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Abstract

Face recognition approaches have traditionally focused
on direct comparisons between aligned images, e.g. using
pixel values or local image features. Such comparisons be-
come prohibitively difficult when comparing faces across
extreme differences in pose, illumination and expression.
The goal of this work is to develop a face-similarity measure
that is largely invariant to these differences. We propose a
novel data driven method based on the insight that com-
paring images of faces is most meaningful when they are
in comparable imaging conditions. To this end we describe
an image of a face by an ordered list of identities from a
Library. The order of the list is determined by the similarity
of the Library images to the probe image. The lists act as a
signature for each face image: similarity between face im-
ages is determined via the similarity of the signatures. Here
the CMU Multi-PIE database, which includes images of 337
individuals in more than 2000 pose, lighting and illumina-
tion combinations, serves as the Library. We show improved
performance over state of the art face-similarity measures
based on local features, such as FPLBP, especially across
large pose variations on FacePix and multi-PIE. On LFW
we show improved performance in comparison with mea-
sures like SIFT (on fiducials), LBP, FPLBP and Gabor (C1).

1. Introduction
Face recognition methods have improved dramatically

and have a variety of applications including access con-
trol, security and surveillance, organization of consumer
photo albums, and entertainment. With thousands of pub-
lished papers on face recognition, progress in research can
be chronicled by the representative datasets used for evalu-
ation. Early datasets such as FERET [26], focused research
on frontal face recognition under controlled settings akin
to an ideal access control application with compliant sub-
jects. With the requirements for security and surveillance
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Figure 1. Face recognition across pose, illumination and ex-
pression is very challenging. Consider person A in two different
imaging conditions φ1 and φ2 (top row). Person B is also im-
aged under these two pose, illumination and expression conditions
φ1, φ2 (bottom row). The similarities between the images are cal-
culated using the SSIM measure (Eq. 2), where 1 is the score for
identical images and 0 is the lowest score. Images I(A, φ1) and
I(B,φ1) come up as more similar than I(A, φ1) and I(A, φ2), as
anticipated in Eq. (1). This demonstrates the inherent challenge in
face similarity across different imaging conditions.

that face recognition operate on non-frontal images with
uncontrolled lighting and non-compliant subjects, datasets
were created with systematic variation in imaging condi-
tions such as pose, lighting, expression, and occlusion in
still and video images [11, 13, 22, 29]. For each new
dataset, successive methods were devised with increasing
performance. Yet, when the methods were applied to the
unconstrained photos found in personal photo albums or
on the internet, performance was disappointing, and so the
latest benchmarks are based on datasets such as Labelled
Faces in the Wild (LFW) [12] and Pubfig [20] that are culled
from the internet. These datasets not only exhibit variation
in pose, lighting, expression and occlusion, but also vari-
ations for an individual due to the imaging device, com-
pression, resolution, blur, makeup, hairstyles, eyeglasses,
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fatigue and aging as well as greater variations in gender, eth-
nicity, and age across the subject pool. Yet, these datasets
also introduce a bias because of the photos that are ex-
posed on the internet were made public because the pho-
tographer/owner found them to be of sufficient quality to be
worth posting (internet images are generally much more in-
teresting to look at than surveillance images) and because
the faces had to pass certain filters, such a having a de-
tectable face using some available detector.

The lion’s share of recognition or verification methods
are based on an ability to register pairs of images or an
image to a canonical system, often at the pixel level. In
purely frontal recognition, this might be accomplished with
a similarity transformation whereas for near frontal recogni-
tion an affine transformation may be more appropriate. Yet,
for a larger degree of pose variation, registration might in-
volve 2-D warps or a 3-D generic/morphable model [5, 7]
and the use of fiducial point detection or pose estimation.
Registration across expression might use either warps or lo-
cal patches around fiducial points [11]. Recently, Kumar et
al. [20] introduced a technique for verification that does not
require registration but rather characterizes face images by
attributes and similes and compares the attributes and sim-
ilies for pairs of images rather than registering and com-
paring the images themselves. Consequently, they have an
opportunity to compare images with drastically different
pose and expression with partial occlusion, so long as the
attribute or simile extraction is invariant to those factors, to-
gether with the fiducial detector. Yet to date, this method
has only been evaluated on datasets that do not have the
extreme imaging conditions (e.g., near-profile images and
directional lighting) that are found in some of the earlier
datasets such as PIE [29].

