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Reconstruction of HOT Curves from Image Sequences
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Abstract

Recently, a novel shape representation of general curved
objects, which is suitable for object recognition, has been
proposed; it is based on a set of surface curves, named
HOT curves, defined by the locus of points where a line
has high order tangency with the surface [16]. These curves
determine the structure of an object’s image contours and
their catastrophic changes. A nat 2 ural correspondence
between a point in an intensity tmage and some of these
curves can be directly established. This correspondence can
be used for pose estimation and indexing in recognition. It
also permuts thewr 8D reconstruction from feature points
on the edges detected in a sequence of images under known
observer motion. This paper presents an tmplemented re-
construction method and experimental results.

1 Introduction

In many computer vision systems, objects are represented
by collections of primitives (e.g. polyhedra, quadrics, su-
perquadrics, solids of revolution, and generalized cylin-
ders).  While implemented recognition systems have
demonstrated their usefulness, the ultimate utility of a
representation is limited by its scope. Recently, there has
been interest in the use of algebraic surfaces since even
moderate degree surfaces offer a large number of degrees
of shape freedom [18], and methods are available for rec-
ognizing instances in a single image [10]. The dual motives
for this representation are its wide application in computer
aided geometric design and the availability of computa-
tional tools. However, any fixed set of primitives has its
limitations, and so we take a different approach and fo-
cus on a representation that is directly accessible for the
purposes of object recognition; since it is based on differen-
tial properties of arbitrary (generic) smooth surfaces and
is encoded in a discrete fashion, wide scope is a natural
consequence.

In particular, there are points on a surface where there
exists a line in the tangent plane which have high order
contact with the surface; the locus of such points forms
curves of high order tangency (named HOT curves). These
include the familiar parabolic curves as well as more ex-
otic ones such as flecnodal curves and asymptotic bitan-
gent curves. HOT curves were introduced in a recent pa-
per [16], and their use in object modelling, aspect graph
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construction, and database indexing during recognition
was discussed. In this paper, we focus on two of these
curves, namely the parabolic and limiting bitangent devel-
opable curves; there exists a natural correspondence be-
tween points on HOT curves and their image. From this
correspondence, a HOT curve can be reconstructed from
the edges detected in a sequence of video images. While
many of the underlying notions are strongly motivated by
Koenderink’s work [9], the reconstruction algorithm is re-
lated to that of Giblin and Weiss [5], Blake and Cipolla [2],
and Vaillant and Faugeras [20] on estimating surface shape
from the occluding contour.

2 HOT Curves, Bitangents, Inflections

Under pinhole perspective, the image of a point p is given
by the intersection of an image plane with a ray (the line-
of-sight) emanating from the camera center ¢ in the di-
rection of p. The line drawing (image contours, intensity
discontinuities or edges) of a smooth surface is the image
of points on the surface (occluding contour, limb, rim, or
contour generator) where the line-of-sight (viewing direc-
tion) grazes the surface. For a generic smooth surface and
a generic viewpoint, the occluding contour is a regular sur-
face curve while the image contours are piecewise smooth
curves whose singular points are either transversal cross-
ings (t-junctions) or cusps. The viewing direction lies in
the tangent plane at all points on the occluding contour,
and it is said to have second order (or higher) contact with
the surface at these points.' At cusps, the line-of-sight has
third order contact with the surface and is an asymptotic
direction at the point. While any point on a surface may
have second order contact with some line, only hyperbolic
points may have third order contact. Contact of order
four and higher only occurs along certain surface curves
(i.e. parabolic and flecnodal curves), and fifth order con-
tact only occurs at isolated points along these curves [15].

