algorithm’s conver-
gence. Implementation-wise, it is straightforward, being
based on several established photometric stereo and struc-
ture from motion algorithms. We demonstrate experimen-
tally the effectiveness of our algorithm using several videos
of hand-held objects moving in front of a fixed light and

camerda.

1. Introduction

In this paper, we propose a simple and efficient algorithm
for shape reconstruction of moving rigid 3D objects from
videos. We assume that the camera is orthographic and that
the object can be segmented from the background in each
frame. The object is also assumed to have Lambertian re-
flectance with at least a few distinctive feature points that
can be tracked throughout the video sequence in order to de-
termine the extrinsic camera parameters. Furthermore, the
scene illumination is assumed to be constant, although this
condition can be relaxed somewhat. Relative to the fixed
illumination source, the object’s movement induces illumi-
nation changes in the image sequence, and this induced il-
lumination variation is the major cue that we exploit in our
shape reconstruction algorithm.
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Shape recovery from multiple images has, of course, a
long tradition in computer vision. The problem has been
studied from various perspectives over the years, and two
of which directly related to our work are multi-view stereo
(e.g., [5]) and photometric stereo (e.g., [16]). From multi-
view stereo, we know how to recover the 3D position of a
scene point (point on the object’s surface) if the pixel cor-
respondences across different frames are known. In partic-
ular, points in textured regions are generally less difficult
to handle because their correspondences can be estimated
relatively accurately compared to points in textureless re-
gions. For the latter points, pixel correspondences are not
easily computable, and in a dynamic environment where il-
lumination changes, many cherished methods for intensity
matching, such as those based on the brightness constancy
assumption, are usually not effective if they are valid at all.

However, with a fixed viewpoint, photometric stereo re-
covers the 3D shape using images taken under different
lighting. In particular, photometric stereo is able to recon-
struct points in textureless regions if images with sufficient
illumination variation are provided. The algorithm intro-
duced in [16] recovers the shape by computing the depth
values relative to the image plane. The main idea is to
compute a rank three factorization of the intensity matrix
I, which is an m-by-n matrix, where m is the number of
pixels in an image and n is the number of images. Under
the Lambertian assumption, [ factors as the product of nor-
mals and lighting directions: [ = B - L. The rows of B
are the normals and the columns of L are the lighting di-
rections. More work is needed to ensure that the normal
vectors represented in B are indeed integrable. Once an in-
tegrable normal vector field is obtained, the depth values
can be computed by integrating the normals.

Unfortunately, the algorithm by itself cannot be gener-
alized immediately to handle images taken under different
views, and the chief obstacle is that in the multi-view set-
ting, it is no longer possible to compute the intensity ma-
trix I directly because we do not know the pixel correspon-
dences across different images. On the other hand, if we
know the correspondences between pixels, then given cam-
era parameters, the 3D shape can be recovered without any
input from photometric stereo. However, it is then an in-
teresting question to ask if given a rough (inaccurate) cor-



respondences between pixels across frames, whether photo-
metric stereo can improve the estimates of the pixel corre-
spondences. The point, of course, is that given such pixel
correspondences, we can compute an intensity matrix using
the correspondences, and the entire machinery of photomet-
ric stereo then comes alive to produce new correspondences
using the recovered depth values.

Answering the question above is the main motivation of
this paper. Surprisingly enough, the answer appears to be
affirmative. The idea is to start with some initial surface es-
timate (depth values) .S, which is assumed to be not too far
away from the true surface. Given any hypothesized surface
S and the camera parameters for each frame, we can com-
pute the intensity matrix I without any difficulty. Therefore,
an integrable normal vector field can be estimated, and a
new surface S’ can then be computed based on the estimated
normals. We can repeat this process to produce a sequence
of surfaces S1,- - - , Sy, .., and of course, the hope is that the
true surface is the limit of this sequence. In the experiments
reported below, this is exactly what we have observed. This
suggests that a simple and efficient algorithm based on a
sequence of matrix factorization followed by integration of
normal vector field is able to recover the shape of a moving
Lambertian object. This is somewhat of a surprise, and it
clearly begs for an explanation. Foremost, is it even real-
istic to expect the sequence S1,--- , Sy, .. produced by the
algorithm actually converge? In the second part of this pa-
per, we will provide a qualitative argument that explains this
observed convergence.

