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Abstract—Three-dimensional appearance models consisting of spatially varying reflectance functions defined on a known shape can be
used in analysis-by-synthesis approaches to a number of visual tasks. The construction of these models requires the measurement of
reflectance, and the problem of recovering spatially varying reflectance from images of known shape has drawn considerable interest. To
date, existing methods rely on either: 1) low-dimensional (e.g., parametric) reflectance models, or 2) large data sets involving thousands of
images (or more) per object. Appearance models based on the former have limited accuracy and generality since they require the
selection of a specific reflectance model a priori, and while approaches based on the latter may be suitable for certain applications, they are
generally too costly and cumbersome to be used for image analysis. We present an alternative approach that seeks to combine the
benefits of existing methods by enabling the estimation of a nonparametric spatially varying reflectance function from a small number of
images. We frame the problem as scattered-data interpolation in a mixed spatial and angular domain, and we present a theory
demonstrating that the angular accuracy of a recovered reflectance function can be increased in exchange for a decrease in its spatial
resolution. We also present a practical solution to this interpolation problem using a new representation of reflectance based on radial
basis functions. This representation is evaluated experimentally by testing its ability to predict appearance under novel view and lighting
conditions. Our results suggest that since reflectance typically varies slowly from point to point over much of an object’s surface, we can
often obtain a nonparametric reflectance function from a sparse set of images. In fact, in some cases, we can obtain reasonable results in
the limiting case of only a single input image.

Index Terms—Reflectance, BRDF, image synthesis, image-based rendering, radial basis functions.
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1 INTRODUCTION

THREE-DIMENSIONAL appearance models consisting of ex-
plicit shape models and spatially varying reflectance

functions defined on these shapes are effective tools for
analysis-by-synthesis approaches to recognition, tracking,
and other visual tasks. This approach to image analysis
provides the advantage of separating intrinsic object
properties (i.e., shape and material properties) from
extrinsic scene properties, such as pose, illumination, and
camera parameters.

Constructing an appearance model of a given object
requires two stages: recovery of both shape and reflectance.
Yet, while great strides have been made at recovering object
shape (laser-scanners, structured-light systems, multiview
stereo, photometric stereo, Helmholtz stereo, etc.), less
progress has been made at recovering reflectance properties.
Recovering and efficiently representing reflectance is difficult
because of its inherent high-dimensionality. At each surface
point, reflectance is described by a four-dimensional function
of the view and lighting directions termed the bidirectional
reflectance distribution function (BRDF) [1]. The BRDF
generally changes spatially over an object’s surface, and
recovering this spatially varying BRDF (or 6D SBRDF)
without further assumptions typically requires a set of images

large enough to densely sample high-frequency radiometric
events, such as sharp specular highlights, at each point on the
surface. This set consists of an exhaustive sampling of images
of the object from all viewpoints and lighting directions,
which can be tens of thousands of images or more.

For vision applications, recovering and representing
spatial reflectance is often made tractable by approximat-
ing it with an analytic BRDF model. This reduces spatial
reflectance from a 4D function at each point to either a
handful of parameters (see [2], [3], [4] for recent examples),
or in the Lambertian case, to a single parameter at each
point. The parametric approach is also common for image-
based rendering applications in computer graphics [5], [6],
[7]. From an acquisition stand-point, since they only
require a few parameters at each point, these methods
are able to provide reflectance estimates from a small
number of input images. They require the selection of a
specific parametric BRDF model a priori, however, which
limits their accuracy and generality. For example, the
Cook-Torrance model [8] represents some plastics and
metals quite well but is unable to capture retro-reflection
effects observed in other materials [9], [10].

Another approach—one that avoids the restrictions of
parametric reflectance models—is purely data-driven and
relies on densely sampling the BRDF at each point. This
approach is more common in graphics applications, in which
hundreds [11], thousands [12], or tens of thousands [13] of
images are used to capture the reflectance information for a
given object.1 While these data-driven appearance models are
useful for image-based rendering applications, they are too
cumbersometobeusedfor imageanalysis,andthehighcostof

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 8, AUGUST 2006 1

. T. Zickler is with the Division of Engineering and Applied Sciences,
Harvard University, 33 Oxford St., Cambridge, MA 02138.
E-mail: zickler@eecs.harvard.edu.

