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Abstract

Wearable computers are rapidly gaining popularity as
more people incorporate them into their everyday lives. The
introduction of these devices allows for wider deployment of
Computer Vision based applications. In this paper, we de-
scribe a system developed to deliver users of wearable com-
puters a tour guide experience. In building our system, we
compare and contrast different techniques towards achiev-
ing our goals. Those techniques include using various de-
scriptor types, such as HOG, SIFT and SURF, under differ-
ent encoding models, such as holistic approaches, Bag-of-
Words, and Fisher Vectors. We evaluate those approaches
using classification methods including Nearest Neighbor
and Support Vector Machines. We also show how to in-
corporate information external to images, specifically GPS,
to improve the user experience.

1. Introduction
The widespread use of mobile devices and smart phones

has dramatically increased the applicability and demand for
Computer Vision based applications, such as Augmented
Reality. The recently introduced Google Glass, shown in
Figure 2, is an example of a wearable computer that has
generated interest in such applications.

Tourists visiting popular locations often entrust a tour
guide tell them about the sites they are visiting. The
emergence of smart devices initially enabled software tour
guides that either deliver information to users based on their
current locations [12] or even employed some image anal-
ysis to provide information on the contents of the images
[41]. However, those applications are limited by the human-
computer interaction model. For example, in the case of
software tour guides that perform image analysis, the user
has to hold the device and point it towards the object of
inquiry and take a picture which would then be processed
for relevant information. On the other hand, wearable com-
puters change the interaction model dramatically, where the
user can query the device for information, as in the case for
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Figure 1. System overview. The user asks the device to inform
her about her current view of Arc de Triomphe, and the system
responds with the most relevant description in its database.
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Figure 2. A visual overview of the components in Google Glass.

Google Glass.
In this paper, we design a system that delivers a tour

guide experience to users of Google Glass. The system’s
goal is defined as follows: provided an image uploaded by
the user’s device, and possibly a GPS location, return in-
formation about the building in the field of view. Figure 1
gives an overview of the whole system model.

There are a couple of important factors in designing a
tour guide system for wearable devices, namely, hardware
capabilities and communication. Recent developments in
hardware allow for significant processing power in these de-
vices, for example, Google Glass incorporates a dual core 1
GHz processor with 682MB of RAM and a 5 MP camera.
These capabilities are recent in the arena of mobile devices,
and are essential in delivering a satisfying user experience.
Moreover, recent developments in mobile connectivity and



    

    

Figure 3. A sample of eight images from the dataset.

data transfer rates help provide a suitable environment for
such applications. For example, the recent introduction of
4G LTE technology in the mobile devices market offers
rates of up to 300 Mbps in downlink and 75 Mbps in uplink
with low latencies [2], where on the other hand, earlier 3G
technology could only deliver up to 200 Kbps in downlink,
which slightly improved in later revisions to reach down-
link rates of 14 Mbps in downlink and 6 Mbps in uplink [1].
Those earlier data transfer rates capped the capabilities of
prior systems in delivering a fluid user experience.

1.1. Dataset

Multiple works have introduced datasets for landmarks
[33], or provided detailed datasets of certain locations such
as in [10]. However, to enable empirical on-the-street test-
ing of our system, we collected over 1400 images of 53
buildings and other scenes at UC San Diego. We refer to
these views as “locations” or “points-of-interest” through-
out the paper interchangeably. The images were GPS
tagged with the points-of-interest location as well as the ac-
tual capture location. The former was used for training, the
latter for testing. We modeled our system as a tour guide for
visitors of the campus, where the visitor can ask the device
for information about the building in her view. This model
allowed us to test the system’s performance in real-world
circumstances while permitting the use of typical machine
learning experimentation standards. Sample images of the
dataset are shown in Figure 3.

2. Related Work
Our work draws upon ideas from previous works in Mo-

bile Devices [12, 18, 41, 42, 16, 29, 24, 34], Landmark
Recognition [39, 20, 28, 27, 40] and Image Geo-localization
[37, 38, 19, 13, 21, 4, 3]. Most of these works are essentially
performing image retrieval. Our work does not depart from
that norm but absorbs it in delivering a functioning system.