Additionally, there are other surface curves where a line
grazes the surface in multiple discrete points with at least
second order contact in some exceptional manner. For ex-
ample, a line may contact the surface at two points and
lie in their respective tangent planes. If the line-of-sight is

1The contact of a tangent line with a surface at a point is
sald to have n-point contact (or n-th order contact) iff the ¢-th
derivative of the surface equation in the direction of the line is
zero for ¢ < n and is non-zero for i = n. [3]



Figure 1. Parabolic curves, limiting bitangent devel-
opables, and their projections.

aligned with this line, a t-junction or crossing will generally
be observed. In the special case where the surface normals
at these points are aligned, the image contours will meet
with a common tangent forming a tacnode. The locus of
pairs of such points define two curves (or a curve in ]R6) on
the surface which will be called the limiting bitangent de-
velopable curve [9]. Each pair of points defines a generator
of a developable surface. Other lines may graze the surface
at multiple points in special ways and define other HOT
curves; however these will not concern us here. Interest-
ingly, these special surface curves are the same ones used
to define the visual events delineating stable views in an
aspect graph [7, 9, 14]. For example, when the line-of-sight
is aligned with the developable of a limiting bitangent, a
tangent-crossing event is observed. A more thorough dis-
cussion of these and other HOT curves is presented in [16].

Just as points on a generic surface can be classified ac-
cording to the order of contact with a tangent line, points
of a generic plane curve can be similarly classified. As
shown by Bruce and Giblin [3], such a curve has a discrete
set of inflections with order three tangents and a discrete
set of bitangents. The inflections have zero curvature and
divide the curve into a discrete set of convex and concave
arcs with tangents of order two.

There is a close relationship between two of the 3D
HOT curves and the 2D contour inflections and bitan-
gents. Koenderink [8] characterized the relationship be-
tween the curvature of an image contour, the two principal
curvatures, and the viewing direction under orthographic
projection. See [2, 20] for extensions to perspective. A
consequence of this relationship is that the image of a
parabolic point is generally an inflection. This defines a
natural correspondence between observed inflections and
parabolic points (Fig. 1.a).

Now, consider the limiting bitangent developable. The
line between the two points and their common surface nor-
mal define a plane. If the line-of-sight lies in this plane,
both points will be on the occluding contour, and the two
corresponding image contour tangents will necessarily be
aligned. Such a pair of image points defines a contour bi-
tangent, and so once again, this yields a natural correspon-
dence between a HOT curve and a contour feature (Fig.
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Figure 2. The geometry of curve reconstruction: Here,

the parabolic line is reconstructed from inflection points.

1.b). The importance of bitangents and limiting bitangent
developables was noted in [9], and contour bitangents have
been used in invariant-based recognition of 2D objects and
3D solids of revolution [21].

3 Reconstruction from Video Images

We now present a method for reconstructing the 3D
parabolic and limiting bitangent developable curves di-
rectly from a sequence of 2D video images. This follows the
method of Giblin and Weiss [5] for reconstructing a sur-
face from a continuous set of profiles. The 3D curve recon-
struction is performed using quantities directly measurable
in the image (i.e., feature points and their tangents) and
derivatives directly computable from a sequence of images
(the velocity of the feature). For example, the image of
a parabolic point is a contour inflection, and as the cam-
era moves, additional points on the parabolic line will be
revealed as inflections. By measuring their location and
motion, the 3D structure of the parabolic curve can be de-
termined. This idea can be applied to the two endpoints of
a limiting bitangent, or to any other surface curve where
an image point to curve correspondence can be established.

Consider a fixed object and a moving pinhole camera
with focal length f. Let “p € IR® denote the coordinates in
a global frame of the observed point p which lies at the in-
tersection of the relevant surface curve and the occluding
Also, let § = (u,v) € IR? denote the coordi-
nates of the image of p under pinhole perspective projec-

contour.?

tion (Fig. 2). The image coordinates are readily computed

2The coordinates of points and vectors are given with respect
to some frame denoted by a leading superscript. Given the
coordinates of a vector *p in the a frame, a matrix {R can
be used to obtain the coordinates of p in a rotated b frame,

’p = Rep.



from pixel coordinates directly measured in an image.

A frame, whose coordinates are written with respect to
some global or world frame, can be attached to the moving
camera with the focal point or camera center at the origin
“¢ and with the first two rows of the rotation matrix 'R
spanning the image plane. The coordinates in the camera
frame of an image point q = (u,v) are °q = (u,v, f),
and its world coordinates are “q = YR°q + “c. Since
the camera is moving, Y R and “c¢ are functions of time ¢.
Because p lies on the ray joining ¢ and q, we have:

p="c+ A", (1)

where “v = YRF°q is the direction of the ray (the line-of-
sight), and A € IR is an unknown scalar. Note that the
line-of-sight is different at each image point.