. R. Ramamoorthi, S. Enrique, and P.N. Belhumeur are with the Computer
Science Department, Columbia University, 500 W 120 St., New York, NY
10027. E-mail: {ravir, senrique, belhumeur}@cs.columbia.edu.

Manuscript received 22 June 2005; revised 22 Nov. 2005; accepted 5 Dec.
2005; published online 13 June 2006.
Recommended for acceptance by S. Seitz.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0326-0605.

1. These methods actually capture only a subset of the reflectance
information since even these large numbers of images are insufficient to
densely sample the complete 4D BRDF at each point.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



acquisition means that they cannot be used, for example, for
large-scale enrollment in face/object recognition databases.

In this paper, we present an alternative approach that
moves toward the acquisition of nonparametric spatial
reflectance from a small number of images. This approach
seeks to combine the benefits of both parametric methods (i.e.,
sparse images) and purely data-driven, nonparametric
methods (i.e., arbitrary reflectance functions). The central
idea is that SBRDF estimation can be framed as a scattered-
data interpolation problem, with images providing dense
2D slices of data embedded in the mixed spatial and angular
domain. This approach is very different from previous
nonparametric techniques (e.g., [11], [12], [13]) that inter-
polate reflectance only in the angular dimensions, estimating
a unique reflectance function at each point. Instead, we
simultaneously interpolate in both the spatial and angular
dimensions. This enables a controlled exchange between
spatial and angular information, effectively giving up some of
the spatial resolution in order to fill the holes between
sparsely observed view and illumination conditions. Since
reflectance (especially the specular component) typically
varies slowly from point to point over much of an object’s
surface, this means that we can often obtain good results from
a drastically reduced set of images.

We first present a theoretical analysis showing how the
angular accuracy of the SBRDF can be increased in exchange
for a reduction in its spatial resolution. We then provide a
practical solution to the SBRDF estimation problem by
introducing: 1) a new parameterization of the BRDF domain,
and 2) a nonparametric representation of reflectance based on
radial basis functions (RBFs). In addition to providing an
efficient solution to our SBRDF interpolation problem, this
representation has two benefits. First, the resulting appear-
ance model degrades gracefully (in the sense of providing
visually pleasing results) as the number of input images
decreases. It can even be applied in the limiting case of a single
input image. Second, it is relatively dimension-independent
and can therefore be adapted to represent homogeneous
BRDF data, making it useful for image-based BRDF acquisi-
tion systems [10], [14], [15].

2 MAIN IDEAS AND RELATED WORK

The proposed method for SBRDF estimation builds on three
principal observations.

Smooth Spatial Variation. Most existing methods recover
a unique BRDF at each point and thereby provide an SBRDF
with very high spatial resolution. Many parametric methods
have demonstrated, however, that the number of input
images can be reduced if one is willing to accept a decrease in
spatial resolution. This has been exploited, for example, by Yu
et al. [7], Georghiades [2], and Hara and Nishino [4], who
assume that specular BRDF parameters are constant across a
surface.2 (The morphable model introduced by Blanz and
Vetter [3] relies on this assumption as well.) Similarly, Sato
et al. [6] estimate the specular parameters at only a small set of
points, later interpolating these parameters across the sur-
face. Lensch et al. [16] present a novel technique in which
reflectance samples at clusters of surface points are used to
estimate a basis of (1-lobe) Lafortune models. The reflectance

at each point is then uniquely expressed as a linear
combination of these basis BRDFs.

Similar to these approaches, our method trades spatial
resolution for an increase in angular resolution. The
difference, however, is that we implement this exchange
using a nonparametric representation. We begin by assuming
that the SBRDF varies smoothly in the spatial dimensions, but
we also demonstrate how this can be relaxed to handle rapid
spatial variation in terms of a multiplicative texture. (In cases
where the shape of the BRDF itself changes rapidly, we
currently assume that discontinuities are given as input.)