2.1. Mobile Devices

Since smart mobile devices appeared widely at the end
of 1990s, many works have emerged with the objective of

performing image retrieval on these devices.
The GUIDE system [12] in 2000 aimed at replicating

the tour guide experience via a PC-based tablet device with
a dedicated wireless network infrastructure. Their sys-
tem also leveraged location information via a Differential
Global Positioning System (DGPS). Their system aided the
user’s navigation of a designated area by providing textual
and pictorial information on the tablet screen along with
maps to help guide the user.

Gausemeier and Bruederlin [18] describe a system from
2003 incorporating an augmented reality device for object
recognition. Their system performed recognition by rely-
ing on a database of 3D objects which they used to com-
pare against edge-detection results. Although their system
is considered primitive by today’s standards, it was an effec-
tive proof-of-concept and showed the potential of evolving
technologies.

Another interesting work in this domain was IDeixis
[41]. Developed in 2004, the goal of IDeixis was to provide
users of camera-equipped mobile devices location-based in-
formation using images. In their system, they follow a
server-client model, where the client communicates with
the server using Multimedia Messaging Service (MMS).
They used Color Histograms and Fourier Transforms in an-
swering queries. Their average turnaround time was 25 sec-
onds per query.

Another more recent work, from 2008, is [24], in
which the system compares images uploaded from a smart
phone along with the current GPS location to a dataset of
panoramic images using SIFT features. The system then
determines the pose of the user and returns relevant infor-
mation.

2.2. Landmark Recognition

In contrast to the previous section, research involving
landmarks [27, 28, 40] has generally focused on the recog-
nition task itself, without regard for an end-user application.
A survey on Landmark Recognition for mobile devices is
given in [11].

In another work from 2008, Li et al. [27], harvested im-
ages from Flickr and adopted the Bag-of-Words model in
representing those images. They also leveraged textual and
temporal data associated with the landmark images which
they treated as image-tags. To perform recognition, a multi-
class Support Vector Machine [14] was trained treating each
landmark as a separate class.

In [40], Zheng et al. downloaded images from Picasa and
Panoramio, and extracted features from them using Gabor
filter-bank responses. Their recognition step uses Nearest
Neighbor to pick matches. Moreover, since they exhaus-
tively match against all images, their complexity is heavily
reduced through the use of k-d trees [6]. A match is found
when the nearest neighbor satisfies a given threshold.



2.3. Image Geo-localization

In a similar spirit to Landmark Recognition, Image Geo-
Localization attempts to determine the location of a given
image by comparing it against a large database of images
with known locations. This is inherently not different than
landmark recognition, except that in this scenario, we are
comparing to a much larger database with arguably many
more locations.

Schindler et al. in [37] worked with data encompassing
about 20 kilometers of driving distance amounting to 30
thousand images. Zamir et al. [43] went further and worked
with 100,000 images from Google Street View. Having a
large number of images led both of them to seek approxi-
mate approaches for feature matching, such as Vocabulary
Trees in [37] and a k-d tree in [43]. Both used variants
of nearest-neighbor to count matching features as the ba-
sis of their recognition step. Hays et al. in [19] went even
further, employing over 6 million images obtained from
Flickr. Their goal was to localize images over the entire
planet. Features included Color Histograms, Texton His-
tograms [25] and GIST [32]. They also used a variant of
nearest neighbor, namely k-NN, in combination with mean-
shift clustering to localize the images.

In [10], Chen et al. collected 1.7 million training
panorama images with detailed tags, such as the GPS and
viewing direction, using a vehicle from the city of San
Fransisco, and 803 test images from mobile devices. Their
panoramas were converted to perspective images by lever-
aging information in the image tags. Those perspective
images are split into two databases, that store a vocabu-
lary tree for query processing. In handling their queries,
they use SIFT with Term Frequency-Inverse Document Fre-
quency (Tf-Idf) weighting and compare using and not using
the GPS coordinates in filtering their results. In contrast
to their work, we aim to provide information about certain
locations, i.e., in a tour-guide manner, and not localize the
user’s coordinates, and hence we follow a classification ap-
proach.

The Bag-of-Words model was used by Cao et al. in [8]
with SIFT features. They trained linear SVMs correspond-
ing to clusters of images that belonged to certain locations,
which were obtained via a clever vertex cover approach on a
graph built by relating images together using feature match-
ing in an earlier step.