Let us parameterize the observed surface curve by ¢; its
3D tangent is p'(¢t) = dp(¢)/dt. In addition, the image
velocity q' of q can be estimated from a sequence of im-
ages. Let °t = (t;,1,,0) denote the measured tangent to
the contour, and “t = YR°t denote its coordinates in the
global coordinate system. Since p lies on the occluding
contour, the tangent p’ lies in the plane spanned by the
image contour tangent t and the line-of-sight v. This can
be written as:

(t xv) -p' =0. (2)
where t,v, and p’ are written in the global frame. Differ-
entiating (1) to get “p’ and substituting into (2) yields

(txv) - [e"+Av+Av]=(txv) [¢+Av]=0, (3)
where t,v,v’, and ¢’ are again in world coordinates, and
wv/ — (zcuch)/ — Zuﬂwv + zcuch/. (4)

7€ is the skew symmetric angular velocity matrix (i.e.,
R' = QR). Note that “v' is directly computable from
the known camera orientation, camera rotation, feature
location and feature velocity. Solving (3) for A yields:

A= _(Exv) el
(txv) v

(5)
and once X is computed, “p is easily determined from (1).
Note also that the surface normal at p is directly available
in world coordinates as “n ="t x “v.

Thus, a camera (or equivalently the object) can be sys-
tematically moved to reveal new points on the surface
curve. Since the features are stable, almost any camera
motion will do. A few remarks related to potential failings
of the reconstruction procedure are in order.

When reconstructing parabolic lines, there may be iso-
lated surface points p where the line-of-sight becomes
aligned with the asymptotic direction at p, and a visual
event (lip or beak) occurs [7]. This should be detectable,
and almost any motion of the camera center in the tangent
plane at p (defined by the measured line-of-sight and con-
tour tangent) will both keep p on the occluding contour
and lead to a generic viewpoint. A similar problem occurs

for the limiting bitangents when the viewpoint becomes
aligned with the bitangent developable, and a visual event
called a tangent crossing occurs. Again, the solution is to
move the camera center within the tangent plane.

Another question requiring consideration is when does
the denominator of (5) vanish? Since reconstruction is
only attempted at regular image contour points, the con-
tour tangent t is always non-zero, and the line-of-sight v
is well defined for all image measurements. Since t and
v are never collinear, the tangent plane at p can always
be determined from a single image. Thus, the denomina-
tor of (5) vanishes when either |v'| = 0 or when v’ lies in
the tangent plane. There are two types of camera motions
that can lead to |v'| = 0: first, when the camera center
c moves along the line-of-sight; second, when camera mo-
tion is a pure rotation about an axis through ¢, and the
line-of-sight remains unchanged. Now, when v’ lies in the
tangent plane and v’ # 0, a given surface point p remains
on the occluding contour and p’(¢) = 0. Though (5) can-
not be used, the standard stereo equations can be applied;
the tangent plane defines the epipolar plane. More glob-
ally, the camera motion may cause the surface point p to
become occluded even though there may exist a viewpoint
where it could be visible. Again, camera motion in the
tangent plane will reveal the occluded point.

In general the denominator of (5) does not actually van-
ish, but the equation can become ill-conditioned. This
accentuates image noise in reconstruction. More pre-
cisely, if measurement noise is small and normally dis-
tributed, the variance in A can be determined from o) =
V'Y,V where VX is taken with respect the measure-
ments (°q, °q’, °t) and X, is a covariance matrix describ-
ing measurement noise. By evaluating o for each point,
the quality of the reconstruction can be determined; this
has been used to automatically prune poorly constructed
results and can be used when planning observer motion.

4 Implementation and Results

To fully reconstruct the HOT curves of complicated ob-
jects, it must be possible to move the object (or camera)
with three degrees of freedom in order to place the line-
of-sight in the tangent plane and then orient it within the
tangent plane. However, to demonstrate the feasibility of
reconstruction, the object is rotated on a turntable with
a fixed camera; most points on the surface appear on the
occluding contour. The equations presented in sec. 3 are
easily rewritten in the fixed camera frame. Before recon-
struction can commence, three issues must be considered:
calibration, segmentation, and feature tracking.