This paper is organized as follows. We detail the pro-
posed algorithm in the next section, and experimental re-
sults are shown in Section 3. Section 4 contains a detailed
comparison between our algorithm and other recently pub-
lished methods, and Section 5 contains a discussion on the
convergence issues related to our algorithm.

2. Reconstruction Algorithm

In this section, we detail our reconstruction algorithm. Let
{Ii,---,1j,--- ,Ir} denote the input sequence of F' im-
ages. Fix a coordinate system centered at the object, and in
the following, we will express all vectorial quantities using
this coordinate system. We assume that the object is both
rigid and Lambertian; furthermore, the scene illumination
is assumed to be modelled by a constant ambient illumina-
tion plus a directional source which can vary across frames.
The observed intensity of a point = at frame j on the object’s
surface is given by the following equation:

Ii(p) = a+ p(p)L; - N, (1)

where ]\71, is the unit normal vector at p, and p(p) is the
albedo. L; is the directional light for frame j, and « ac-
counts for the homogeneous ambient illumination.

The proposed algorithm is shown in Figure 1. The algo-
rithm essentially has two parts. The first part, which is both
traditional and indispensable, estimates the camera parame-
ters from a few tracked feature points using a standard struc-
ture from motion techniques (e.g., [13]). This gives us F'
orthographic projections P;, 1 < j < F', for each image I;.
Tomasi-Kanade’s factorization algorithm also estimates the
3D positions of these feature points, and a piecewise planar
surface, S, is constructed from these 3D points. There are
many possible ways to compute such a surface. In our im-
plementation below, the image plane of the first image, I3, is
used as the reference plane. If R is aregion in /; containing
the object, we triangulate R using points on the boundary
of R and the tracked feature points. An initial depth map
is then computed for every pixel in R by linearly interpo-
lating the known depth values of the tracked feature points.
The usage of these feature points in our algorithm differs
slightly from some of the previous work [10][12][15]. In
these work, the feature points are used mainly to estimate
the camera projections and in some cases [10][15], to es-
timate light source directions. We go one step further by
estimating a piecewise linear surface from them. Note that
if we have sufficiently many feature points to track, then,
the initial surface Sy is already a good approximation of the
true surface.

With the initial surface Sy computed, the rest of the al-
gorithm is straightforward: just let the machinery of pho-
tometric stereo run its own course. Given any surface S;
and its associated depth map z;(z,y), we can compute the
intensity matrix Z, by collecting various pixel values across
images into an r-by-F' matrix (r is the number of pixels in
R):

Lij = Li(Pj (@i, yis 2e(24,93)))- 2)
Photometric stereo [16] then provides us with a recipe for
producing an integrable (normal) vector field N defined on
R. The idea is to find an integrable vector field N that min-
imizes the following error function:
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N can be solved in a least-square sense and because it is as-
sumed to be integrable, we can integrate it to obtain a new
surface Sy4+1 and its associated depth map z;41(x,y). Note
that our viewpoint here is slightly different from that of [16].
In photometric stereo, one assumes that images were taken
under a single fixed view and the factorization of the inten-
sity matrix (with more processing) yields a normal vector
field of the underlying surface. In our multi-view setting,
because of incorrect pixel correspondences, there is, in gen-
eral, no surface that can account for the intensity matrix.
However, we can still try to find an integrable vector field
N that minimizes the error function above. And a surface



Si41 is defined to be one such that N is its (unit) normal
vector field. In Section 5, we will re-interpret Equation 3 by
formulating an analogous expression on the surface S.

Once the normals N = (N,, Ny, N.) have been esti-
mated, the depth map z(z,y) is computed by minimizing
the following objective function:

0z(z,y) N, 2 0z(z,y) Ny 2
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“)
Because of the Generalized Bas-Relief (GBR) ambiguity
[1], which can be traced back to the least square problem
in Equation 3, the depth values of the tracked feature points
will be, in general, in poor agreement with the values esti-
mated using structure from motion technique. The last step
in computing Sy 1 is to correct the depth values by a GBR
transform that brings the surface closest to the tracked fea-
ture points.