3. Approaches to Recognition

We have used multiple approaches to data modeling and
evaluation in our system to facilitate our study of differ-
ent aspects including location recognition accuracy, training
time and response time. We have implemented the follow-
ing methods on our server-side: Holistic Approaches, (e.g.
GIST [32]), Bag-of-Words with different feature descrip-

tors, and Fisher Vectors with different feature descriptors,
evaluating using Nearest Neighbor approaches and Sup-
port Vector Machines. All of those methods were designed
to work on the server-side answering queries presented by
Google Glass.

3.1. Holistic Approaches

Holistic approaches calculate a whole-image descriptor,
and they have been widely used in scene recognition [32].
We use GIST [32], Color Histograms, and Histograms of
Oriented Gradients (HOG) [15] as holistic representations
of the images in our database. Although HOG is widely
used in the literature of object detection, it can also be used
in a holistic manner, and therefore we incorporated it in our
system. The end result of these methods is a single vector
that describes the image that gave rise to it.

3.2. Bag-of-Words

The Bag-of-Words (BoW) model is a widely used ap-
proach in Computer Vision for various tasks including ob-
ject recognition and retrieval. In this work, we use the BoW
model based on several descriptor types, namely, SIFT [30],
SURF [5] and BRISK [26].

To find visual words, we use K-Means [31] for a hard-
assignment codebook as in the typical BoW model. The fi-
nal image representation is a vector of dimensionality equal
to the codebook size. Furthermore, we used Tf-Idf weight-
ing [35] in some instances for comparison against basic
BoW as will be discussed in Section 4.

3.3. Fisher Vectors

Fisher Vectors [36] have recently achieved state-of-the-
art results on many object detection datasets, such as Pas-
cal VOC. They have not previously been considered in the
case of landmark and location recognition. We used dense
PHOW [7] features and SIFT [30] in two flavors, one using
Spatial-Pyramid-Matching [23], and one without. We refer
the reader to [36] for the details of using and implementing
Fisher Vectors.

3.4. Evaluation Methods

All of the previously mentioned data representation ap-
proaches produce a vector describing the whole image.
Those vectors constitute the training data for our evalua-
tors. Those evaluators follow standard approaches, namely:
k-Nearest Neighbor, One-vs-All Support Vector Machine,
and a One-vs-One Support Vector Machine. We will dis-
cuss this further in 4. After the generation of model data,
depending on the chosen representation, we store all model
information in a Spatial SQL Database for the evaluation
and query step.

We test the evaluation methods under two modes, GPS-
active and no-GPS. In the GPS-active mode, we extract the
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Figure 4. An illustration of how we use the GPS location in the
GPS-active mode to reduce the search space of possible points
of interest. Here, “Petit-Palais” is returned as a viable point-of-
interest to compare against the query. The figure illustrates an
imaginary setting in Paris, France.

GPS location data from the EXIF-tag of the JPEG file, or
supply it separately with the client request. The GPS loca-
tion is used in a Spatial-SQL query to the spatial database to
retrieve the possible locations around the user. This step re-
duces the number of candidate locations, and therefore, the
number of evaluations we have to make. On the other hand,
in the no-GPS mode, we query the database and retrieve all
stored models for evaluation. Figure 4 gives an illustration
of how the Spatial Database is used to reduce the search
space of the points-of-interest.

3.5. Deep-Learning

Deep Belief Networks have made an impact recently on
a number of commonly used benchmarks. The Convolu-
tional Deep Belief Network introduced by Krizhevsky et al.
in [22] achieves the state-of-the-art results on the challeng-
ing ImageNet [17] object classification dataset.

We have attempted using Convolutional Deep Belief
Network, however, our networks performed poorly on our
test instances. This was caused by the small number of
training images compared to the huge number of parame-
ters that need to be tuned for a network with a similar struc-
ture to the one used in [22]. This effectively led to networks
that remembered each training image, and henceforth we
decided to leave these approaches for future work.