We introduce a new method for comparing pairs of face
images that does not require direct registration of the pair,
and in turn allows recognition or verification between im-
ages where the mutually visible portion of face is small
(e.g., from a well lit frontal gallery to a poorly lit, expressive
side view). To achieve this, we consider an observation by
Moses, Adini and Ullman [23]: “The variations between the
images of the same face due to illumination and viewing di-
rection are almost always larger than image variations due
to change in face identity.” Considered formally, let I(p, φ)
denote an image of person p in imaging condition φ (pose,
illumination, expression, etc.) and let D(I1, I2) be a mea-
sure of distance or similarity of image I1 and image I2. An
interpretation of this statement is that

D[I(A, φ1), I(B,φ1)] < D[I(A, φ1), I(A, φ2)] (1)

for most image-to-image distance function D such as L2 or
more complex measures, such as FPLBP [32] (Fig. 1 shows
a specific case). The quest for imaging condition invariant

recognition is to turn this around and find a D′ such that

∀φ1, φ2, D′[I(A, φ1), I(B,φ1)] > D′[I(A, φ1), I(A, φ2)].

Ref. [9] can be viewed as an example for such D′, intro-
ducing a lighting insensitive comparison function that used
gradient features.

In this paper we introduce the idea of leveraging a
large reference Library of images that exhaustively samples
I(Pi, φ) over many imaging conditions φ for each individ-
ual Pi. Data-driven approaches have been employed pre-
viously in different problem domains and include [17, 18].
The very recent work in [35] uses a concept similar to the
notion of a Library. The main differences are our identity-
based Doppelgänger lists and the applicability to a large dif-
ference in poses.

Now, say we are given a probe image IA of person A
under unknown imaging conditions and find the most sim-
ilar image to IA in the Library. The individual Pi in the
Library with the smallest distance to IA will be a look-alike
or Doppelgänger of the probe. Furthermore, those images
are likely to have been taken under similar imaging condi-
tions because of Eq. 1. For the specific imaging condition
of the probe, Pi is the most similar individual in the Library.
Looking beyond the Doppelgänger, all individuals in the Li-
brary can be sorted based on their distance to the probe,
IA. The sorted Doppelgänger list along with the distances
serves as a signature for the probe image. Figure 2 shows an
example of two such sorted lists for two probes of the same
individual. We argue in this paper that this signature is a
good characterization of an individual. This means that if
we take a second probe image I ′A of personA, the signature
of I ′A will be more similar to the signature of IA than the
signature of an image IB of another person, even when the
images IA, I ′A are taken under very different imaging con-
ditions and IB is taken under the same imaging condition
as IA or I ′A.

We explore this idea of using a sorted Doppelgänger list
as a signature and evaluate distance functions for comparing
the signatures. A subset of the individuals from the Multi-
PIE dataset [15] is used as the Library. Our methods are
evaluated on a hold-out set of Multi-PIE [15], FacePix [4],
and the LFW [12] benchmark.

The following section gives an overview of relevant
work. Secs. 3– 5 describe our proposed data driven face-
similarity measure and Sec. 6 demonstrates the practicality
of our method on Multi-PIE, FacePix, and LFW. Sec. 7 con-
cludes and discusses the prospect of the prosed approach.