This process can be repeated indefinitely, and we get a
sequence of surfaces Sg, S1,---,S¢,---. At this moment,
there is no obvious reason to believe that it would converge
to anything reasonable. In the next section, we will demon-
strate that the algorithm does indeed converge to the “cor-
rect” surfaces most of the time, and in Section 5, we will
provide a qualitative argument explaining this convergence.

3. Implementation and Experimental
Results

In this section, we demonstrate some experimental results
of the proposed algorithm. The algorithm is implemented
in C++. The experiments are run on a laptop with 1.6GHz
CPU and 512MB RAM. The feature point tracking and
camera calibration steps take a couple of minutes and each
iteration of the surface evolution takes about one to two
minutes (depending on the number of iterations in minimiz-
ing Equation 4) for most experiments.

First, we present the reconstruction result of a paper cup.
The video sequence is recorded with a Firewire CCD cam-
era with a long focal length (for our orthographic projection
assumption). The cup is moving in front of the camera in a
dark room with a distant point light source. Feature points
are manually chosen from the output of a feature point de-
tector, and the feature point tracker tracks them throughout
the sequence (Figure 2.a). Due to memory limitations, we
do not use all frames in the video sequence. Instead, we sub-
sampled the sequence every three frames (box and figurine
sequences are sampled every five frames). The resulting es-
timated normal field was good enough to give a convincing
result.

The initial depth map (Figure 2.b) is computed from the
3D positions of the tracked feature points. It is not close
to the true surface; however, it provides rough estimates

Given a collection of F' images (frames), I;, indexed by
t=1,---,F,and m scene points indexedbyp =1,--- ,m
with x; , = [#4,, Yt p]" denoting the position of the scene
point p in I;. The algorithm produces a depth map z(z, y)
with respect to the image plane of the initial frame I;.

1. Estimate Camera Parameters
Using Tomasi-Kanade factorization algorithm, we can
recover (up to some unknown rotation) the camera pro-
jection matrix P; for each frame ¢ and the 3D positions
(%, Yp, 2p]" Of the m scene points. They are repre-
sented by their respective depth values z, with respect
to the image plane of I;.

2. Construct an Initial Piecewise surface S,

Use the 3D positions of the m scene points to com-
pute an initial piecewise planar surface. Let R be the
region in I; containing the object, and r denote the
number of pixels in R. We compute a Delaunay tri-
angulation of R using the projections of the m-scene
points on /7 and some points on the boundary of R.
All m-scene points are assumed to be projected onto
the interior of R and each triangle in the triangulation
is assumed to contain at least one scene point as its
vertex. We linearly interpolate the depth values across
each triangle using the depth values of the vertices. If
the vertex is on the boundary of R, its depth value is
interpolated using its projection onto the edge spanned
by vertices that are one of the m scene points. The
result is a piecewise planar surface Sp.

3. Iterate Until Converge
Fort = 0,---, a surface S; and its associated depth

map z(z,y):

(a) Compute Intensity Matrix Z: an r-by-F' matrix
such that

Tij = Lij(Pj(xi, yi, ze(2i, yi)))

(b) Matrix factorization: Perform a rank three SVD
on Z to obtain A/, an r-by-3 normal matrix and
L, a 3-by-F' lighting matrix. Determine (up to an
unknown GBR transform) a new A/ from A/ that
is integrable.

(c) Integrating Normals: Determine a new depth
map 211 by minimizing Equation 4. The depth
map Z; 1 defines a new surface Sy 1.

(d) GBR Correction: Use the known positions of the
m scene points to determine the unknown GBR
transform. Find a GBR transform that brings
the surface 5’t+1 closest to these m scene points.
Sty1 and 24 are then the GBR-corrected sur-
face and depth map, respectively.

Figure 1: Shape Reconstruction Algorithm.



Figure 2: The cup sequence : (a) Fifteen feature points are detected and tracked throughout the sequence.