4. Experiments
Testing our system was accomplished in two settings. In

the first setting, we divided the dataset into 1204 training
images and 272 testing images. We note that the test im-
ages were captured at a different time and day. We evalu-
ated each method on the split separately, and measured the

accuracy, timing for feature extraction and evaluation on the
same computer. On the other hand, in the second setting, we
empirically test the system by evaluating on 66 images from
Glass. We tested this setting by choosing two good repre-
sentative methods as observed from results on experiments
in the first setting.

4.1. Google Glass Details

Our system is mainly designed to work with Google
Glass, although it is possible to support other smart phones.
We developed a Google Glass Android application that is
mainly concerned with the operation of answering the user
query of “tell me about what I’m seeing.”

When the application receives the voice command from
the user, it captures an image from the camera and sends the
data through a WiFi hotspot created by a companion mobile
device to the server over a cell network operating under LTE
data speeds. Once the response is received, the captured
image is displayed overlayed with textual information about
the location that is also spoken at the same time.

4.2. Server Details

Our demo server had an Intel i7 Processor with 12GB
of RAM, running the Ubuntu operating system. The web
service is implemented in Java under the “Play” WebApp
Framework integrated with OpenCV, LIBSVM [9], and
MySQL. Queries are received via HTTP requests with at-
tached images, and an optional GPS location. The image is
extracted from the request and is examined for EXIF GPS
meta-data or the provided GPS data is used if it exists, oth-
erwise the image is searched in the entire database. Im-
age processing then follows according to each described ap-
proach. The final evaluation step uses the GPS information
whenever possible.

4.3. Experimentation Details

The experimental setup was different than the demo
server. The different approaches (except for Fisher Vectors)
were evaluated on multiple machines running on Amazon
EC2 and using the Amazon S3 storage services. EC2 in-
stances differed in the amount of RAM provided, which
ranged from 16GB to 32GB as required by the different
methods to accommodate the large numbers of features ex-
tracted.

In our holistic approaches, we extracted GIST, HOG
and Color Histograms. For GIST, we resize all images to
128 × 128 regardless of the aspect ratio as in [32] and ex-
tract a 960-dimensional vector for each image. In the case
of HOG, we resize all images to 128 × 96 maintaining the
aspect ratio of 4:3 and cropping images if needed to achieve
the mentioned aspect ratio. This is done in contrast to GIST
to preserve the structure in the image. We have 8 × 8 pixel
cells inside 2× 2 blocks, which overlap on cell boundaries.



The result is a vector of 5940 dimensions which we nor-
malize with L2 norm. As for Color Histograms, we extract
a 36-dimensional histogram of RGB colors, which is L2

normalized. All vectors are then directly used in kNN and
SVM evaluations.

For our experiments with the BoW model, we
used three settings of the codebook size, K =
{100, 1000, 2000, 3000}, for all feature types SIFT, SURF,
and BRISK. We used the L2 norm in all instances. The
codebooks generated were used as well in the Tf-Idf
weighted BoW scenario. We computed the Term Frequency
as:

TermFrequencyi =
RawFrequencyi

max (RawFrequencyj)∀j ∈ d
(1)

where i is a visual word, RawFrequencyi denotes the raw
count of the word i in the image d. Furthermore, the Inverse
Document Frequency (IDF) was calculated as:

IDFi = log
|D|∑

i RawFrequencyi
(2)

where |D| denotes the number of images in the dataset. In
either case of BoW, the vector for each image is stored in
the database for retrieval during query time. Lastly, we L2

normalize the vectors.
A hybrid approach was also pursued by combining

both holistic and BoW approaches through fusing BoW,
GIST and Color Histograms into one vector. Each
component vector was L2 normalized separately before
fusing those together. We called those “Combined-1”
made by fusing 2000-TFIDF SURF+GIST+Colors His-
togram, and “Combined-2” made by fusing 2000-BoW
SURF+GIST+Colors Histogram.

For Fisher Vectors, we trained 256 Gaussians for the
Gaussian Mixture Model for both the SIFT and PHOW fea-
tures. For SIFT, we reduced the dimensionality to 64 using
PCA, whereas for PHOW, we reduced the dimensionality to
80. We also used sum-pooling in the Spatial-Pyramid. We
tested the Fisher Vectors with One-vs-All SVMs only, due
to the impracticality of performing exact k-NN or training(
n
2

)
SVMs for the One-vs-One SVM case, as the Fisher Vec-

tors are fairly large (327680 dimensions for PHOW+SPM).
To leverage the GPS information, we construct a circle

of 250 feet in radius, and query the database for locations
within a minimum bounding rectangle of that circle. We
use the minimum bounding rectangle because it is more ef-
ficient in querying the database than using an arbitrary poly-
gon. To guard against having the database return an empty
result set, we iteratively query the database with a larger
radius until a valid result set is returned; this effectively
widens the horizon of the search.