2. Related Work
The challenges of large pose variations as well as robust-

ness to illumination and expression changes have been con-
fronted in previous works. In this section we introduce ap-
proaches that address these difficulties.
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Figure 2. The pipeline of our method. Each probe in a query pair is compared to all members of the Library. The comparison results in
a ranked list of look-alikes, the first being the most similar to the query. Then, a similarity measure between the two probes is computed
by comparing the ranked lists. Here, the probes are from a positive pair in LFW, and the library images are from multi-PIE. The top of the
lists have four identities in common, appearing in different poses in each list.

Some methods pursue the idea of constructing the ap-
pearance of a face under different imaging configurations
in order to facilitate recognition under these different pa-
rameters. Georghiades et al. [13] showed that illumina-
tion changes can form a convex cone. However, changes
in pose and expression involve 3D movement and non-rigid
changes and can not be modelled by linear transformations
in the image space. When 3D data is available, geodesic
distances on the face surface can be used to overcome this
problem [6]. Attempts were also made to warp 2D data
onto 3D models [5]. In addition, some works proposed
transforming appearances between poses [2, 24]. Neither of
these methods report recognition results, and while recon-
struction has worthwhile applications it might not be well
suited for biometric scenarios where detailed statistics of
the persons appearance matter.

Other methods do not explicitly reconstruct faces but
rather focus on a more abstract representation of the under-
lying training data in order to achieve recognition. Methods
like [8, 25] represent the gallery images in terms of mani-
folds. Ref. [16] leverages the training data by means of a
nearest neighbor classifier and employs metric learning in
order to compute meaningful distances in the image feature
space. Nevertheless, none of the above methods aims at
matching faces at extreme variations of imaging conditions.

Since its introduction in 2008 Multi-PIE has been used
in [7, 28, 33, 34] amongst others. All these approaches re-
stricted the poses to frontal or near frontal. In some, the
range of illumination and expression configurations is fur-
ther restricted to simplify the recognition task. Ref. [28]
reports results similar to [33] on face classification on a
subset of the five most frontal poses. Cao et al. [7] re-
port verification performance on seven frontal poses and a
restricted subset of illuminations in addition to neutral ex-
pression only.1

1This restriction was described to us in private correspondence with the
authors.

3. A Data Driven Approach for Face Similarity
In this section we detail our method, that was introduced

in Sec. 1. Our approach is based on using Doppelgänger
lists as face signatures, as summarized in Fig. 2. Given a
pair of probes, we compute the look-alike ranked list for
each probe from the Library. Then, the similarity between
the probes is determined by the similarity between these two
lists. This approach stems from the observation that ranked
Doppelgänger lists are similar for similar people. This ob-
servation is substantiated in Fig. 3.

We calculated the ranked lists for 6000 pairs of probes,
having equal number of positive pairs (where the same in-
dividual appears in both probe images) and negative pairs.
For each pair of lists we counted the location changes of the
look-alikes between the lists. For example, if look-alike X
was in position 12 in one list and is in position 15 in the
second list, this change is counted in cell (12,15). Fig. 3
shows the resulting matrix, divided into bins of 50 by 50
positions. Each row was normalized to represent a proba-
bility distribution. Thus, cell (i, j) contains the probability
that a look-alike will move from location i to location j.
The left plot depicts this probability for positive pairs and
the right one for negative pairs.

The peaked diagonal in Fig. 3 (left) supports our assump-
tion that lists computed for a pair of the same identity are
similar. In particular, there is a high probability that the
look-alikes in the beginning of the list of one probe are at the
beginning of the list for the other probe. The peak at the end
of the list can be explained by misaligned images that do not
match any probes. On the other hand, in Fig. 3 (right), the
probabilities are approximately uniform for all possible po-
sition swaps. Thus, we conclude that the Doppelgänger lists
convey significant information about identity matching.