(h)

(b) The initial

piecewise planar surface is built from the 3D positions of the tracked feature points. A part of the holder is excluded since
the region is too dark. (c) The surface constructed by integrating the normal vector field shown in (f). The regions marked

with white ellipses contain some errors and inaccuracies.
surface.

(d) The surface after two iterations.
(f) The normal vector field (NN, Ny, IN,) computed based on the initial piecewise planar surface. Some regions

(e) The final estimated

with incorrect normals are marked with white ellipses. For a more detailed explanation, see the text. (g) The normal vector
field computed from the estimated surface shown in (c). It presents very accurate normals, and most of the problematic

regions in the previous iteration have disappeared.
model.

for back-warping frames to the reference frame. Figure 2.f
shows the estimated normals from the photometric stereo
algorithm with warped images using the initial depth map.
One may notice that there are some noisy normals in the
textured region in the left boundary of the cup, and also
the y-components of the normals along the cup lid and the
lower edge of the holder change their directions due to the
incorrect initial surface estimate. After integrating the nor-
mal field and correcting the GBR ambiguity, the depth map
(Figure 2.c) looks much better, but there exist regions where
the normals are noisy or incorrect. However the estimated
surface is much closer to the true surface, and the back-
warped images based on this surface produce more accurate
normals than the previous ones (Figure 2.g). Integration of
this normal field gives the next surface (Figure 2.d), and it
is already very close to our final result (Figure 2.e and 2.h:

(h) The final reconstructed surface rendered with Phong reflectance

after 4 iterations).

We have also applied our algorithm to the sequences pre-
sented in [15] (Figure 5). The two sequences are publicly
available at the authors’ website. Figure 3 shows the result
of the box sequence. Thanks to the initialization, the ini-
tial surface (Figure 3.a) is already close to the true surface
except that the folds between the faces are missing. Our
algorithm gives a nice reconstruction result, in which each
face is smooth and the folds between faces are visible and
sharp. Figure 3.c and 3.d show the evolution of the surface
produced by the proposed algorithm.

The figurine sequence is more interesting since the ob-
ject has many fine structures on its surface, such as facial
parts, eyeglasses, bumps and creases. Since the surface is
complex and the textureless region is large, the initial sur-
face does not give a good approximation of the true surface.



(a) (b)
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(c) (d)

Figure 3: The box sequence : (a) The initial piecewise planar surface. (b) The final depth map. (c) The rendering of the
surface after one iteration. There are sharp spikes along the left edge, and the folds between faces are not very clear. (d) The
rendering of the final surface. The spikes are removed, and the folds become more clear.

() (b)

(d)

Figure 4: The figurine sequence : (a) The initial piecewise planar surface. (b) The final depth map. Prominent features in
the facial area such as glasses and nose are clearly reconstructed. (c) The rendering of the surface after one iteration. The
glasses frame is bent due to the incorrect initial depth estimates, and the right end of the vest is blurred. (d) The rendering

of the final surface.

Figure 5: The original images from the box and figurine
sequences. [15]

After a few iterations, most of the details on the surface
have been recovered. Notice that after the first iteration, the
glasses frame is not correctly reconstructed, and the bumps
in the lower part of the figurine are not clear. In the final sur-
face produced after six iterations, these inaccuracies have
all disappeared, and the reconstruction result looks convinc-
ing (Figure 4).

4. Comparisons with Previous Work

Our work is partially inspired by the the recent works of
[12] and [15]. In this section, we will concentrate on com-

paring our work with these two methods. More detailed
surveys of the related literature can be found in these two
papers.