Note that for experimentation purposes, all vectors were
loaded by reading the database once, however, with a very

large database this may not be possible, and vectors would
have to be loaded per-query to save memory. This should
not degrade response time in the GPS-active mode because
typically a limited number of locations is returned.

4.4. Results

4.4.1 k-Nearest Neighbor Results

For k-Nearest Neighbor, we return the k most similar image
representations, and provide the label of those images, i.e.
for k = 5 we return the result of the first five most similar
images, and their respective labels. We consider the result
correct if any of those labels match the true label.

The results for k-NN are given in Figure 5. In the case
of no GPS assistance, the best method for top-1 accuracy
was BoW with SURF features using a codebook of 3000
visual words achieving 63%. The case was similar for
the top-5 accuracy. The combination of BoW SURF-2000,
GIST, and Color Histograms performed worse than the
main BoW SURF-2000 representation, however, it showed
more promising results for the top-5 accuracy. Moreover,
the Tf-Idf weighted SURF appeared to suffer when the
codebook size was increased to 3000 as opposed to the
generic BoW representation, which could be caused by the
number of visual words found in the image being less than
the codebook size which in turn gets affected by the weight-
ing process.

We observed that with incorporating GPS information,
the performance is greatly improved by a factor close to
50% in the worst case of BRISK. This mainly shows how
GPS information can greatly improve the result by compar-
ing against images in a local neighborhood. However, we
notice that the performance is saturated for the top-5 ac-
curacy using GPS just under 90%. This indicates how the
GPS could mislead the system if the object of the image is
located farther away than 250 feet.

In general, BRISK features performed the worst which
essentially showed that they are not well suited for this
problem. The main advantage of BRISK is fast computa-
tional speed as Table 1 shows an overall response time for
queries in under 1 second. However, the case is still chal-
lenged by GIST which gives good performance for a very
low cost of feature calculation, especially in the case us-
ing the GPS as Figure 5 shows. The BoW SIFT performed
better than the Tf-Idf weighted version, and while both had
their performance degrade with increase codebook size, we
noticed that the unweighted version degraded at a lower
rate. Furthermore, we noticed that HOG performed badly as
a holistic descriptor in all cases barely overcoming BRISK.

We computed the average feature extraction times and
average response times for each query as shown in Table 1.
The quickest response time was achieved by HOG, followed
by GIST then BRISK. Out of those three, GIST seemed
the most reliable, while still performing worse than SIFT



and SURF. Moreover, SURF was about 1.25 seconds slower
than SIFT in the feature extraction time explaining the de-
layed response. This draws the case for opting to use SIFT
instead of SURF if a quicker response is needed, especially
since the GPS-active case has a high accuracy for both fea-
tures.

4.4.2 SVM Results

For the SVM evaluation methods, we implemented
both One-vs-All and One-vs-One multi-classification ap-
proaches using Linear SVMs that were trained with 5-fold
cross-validation on the training set. Figures 6 and 7 show
the results for both cases.

The top-1 accuracy of 87%, and top-5 accuracy of 92%
achieved by Fisher Vectors with PHOW features and Spa-
tial Pyramid Matching. We observed that Fisher Vectors
with PHOW dense features performed a lot better than us-
ing sparse SIFT features, which reflects how dense features
help in capturing the overall scene.

With respect to the other approaches, the One-vs-All ap-
proach worked better in this case as seen by the top-1 ac-
curacy of 77%, and top-5 accuracy of 87% achieved by
Combined-2 as opposed to 69% and 85% in the One-vs-
One SVM implementation. The case was also similar for
the GPS-active mode.