A major advantage of our method is that direct compar-
isons between faces are required only in similar imaging
conditions, where they are actually feasible and informa-
tive. Note, that here we use similarity between entire faces
of multiple identities to describe people, whereas [20] de-
scribed an individual according to a collection of similes of
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Figure 3. Probabilities of location changes between ranked lists
of similar and different identities. Positions are binned by 50 posi-
tions. These probabilities were computed from 12000 lists, having
equal number of matching and non-matching pairs. The diagonal
in the left plot supports our assumption that lists computed for a
pair of the same identity are similar. In particular, there is a high
probability that the look-alikes at the top of the list will be ranked
high in both lists. On the contrary, in the right figure the probabil-
ities are more uniform for all possible position swaps.

face parts. Wolf et al. [31, 32] utilize a similar idea. How-
ever, their ranking based background similarity uses ranked
lists of images, whereas we rank based on the identity. This
is a crucial difference and necessary to achieve real pose
invariance.

Using Multi-PIE as a Face Library
Currently, the CMU Multi-PIE face database [15] is

the most extensive face database in terms of systematic
variation of imaging parameters, including expressions,
and therefore is the most suitable to act as our Library.
Multi-PIE contains images of 337 people recorded in up
to four sessions over the span of five months. Over mul-
tiple sessions, subjects were imaged under 15 view points
(Fig. 4 top), 13 spanning 180◦ horizontally and two look-
ing from above, imitating a surveillance camera.2 Strobes
were placed at the same locations as the cameras, with an
additional three between the two upper cameras, provid-
ing 18 illumination conditions. In addition, images were
taken under ambient light. Subjects displayed six facial
expressions: neutral, smile, surprise, squint, disgust and
scream (Fig. 4 bottom). These expressions involve non-
rigid movements: eyes open or closed and the mouth varies
from closed to widely opened. In total the database contains
more than 750,000 images. This multitude of data supports
a data driven approach for face matching. Thus, in our ex-
periments images from Multi-PIE formed the face Library.

4. Finding Look-Alikes
In this section we describe how the look-alike ranked

lists are retrieved. Each probe is compared to all images in
the Library, over all pose, illumination and expression com-
binations. The Library members are then ordered according
to decreasing similarity to the probe. This search could be

2In our experiments we use the 13 horizontal view points.

Figure 4. Multi-PIE: [Top] The 15 poses available in the Multi-
PIE database (figure from [14]). Next to each pose we show the
average face support mask for this pose. Masks were obtained by
thresholding the illumination variance of the same scene across the
18 strobes, followed by a skin mask. [Bottom] An example of six
different poses and the six different expressions in Multi-PIE for
the same person.

constrained by a crude estimation of pose or expression.3

However, we show robust performance even without this
step. The face images are aligned depending on the experi-
ment (see Sec. 6).

As discussed in Sec. 1, pixelwise measures are problem-
atic to use across poses. We found that the Structural SIM-
ilarity index (SSIM) [30] yielded the most robust perfor-
mance across multiple poses. This index was developed to
measure similarity between images as a substitute to pixel-
wise methods such as sum of squared distances. The SSIM
measure between pixels in the same location x in images I1
and I2 is given by

sI1I2(x) =
µ1(x)µ2(x)σ12(x)

[µ2
1(x) + µ2

2(x)][σ2
1(x) + σ2

2(x)]
. (2)

Here, µi(x), σi(x), i = 1, 2 are the local mean and standard
deviation of a fixed window4 around x. The value σ12 is
the correlation of pixels in this window in both images. The
values of sI1I2(x) are averaged across all pixel location to
produce the final similarity measure. This measure accounts
for luminance, contrast and similarity, and ranges between
[0, 1], where 1 is achieved for identical images.

Figs. 2 and 5 show examples of look-alike lists computed
for several probes. Each list contains an ordering of all N

3As an example, [7] estimated crude pose information by comparing to
images from Multi-PIE.