In [15], the problem of shape reconstruction from video
sequences is addressed by reformulating the optical flow al-
gorithm in order to better handle illumination change. Our
algorithm shares two similarities with their algorithm. First,
shape recovery in both algorithms is based on integration of
normal vector fields. Second, both algorithms are iterative.
However, the similarities are somewhat superficial, and fun-
damentally, the two algorithms are completely opposite of
each other. The way the normals are estimated in [15] is a
local process in the sense that each individual normal vector
is estimated separately in a linear system that includes also
the estimate of optical flow. Because of locality, it seems
unlikely that the optical flows and normals can be directly
estimated from full-resolution images. Therefore, in their
algorithm, the iterative step is a coarse-to-fine refinement
using an image pyramid, where the optical flow and the nor-
mal vector field are estimated first at a lower resolution and
then successively at higher resolutions. In our algorithm,
normals are estimated globally in a single matrix factoriza-



tion, and we work directly with full-resolution images. It
can be argued that a global estimate, instead of local esti-
mates, is more robust against noise. Partially because of
this, there is no need for a coarse-to-fine refinement in our
algorithm. Although our iterative step can also be consid-
ered as a refinement step, the refinement is over the entire
surface at full resolution.

The reconstruction algorithm proposed in [12] is based
on stereo matchings. The algorithm assumes knowledge of
the relative motion between the object and the illumination
source. The idea is that this knowledge can be exploited to
define a correspondence measure that is insensitive to illu-
mination change. The shape is then recovered by minimiz-
ing an energy function defined on some graph using these
correspondence measures. Because normals are not esti-
mated, textureless planar regions can not be resolved by this
algorithm. In an environment with fixed lighting and cam-
era, relative motion between the object and the illumination
source can be computed from the relative motion between
the object and the camera. However, in the more general
setting when both the camera and object (and possibly the
illumination source) are moving, it is not clear to us how
the relative motion between the object and the illumination
source can be estimated directly from images. Presumably,
one can estimate the light source directions using a few fea-
ture points as in [10][15] and this estimate could be used to
determine the relative motion between the object and light
source. However, in general, there is an unresolved GBR
amguity in the lighting directions [1], and it is unclear how
this ambiguity can be resolved in the algorithm proposed
in[12].

5. Convergence Analysis

In this section, we give a qualitative argument showing that
the convergence of our algorithm demonstrated in the previ-
ous section is not fortuitous. The detailed quantitative anal-
ysis of the convergence question is beyond the scope of this
paper;

To this end, we will first formulate the reconstruction
problem following the usual variational approach [3][8] in
multi-view stereo. As before, let {I;, -, Ir} denote the
input collection of F' images. Let {Py,---, Pr} denote
the F' orthogonal projections of points in IR? to the im-
ages {I,--- ,Ir}, respectively. Each pair of (I;, P;) de-
fines a function Im; : R3 — IR: Im;(z) = [;(Pi(x)). In
the usual variational approach, the reconstructed surface S
should be a (local) minimum of the following functional:

F —
£8) = /S > (Imji(z) — L; - N)’dAg
=1

= / O(X,N)dAs (5)
s
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Figure 6: (a) Definition of . We use the image plane of the
first image to define correspondences between points on S
and S’. (b) Comparison of Flows: The smooth red curve
denotes the smooth gradient flow according to Equation 7.
The “piecewise” flow followed by our algorithm is denoted
by the black line segments.

Piece-wise

Gradient Flow

Gradient Flow

where NN is the unit normal vector field of S, and L; is the
lighting direction at frame i. We use ®(X, N) to denote
the integrand in the integral above with X denoting the spa-
tial variables in IR® and N denoting the surface normal (see
[3]). To simplify the discussion, we have assumed the fol-
lowing: 1) we know the lighting direction at each frame,
2) the albedos are constant (with value 1). These simpli-
fications have no effect on the convergence question. We
remind the reader that although we are following the usual
formulation by working directly with the surface S C IR?,
our algorithm actually operates only on the part of the sur-
face S that can be parametrized by the image plane.