SVMs generally performed better than k-NN, except for
certain cases such as with SIFT BoW. The response times
for SVMs, shown in Table 1 were comparable to the case of
k-NN. The response times were averaged across both GPS
settings. We believe this similarity in response times is due
to the fact that the SVM stores some of the support vec-
tors, which are image representations, and since locations
do not have a lot of examples, most of those will be stored
by the SVM, and hence the timing is very comparable to
k-NN which evaluates on all images for a given location1.
The timing for Fisher Vectors with PHOW was prohibitively
slow compared to using SIFT.

We observed that in the GPS-active case, the top-5 ac-
curacy was saturated for both SVM cases just under 90%,
which the Fisher Vectors outperformed using PHOW+SPM.
This clearly indicated that a limited GPS search could be
misleading, however, no fatally. In separate experiment
not shown in the figures, we used Fisher Vectors with
PHOW+SPM, and extended the GPS-search horizon to in-
clude at least 5 targets. In this case, the GPS-active method
achieved 92% accuracy the top-1 candidate, and 98% for
top-5 accuracy.

1LIBSVM stores the support vectors for the Linear SVM, and does not
store the hyperplane as it solves the convex optimization in the dual space.

Top-1 Accuracy Top-5 Accuracy
Combined-2 51.5% 74.2%

FV SIFT 71.21% 80.3%

Table 2. Accuracy of answering Glass queries without GPS.

4.5. Results on Google Glass

We tested our system on 66 images taken with Google
Glass using Fisher Vectors based on SIFT and the
Combined-2 feature blend evaluating on a One-vs-All SVM
without GPS assistance. The accuracies achieved are given
in Table 2. We measured the average processing time for
the whole query-response on a prototype Android device
running on the Verizon LTE network, which corresponded
to roughly 2-4 seconds. The features for the response time
experiment were Tf-Idf SIFT features. Unfortunately, we
were unable to test Glass images with GPS information
in the physical experiment due to difficulties faced by the
Glass device in capturing GPS data from the companion
mobile device.

5. Conclusion
In conclusion, we have designed and implemented a

functional system that accepts queries from Google Glass
and delivers information on what a user is seeing. Our
system achieves 87% top-1 accuracy without GPS and
92% with GPS on the test-set using Fisher Vectors on
PHOW features with One-vs-All SVMs. Running the sys-
tem with Fisher Vectors on SIFT features performs signif-
icantly faster and the accuracy on Glass without using the
GPS is promising at 71%. Our tests suggest that the per-
formance on Glass will improve when running in the GPS-
active mode. Our future goals include scaling the system to
handle more images efficiently, where we hope ultimately
to leverage the spatial database for improved responsive-
ness and accuracy. We are also planning on optimizing the
database query horizon to overcome the saturation faced by
the methods in this work.
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Figure 6. Accuracies for evaluation under One-vs-All SVMs across the different feature types. Note that GIST, HOG, Combined-1, and
Combined-2 do not have codebooks, and their result is constant. Refer to Figure 5 for details.
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Figure 7. Accuracies for evaluating One-vs-One SVMs across the different feature types. Note that GIST, HOG, Combined-1, and
Combined-2 do not have codebooks, and their result is constant. Refer to Figure 5 for details.

Feature Avg. Feature Extraction Avg. kNN Avg. 1vA Avg. 1v1
TFIDF SIFT 1.52 2.24 2.17 2.14
BoW SIFT 1.42 2.34 2.15 2.12

TFIDF SURF 2.94 3.57 3.67 3.66
BoW SURF 2.87 3.58 3.74 3.72

TFIDF BRISK 0.58 0.8 0.84 0.81
BoW BRISK 0.48 0.81 0.83 0.80

GIST 0.52 0.51 0.55 0.56
HOG 0.4 0.44 0.72 0.61

Combined-1 3.52 4.34 4.49 4.44
Combined-2 3.45 4.35 4.54 4.48

FV SIFT 0.87 - 0.92 -
FV SIFT+SPM 0.91 - 0.95 -

FV PHOW 9.36 - 9.41 -
FV PHOW+SPM 17.05 - 17.12 -

Table 1. Average (with and without GPS) timing for the different features while using kNN, One-vs-All SVMs and One-vs-One SVMs.
All times are in seconds. Feature extraction times for “Combined-1” and “Combined-2” is the sum of their components’ feature extraction
time. Fisher Vector times are reported as on the demo server.
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