4In our experiments we used a window size of 9 pixels for image size
50 by 50 pixels.
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Figure 5. Doppelgänger lists: Two probes of the same person (#26) in different poses have five look-alikes that occur in the first ten
places. A second person (#4), in the same pose and expression does not have any common look-alikes in the beginning of the list. Red
squares mark identities that appear in both lists. Pairwise SSIM between #26 and #4 in the same pose yields higher similarity than the
two images of #26 (0.51 vs. 0.25). Probes are from FacePix.

identities in the Library; the figures display the first ten posi-
tions. Note that although the comparison was not restricted5

to specific pose, illumination and expression configurations,
the SSIM measure returns look-alikes that are imaged in
very similar conditions. This is consistent with the earlier
statement of Adini et al. [23].

5. Comparing Look-Alike Lists
The output of Sec. 4 is a ranked list of all N distinct

identities in the Library for each probe, ordered by decreas-
ing similarity from the probe. The lists, denoted L1 and
L2 respectively, are permutations of the identity labels in
the Library. For simplicity, we assume the labels are num-
bered from [1, N ]. In the literature there are a few com-
monly used statistical methods for comparing permutations
such as the Spearman rank, the Spearman Footrule, and the
Kendall Tau [21]. The Kendall Tau counts how many pairs
of labels switched direction between lists. The Spearman
rank and the Spearman footrule are based on counting dif-
ferences in the positions of the same labels across the two
lists. Recently, these methods were extended to accommo-
date element and position weights [21]. Distance between
permutations was also used for finding correspondence in
images [3].

We discovered empirically that the similarity value be-
tween the probe and the Library instances drops signifi-
cantly at some point. After this point, the differences be-
tween the similarity scores are small and the order between
the look-alikes is less informative. This also manifests in
the left hand side of Fig. 3, where the look-alikes in the be-
ginning of the list demonstrate a higher tendency to stay in
the same position.

Based on these observations, we use the similarity mea-
sure of Jarvis and Patrick [19]. For N subjects in the Li-

5Comparing each probe to a large Library may appear to have a sig-
nificant impact on performance. However, if real-time performance is re-
quired, other descriptors may be used, combined with a fast `2-norm that
is sped up with approximate nearest-neighbour techniques [1].

brary, let τi(n) denote the position of subject n in the or-
dered list Li. Considering only the first k people in the list
where the similarities are significant, the measure is given
by (with [·]+ = max(·, 0)):

R(L1, L2) =

N∑
j=1

[k+1−τ1(j)]+ · [k+1−τ2(j)]+ . (3)

Fig. 5 shows an example of calculating R for k = 10
with probes from the FacePix database. Two probes of the
same person (#26) in different poses have five look-alikes
that are the same in the first ten positions. A second person
(#4), in the same pose does not have any common look-
alikes in the beginning of the list. Calculating direct pair-
wise similarity using SSIM (Eq. 2) yields 0.25 between the
two images of #26, and a higher score of 0.51 between the
images in the same pose ’4’. Thus, in this case the measure
R from Eq. (3) has the properties of the desired measureD′,
as described in Sec. 1.

The methods discussed above ignore all information
about the actual similarities sI1I2 between the probe and
the look-alikes. We view this property as an advantage, be-
cause it provides invariance to the scale of the similarities
across poses. Nevertheless, future methods might benefit
from incorporating the pairwise similarity values into the
ranked lists similarity measure.

6. Experimental Evaluation
This section demonstrates the performance of our

method on the task of verification. The comparison scores
R could be readily used for recognition as well. We show
results on Multi-PIE [15], FacePix [4] and LFW [12]. Ten
fold cross-validation is performed for all experiments. For
Multi-PIE, the dataset was split in ten parts with disjoint
identities. The probes (300 positive and negative pairs) were
sampled from one set and the Library was built from the re-
maining nine sets. For FacePix the probes where randomly
sampled within the respective pose ranges. For LFW we
use the ten folds provided by [12].
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R, k=100                   68.3%±1.0

Spearman footrule   66.2%±1.0

SSIM, pairwise         52.7%±1.2

FPLBP, pairwise      54.7%±1.9
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Figure 6. FacePix: Average ROC curves obtained by using sev-
eral similarity measures between the ranked lists across all poses.
The measure in Eq. (3) is used with k = 100.