Given the functional £ above, the usual PDE approach
to solve the reconstruction problem is to start with an initial
surface S, and compute a surface evolution Sy, t > 0, with
So = S, that is the gradient flow of £. For £ given in
Equation 35, its gradient is [3]

VE = (dxN —2H(® — dyN) +
Tr((®xn)rs +dN o (Byn)rs)N  (6)

where H denotes the mean curvature of .S, dNV the deriva-
tive of the Gauss map, and Tr denotes the trace of the linear
transform. 7'S denotes the tangent spaces of S. The gradi-
ent flow for V& is simply the following PDE that is usually
solved using the level-set method:

0S5,

5 = VE=—(BxN - 2H(® — ByN)

—

+TI‘((‘I>XN)TS +dN o (‘I)NN)TS)N @)

We will take as a faith that the gradient flow above will
converge to a critical point of £ given a (sufficiently nice)
initial surface S. With this, our argument for convergence
proceeds in the following two steps:

1. Given a surface .S, we interpret Equation 3 (with p = 1
and o = 0) geometrically in terms of some new func-
tional £5. In fact, £ will be a modified version of £



defined in Equation 5, and £5 will be defined only for
surfaces “close” to S. In the following, we will omit
the subscript S and denote £ by £’.

2. The gradient vector V&’ at S can then be considered
as a (small) perturbation of V& at S.

Note that we claim only that V&’ is a small perturba-
tion of V& at S (and hence also in a small neighborhood
around S5). We make no claim that globally (at every sur-
face S) V&' is a small perturbation of VE. Schematically,
our argument is depicted in Figure 6(Right). Let S; be the
solution to the PDE in Equation 7. The red curve in the Fig-
ure denotes the gradient flow .S; from an initial surface Sy
to a critical point S, of £. What we want to explain (qual-
itatively) is that from Sy, our algorithm is heading towards
the same critical point S, using a different path. For our
algorithm, starting at .Sy, it tries to find a surface Sy (close
to Sp) that minimizes the functional £’. This is basically
the re-interpretation of Equation 3 in 1) above. The point is
that this minimum can be computed using a linear method
(and without PDE) when phrased in the form of Equation 3.
However, because of 2) above, we know that for a short
time, flowing down along —VE’ (that’s how we get S7),
is not going to get too far away from flowing down along
—VE& because —VE’ is a (small) perturbation of VE. In the
figure, this is indicated by the jagged path. Instead of flow-
ing down smoothly to S, at each S;, we move down along
a small perturbation of the gradient for a short time to get
Si+1. Because of the small perturbation at each step, we
argue that at the end, our algorithm will still flow down to
the same critical point S, as in the usual gradient flow of &.

We can interpret Equation 3 as follows: given a surface
S, we try to find another surface S’ close to .S, such that

1. There is a one-to-one correspondence ¢ between .S and
S’. For each point « € S, ¢(x) € S’. In Equation 3, ¢
is given by the (z,y) on the image plane.

2. The surface S’ minimizes the following functional:

F
£(8) = /S S (Imi(e) — Li - Neo(p(x)))dAs (x)
=1

where the integration is on S not S’, and Ng/(¢(x))
denotes the normal vector of S’ at the point p(z). Let
®’(X, N) denote the integrand above. Note that the
spatial part (X) of ®'(X, N) is defined over a neigh-
borhood U of S using ¢. See Figure 6(Left).

Note that the integral above is what has been computed
in Equation 3'. In both places, each normal vector of the
new surface S’ is determined by the image intensity values

IStrictly speaking, this would require a weighted sum of squares in
Equation 3, with weights given by the area elements.

of corresponding point on the old surface S. In Equation 3,
the normal vector field computed through SVD is in general
not integrable. Instead, we estimate a near-by integrable
vector field, and this allows us to interpret the resulting sur-
face S’ as the one that minimizes (x) above. The compar-
ison between our approach and that of [7] is quite interest-
ing. The problem studied in [7] is very similar to ours, and
in principle, their solution surface is a critical point of the
functional £ in Equation 5. Because of negative curvature
flow which can cause numerical instability, a straightfor-
ward level-set implementation for solving the PDE in equa-
tion 6 is not feasible. So [7] modifies £ by including an
auxiliary (unit) vector field V. Although the energy func-
tional proposed in [7] is a little complicated, basically, the
vector field V' is “determined” by the photometric data (the
image intensities and lighting) while the surface normals is
a “near-by” vector field of V. This is clearly very similar to
our discussion above. The difference, however, is that their
modified energy function again leads to a PDE solution of
the problem. Our (locally) modified problem (Equation (*)
above) leads to a simple linear least-square solution.
What’s left now is to compute the gradient of £’ at S:

VE = (PN +2HI\ N +
Tr((®y )1 + dN o (@ n)rs)) N (8)

Since £'(.S”) involves only the integral over .S (not S’), the
corresponding term 2H ®’ in Equation 6, which comes from
the area variation, is not present in the gradient of £’. Note
also that, at S, ®y = @ as well as @y = ®nn. There-
fore, at S, the difference VE' — V& is

(2H® + (P — Bx)N + Tr((®x y — Pxn)7s))N. (9)

Our task now is to show that the magnitude of this term is
relatively small compared to VE. Since our algorithm starts
with a piecewise planar surface S7. Therefore, at the initial
surface Sy, —2H® = 0. In general, when we are close to
the true surface, the curvature H will of course no longer
be zero. However, the term ® will be small and therefore,
—2H ® is also small as well provided that the curvature H is
bounded, which is usually the case. The term & — ®x (as
well as (@' y — D x n)71s) is related to the image gradients
and the relative motion between the camera and the object.
Using orthorgraphic camera model, @’ and ® x can be eas-
ily computed. In our case, the motion has a rough symmetry
with respect to the initial relative position between the cam-
era and the object. That is, the object is rotated first to the
right and then to the left and so on. This can be used to ar-
gue that there are some cancellations among the terms that
make up ®x, and the difference &'y, — @y is usually small.
To empirically verify these claims, we compute both gradi-
ent vectors VE and V&’ for the surfaces produced during
six iterations in the solution of the figurine sequence (Fig-
ure 4). The results are listed in Table 1. Our aim here is to



Table 1: Comparison between VE and VE’ for the figurine
sequence. Z(VE', VE) is reported in degrees below.

Surface S | £(VE',VE) HV\T’fo‘VIS% E(S)
So 12.7° 0.225 225.98
S1 8.9° 0.152 187.78
So 8.1° 0.141 186.05
S3 4.9° 0.087 170.25
Sy 4.9° 0.088 171.95
S5 4.0° 0.07 164.84

justify that V&’ can be considered as a small perturbation
of VE. Therefore, we show the “angle” between the two
gradient vectors and the relative magnitude of their differ-
ence are both small. The angle Z(VE’, VE) between VE’
and V¢ is defined as

< VE,VE >g

/ Ve’,vg —cos (2 T T2
( ) (VelsTVeTs

). (10)
In the above, the inner product < VE,VE' >g between
V& and V&' is defined as

< Vg, VE >5=/ < VE,VE >gs dA, (11)
s

and |VE||% =< VE&,VE >g. The results in Table 1 show
that it is indeed reasonable to regard V&’ as a small per-

turbation of VE. Note also that the value £(S) always de-
creases after each iteration.

6. Conclusions and Future Work

We have presented a method for shape reconstruction from
multiple images of a moving object. Our algorithm is itera-
tive: it starts with a rough piecewise planar estimate of the
true surface, and then successively refines the estimate us-
ing photometric stereo techniques. The algorithm is simple
both conceptually and implementation-wise. Results of our
experiments have demonstrated the feasibility of our algo-
rithm, and a qualitative explanation of our algorithm’s con-
vergence is also introduced.

The first item on our list of future work is a more de-
tailed numerical analysis of the convergence issues that
were raised in the previous section. A detailed study of
this question, both numerically and mathematically, could
potentially not only improve our algorithm but also unearth
previously unknown fundamentals of 3D reconstruction and
shading. One serious limitation of our algorithm is its de-
pendence on some reference image for integrating normals.
This dependency makes it awkward to generalize our algo-
rithm to a 360-degree reconstruction of an object. What is
needed here is a scheme to integrate normals directly on
surfaces in IR? instead of on the image plane.

Finally, the reconstructions in Figs. ?? to 4 show a com-
mon problem of larger reconstruction error near image in-
tensity discontinuities (step edges), and this arises due to
inaccuracies in alignment that may accumulate during the
iterative process. On the other hand, it is at just these loca-
tions where conventional structure-from-motion techniques
excel. What is needed is a technique which can merge
multi-view geometric constraints with the result of photo-
metric stereo
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