To apply (1)—(5), it is necessary to compute the view-
ing direction for a particular feature point in world coordi-
nates and the relative camera motion. Thus, the intrinsic
camera parameters and the extrinsic relationship of the
camera to the axis of rotation must be determined. Tsai’s
method is used to compute the intrinsic parameters [19].
The four additional parameters characterizing the camera-
to-axis relationship are obtained from a sequence of images



Figure 3. The edges of a duck image smoothed with a
series of Gaussian filters and inflections and bitangents
tracked through scale space.

of a calibration fixture rotating by a known amount. The
origin of the fixture’s frame sweeps out a circle. The 3D
coordinates of the origin are easily determined for each im-
age; a circle is fit, and the axis is then readily determined.
In the experiments, images were acquired using a CCD
camera with a 25mm lens at a resolution of 480 by 640
pixels, and the edges were found using an implementa-
tion of Canny’s edge detector [4]. For reliability, only
prominent features that can be stably extracted from an
image are tracked through the sequence and used in re-
construction. Following Asada and Brady’s curvature pri-
mal sketch, linked edges are smoothed with a sequence of
Gaussian filters with increasing variance [1]. However, like
Mackworth and Mokhtarian, the curve is parameterized by
arc length (z(s),y(s)) at each scale, and the filter is sepa-
rately applied to each of these functions [13]. To estimate
curvature at each scale, a window of constant arc length
is moved over the smoothed curve, and a cubic polyno-
mial is fit. The tangent direction and curvature at a point
are then determined from the polynomial coefficients. At
each scale, all zero-crossings of curvature are marked as
inflections. These are tracked though scale space using a
greedy algorithm. Only those inflections that are preserved
through scale space are retained for reconstruction.
Similarly, the bitangent end-points are tracked through
scale space, and only the stable ones are retained. Note
that tracking bitangents through scale space is inherently
more reliable than tracking inflections since the coordi-
nates of both end-points are available. Also, the bitangents
at each scale can be efficiently found in time linear in the
total number of edge points n in the image. Suppose that
the inflection points found above partition the contour into
m convex and concave branches such that connecting the
two end-points of a branch defines a convex polygon. For
each pair of branches, there can be at most two external
bitangents and two internal ones. Since each branch de-
fines a convex polygon, these bitangents can be found in
linear time using the methods described in Preparata and
Hong’s convex hull algorithm [17]; thus, the overall time
complexity for computing bitangents is O(nm2). Rather
than estimating the tangent direction from the curve pa-

rameters at each point, the segment connecting the two
end-points yields a more accurate estimate.

To estimate the velocity v’, features are tracked through
the image sequence yielding a discrete curve q; = (us, v;)
where ¢; in image 1 is observed at turntable angle 6;. Be-
cause images are densely sampled (every 1° of turntable
rotation), image motion is typically small (< 5 pixels).
Additionally, the images are sparsely populated with fea-
tures. The next location of the feature is predicted by
first smoothing the tracked feature curve with an infinite
impulse response filter and then extrapolating. A greedy
algorithm is used to match the features in the next image.
Before estimating image velocity, the curve is smoothed by
applying a non-causal filter.

4.1 Results

A preliminary Common Lisp implementation has been ap-
plied to a few image sequences, and here we consider an
unpainted duck decoy shown in fig. 6 with the results over-
laid. The decoy is a rather complicated surface that would
be very difficult if not impossible to accurately model with
a computer aided design system.

After calibration, 220 images were acquired as the
turntable was rotated with 1° increments. The scale space
method described previously was used to reliably locate
features as shown in fig. 3. The detected features were
then tracked through the image sequence. Fig. 4 shows
the edges and features found in twelve images at twenty
degree increments. The trajectory of the tracked bitangent
and inflection points are respectively shown in figs. 5.a and
5.b. 84 inflections and 29 bitangents were tracked through
the sequence for at least 10 images.

These tracked features are the input to the reconstruc-
tion algorithm. Figs. 5.c and 5.e show orthogonal views
of the reconstructed bitangent developables from overhead
and side views while figs. 5.d and 5.f show the recon-
structed parabolic lines from the same viewpoints. Six
of the bitangent developables have been dropped from
figs. 5.c and 5.e to reduce clutter. From calibration, the
transformation between the turntable and camera frames
is known for each image; this is used to reproject the re-
constructed points onto the images shown in fig. 6.