We emphasize that to the best of our knowledge face ver-
ification that uses the entire range of poses, illuminations,
and expressions has not been reported neither on Multi-PIE,
e.g. [7, 28], nor on FacePix, e.g. [10]. Previous results are
limited to subsets of the conditions and exclude some of the
hardest conditions (e.g. profile views [7]).

We compare our Doppelgänger list based face-similarity
using R(L1, L2) with one of the state of the art descrip-
tors used for faces (FPLBP [32]) as well as SSIM for direct
pairwise comparison of images. In addition we compare our
results on LFW to the performance reported by [16, 32] for
the low-level features.

6.1. Rank comparison measures
We tested different measures for comparing ranked

lists [21]. Fig. 6 shows average ROC curves obtained by
using several similarity measures between the ranked lists
across the full range of poses in FacePix. Results are re-
ported for verification accuracy at equal error rate (EER).
Decreased performance for Spearman footrule, compared to
R in Eq. (3) indicates, that the top of the list (e.g. top 100)
is more important than identities further down the list.
Spearman-rank and Kendall-tau perform comparable to the
Spearman footrule. We use R in subsequent experiments.

6.2. Verification Across Large Variations of Pose
In the first experiment we use ten test sets selected from

FacePix, each consists of 500 positive and 500 negative ver-
ification pairs. Poses were restricted according to the exper-
iment, and can range from −90◦ to 90◦. We use the face
and fiducial-point detector from [11] to align the FacePix
probes to the Multi-PIE based Library. Note that this align-
ment was only performed for images in the same or simi-
lar poses, thus circumventing the flawed procedure of try-
ing to align images across a large pose range. Each probe
was similarity-aligned to the canonical coordinates of the
corresponding Multi-PIE pose, which was assumed to be

same

�

same

�

AA

BB

Figure 7. FacePix example pairs that were classified correctly
and incorrectly using Eq. (3). Shown are pairs of correctly (A)
and incorrectly (B) classified pairs of the same identity.

probe 1 probe 2 Pairwise Look-alike
FPLBP [32] measure

−30◦ to 30◦ −30◦ to 30◦ 72.0%± 2.0 74.5%± 2.6
−90◦ to 90◦ −90◦ to 90◦ 54.7%± 1.9 68.3%± 1.0
−10◦ to 10◦ angle> |70| 51.1%± 1.7 66.9%± 1.0

Table 1. FacePix across pose: Summary of classification accu-
racy at EER with test sets of various pose ranges. Our method is
compared to FPLBP as used in [32] on image pairs. As expected,
the performance of the pairwise measure decreases with increased
pose variations and approaches chance, whereas the performance
of our measure (R, k = 100) remains relatively stable.

known. However, our experiments showed that the match-
ing of probes to the Library could also function as a pose
estimator and obviate this assumption.

Robustness to Pose Variation. From Tab. 1 it is appar-
ent that our method’s performance remains high across the
full range of poses, whereas the comparison metric FPLBP6

(one of the best performing single measures on pairs of
faces [16, 32]) drops significantly. The same decrease was
reported on other methods [27]. Adding profile poses to
the experiments slightly degrades the performance of our
method, but it still copes with the increased difficulty. The
proposed method does not rely on alignment across poses,
which makes it more robust in cases where it is impossible
to align faces relative to each other (e.g. frontal to profile).

Fig. 7 depicts a few examples of correctly and incor-
rectly classified pairs. It is noticable that especially for
profile poses the fiducial point detector [11] does not per-
form well which leads to misalignment and therefore noisy
Doppelgänger lists. Better alignment can certainly help to
improve performance in those cases. Note that our method
only relies on good registration of a pair of images within a
small range of poses (in the Multi-PIE based library ±15◦).
Across all poses on Multi-PIE. Again, our face-similarity
proves itself robust across the full range of poses, illumi-
nation, and expression conditions. Faces were detected us-

6In our experiments FPLBP performed better than TPLBP, and was
used with the χ2-distance.