A few points concerning the reconstruction results are
in order. First, without a good deal more experimental
work, it is difficult to precisely determine the reconstruc-
tion accuracy. It is clear that bitangent developables are
more accurately estimated than parabolic lines. This is
probably due to the fact that the direction of bitangents
are more accurately measured. Additionally, the recon-
struction error appears to be on the order of +1cm which
for the experimental camera object distance of 170cm
yields an error of less than 1%. While this may seem small,
the size of the duck’s bill is about 2c¢m, and so this 1% er-
ror may still be significant. This accounts for the noisy
appearance of the reconstructed curves on the bill.
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Figure 4. The edges, inflections, and bitangents detected every 20° in a 220° image sequence.

5 Towards recognition

The reconstructed parabolic and limiting bitangent curves
are directly useful for pose estimation and consequently
object recognition. Many successful approaches for recog-
nition of polyhedral objects establish a correspondence of
image features (e.g. corner) to 3D model features (e.g.
vertices) which are verified using the so-called rigidity or
viewpoint consistency constraints [6, 12]. A direct point-
to-point correspondence based solely on feature type can-
not be easily made for curved objects since image features
are viewpoint dependent. However, a point-to-curve cor-
respondence can often be established. In [11], an approach
for pose estimation from a set of viewpoint dependent im-
age features was presented and can be applied here.

The essential observation is that given two points on the
surface, the intersection of their tangent planes uniquely
determines a viewing direction for which both points will
lie on the occluding contour under orthographic projec-
tion. For an image formed with this viewing direction, the
contour tangent at each point will be in the direction of

the intersection of the tangent plane with the image plane.
A pair of image points and their tangents define a triangle;
the angles between the legs are invariant under rotation,
translation, and scaling in the image plane. Thus, a corre-
spondence between two measured features and two surface
points can be verified by comparing these angles.

Now, for every pair of points on the discrete recon-
structed curves, the pair of invariant angles and the cor-
responding viewing are computed and stored in a table.
Online, a pair of features is extracted from another image,
and this table is indexed by the measured angles to find
the corresponding pair of 3D curve points and the viewing
direction; the rest of the pose parameters are then readily
calculated. While this approach has been implemented
for algebraic surfaces [11], the reconstructed curves are
already in discrete form. Thus, the reconstructed HOT
curves can be used directly in this table-based pose esti-
mation scheme. By considering a third feature, the table
can be enhanced for recognition.
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Figure 5. Reconstruction of parabolic and limiting bitangent curves on a mallard decoy: a,b: Image trajectories of

bitangents (a) and inflections (b).

c,e: Overhead and side views of the reconstructed bitangent developables; the line

segments indicate every fifth developable generator. d,f: Overhead and side views of the reconstructed parabolic curves.

6 Conclusions and Discussion

In this paper, an implemented approach was presented for
reconstructing two types of 3D HOT curves from a se-
quence of images, and these curves are useful for object
recognition. The reconstruction results for bitangents are
particularly encouraging in comparison to those of inflec-
They are probably more accurately reconstructed
because they are readily located in images and their com-
mon tangent is very accurately estimated from the point
locations. This also makes bitangents a good feature choice

tions.

for recognition.

More intriguing is the effect of the choice of camera mo-
tions on reconstruction accuracy. From the denominator
of (5) the reconstruction error for a fixed feature localiza-
tion uncertainty is related to the error of the inner product
of the normal to the measured tangent plane and the mea-
sured feature velocity. It will be minimized when v’ is
aligned with the curve normal for a given camera motion.
So not all camera motions yield the same accuracy, and

this observation can form the basis for planning camera



Figure 6. Reconstructed parabolic (a) and bitangent (b) curves are reprojected onto the duck image taken at 120°.

motions. Another related topic is determining a sequence
of camera motions that will completely map out all vis-
ible parabolic and bitangent developable curves. We are
also investigating the reconstruction of other HOT curves.
Note, for example, that a visual event called a swallow-
tail transition occurs between the images shown in fig. 4.e
and 4.f. The surface points projecting onto these singu-
lar points lie on flecnodal curves, one of the other HOT
curves.
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