Method TPLBP FPLBP SIFT look-alike
Accuracy at EER 69.2% 68.2% 69.1% 70.8%

Table 2. LFW: Comparison of the proposed look-alike face-
similarity with other pairwise feature measures as reported in [32].

ing [11] and bad detections were rejected. The classification
performance using ten fold cross-validation is 76.6%± 2.0
(both FPLBP and SSIM on direct image comparison per-
form near chance). To the best of our knowledge these are
the first results reported across all pose, illumination and
expression conditions on Multi-PIE.

6.3. Results on LFW
In our final experiment we show the ability to generalize

to unseen real world images. We report improved perfor-
mance of our face-similarity on LFW [12] in comparison
with results reported for low-level feature descriptors that
aim to solve the same problem (e.g. LBP, Gabor, TPLBP,
FPLBP, SIFT). We use the LFW-a aligned faces [32] and
aligned the Multi-PIE Library faces in a similar way using
a commercial fiducial point detector.

As before we use Eq. (3) with k = 100 and SSIM as
the measure to compute the look-alike lists. The perfor-
mance on LFW using our face-similarity is 70.8%±1.5 (see
Tab. 2). This outperforms other metrics that calculate a sim-
ilarity score for faces. Wolf et al. [32] report performance
around 69% using TPLBP or SIFT (LBP, Gabor, FPLBP are
reported with slightly lower scores), and in our experiments
the SSIM measure performed at 69%± 2. This signifies an
improvement on LFW, while keeping in mind that the main
advantage in our face-similarity measure is the robustness
in comparisons across poses, which is not captured by the
LFW benchmark.

Fig. 8 shows examples from this experiment, for both
correctly and incorrectly classified pairs. The top box shows
pairs of the same person that were classified correctly. Note
the high variability of pose, expression, illumination among
the pairs. Some positive pairs that were classified incor-
rectly exhibit extreme variations in imaging conditions, as
well as significant occlusions.

This experiment underlines the generalization of our
method. As shown in experiments on FacePix and Multi-
PIE the real strength lies in generalization across large pose
ranges, where direct pairwise comparisons would fail. Sim-
ilar to [32] our method could be combined with other state
of the art methods to combine the advantages of standard
descriptors and our very different approach.

7. Discussion
To the best of our knowledge, we have shown the first

verification results for face-similarity measures under truly
unconstrained expression, illumination and pose, including
full profile, on both Multi-PIE and FacePix.
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Figure 8. Example pairs that were classified correctly and in-
correctly in LFW using Eq. (3). Shown are pairs of correctly (A)
and incorrectly (B) classified pairs of the same identity, and cor-
rectly (C) and incorrectly (D) classified pairs of different identities.

The advantages of the ranked Doppelgänger lists become
apparent when the two probe images depict faces in very
different poses. In this scenario many descriptors [16, 32]
fail, as shown in Tab. 1. Even fiducial point based descrip-
tors such as SIFT or affine descriptors are expected to strug-
gle across such extreme ranges of poses. Methods like the
attributes based classifier [20] may potentially cope with
large pose variations, provided that the attribute classifier
is trained specifically for separate pose ranges. Our method
does not require explicit training and is able to cope with
large pose ranges.

It is straightforward to generalize our method to an even
larger variety of imaging conditions, by adding further ex-
amples to the Library. No change in our algorithm is re-
quired, as its only assumption is that imaging conditions
similar to the ones used for the probe exist in the Library.
The robustness to this assumption has been proven in the
FacePix and LFW experiments, where the exact pose is not
contained in the Library.

We expect that a great deal of improvement can be
achieved by using this powerful comparison method as an



additional feature in a complete verification or recognition
pipeline where it can add the robustness that is required for
face recognition across large pose ranges. Furthermore, we
are currently exploring the use of ranked lists of identities
in other classification domains.
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