Curved Surfaces. Techniques for image-based BRDF
measurement [10], [14], [15] exploit the fact that a single
image of a curved, homogeneous surface represents a very
dense sampling of a 2D slice of the 4D BRDF. In this paper, we
extend this idea to the spatially varying case, where an image
provides a 2D slice in the higher-dimensional SBRDF domain.
Our results demonstrate that, like the homogeneous case,
surface curvature (along with smooth spatial variation) can
be exploited to increase the angular resolution of the SBRDF.3

Angular Compressibility. While it is a multidimensional
function, a typical BRDF varies slowly over much of its
angular domain. This property has been exploited for
3D shape reconstruction [18], efficient BRDF acquisition
[15], and efficient image synthesis with complex BRDFs [19],
[20], [21], [22]. Here, we exploit compressibility by assuming
that the BRDF typically varies rapidly only in certain
dimensions, such as the half-angle.

The three ideas discussed in this section have been
developed in very different contexts. This paper combines
and expands these ideas in order to solve a novel problem:
estimating nonparametric SBRDFs from sparse images.
Section 3 discusses the fusion of these ideas in terms of
Fourier theory, which provides intuition for the trade-off
between spatial and angular resolution. In a more practical
sense, a computational method for recovering SBRDFs is
realized using the BRDF parameterization of Section 4 and an
interpolation approach that unifies the treatment of spatial
and angular dimensions (Sections 5, 6, and 7). An abridged
version of the practical aspects of this paper (Sections 4, 5, 6,
and 7) appears in an earlier conference paper [23], where it is
presented in the context of computer graphics.

2.1 Assumptions

We exploit scene geometry to reduce the number of input
images required to accurately represent appearance. Thus,
unlike pure light field techniques [24], [25], [26], the method
requires a set of images of an object with known geometry,
known viewpoint, and point-source or directional illumina-
tion. Many suitable acquisition systems have been pre-
sented (e.g., [6], [27], [12], [13]).

In addition, global effects such as subsurface scattering
and interreflection are not explicitly considered in our
formulation. For directional illumination and orthographic
views, however, some of these effects will be absorbed into
our representation and can be reproduced when rendered
under the same conditions. (See Section 8.) In this case, our
use of the term SBRDF is synonymous with the nonlocal
reflectance field defined by Debevec et al. [12].
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2. When valid, this assumption also enables the recovery of additional
information, such as shape and/or illumination [2], [4].

3. For near-planar surfaces where curvature is not available, more
angular reflectance information can be obtained using near-field illumina-
tion and perspective views [17].



Finally, in this paper, we restrict our attention to isotropic
BRDFs. While the ideas of exploiting spatial coherence and
using RBFs to interpolate scattered reflectance samples can
be applied to the anisotropic case, this would require a
parameterization which is different from that presented in
Section 4 and is left for future work.

2.2 Notation and Terminology

The SBRDF is a function of six dimensions and is written
fð~xx;~��Þ, where~xx ¼ ðx; yÞ � IR2 is the pair of spatial coordinates
that parameterize the surface geometry (a surface point is
written ~ssðx; yÞ), and ~�� 2 �� � are the angular coordinates
that parameterize the double-hemisphere of view/illumina-
tion directions in a local coordinate frame defined on the
tangent plane at a surface point (i.e., the BRDF domain).
A common parameterization of the BRDF domain is ~�� ¼
ð�i; �i; �o; �oÞ, which represent the spherical coordinates of the
light and view directions in the local frame (see Fig. 1a). When
the BRDF is isotropic, the angular variation reduces to a
function of three dimensions, commonly parameterized by
ð�i; �o; �o � �iÞ. As mentioned above, we restrict ourselves to
this isotropic case in this paper and consider the SBRDF to be a
function defined on a 5D domain. In the special case when the
SBRDF is a constant function of the spatial dimensions (i.e.,
fð~xx;~��Þ ¼ fð~��Þ), we say that the surface is homogeneous and is
described by a 4D (or isotropic 3D) function. In contrast, a
surface with significant spatial variation is said to have
significant texture. A Lambertian surface is one whose SBRDF is
a constant function of the angular dimensions (i.e.,
fð~xx;~��Þ ¼ fð~xxÞ).

The BRDF domain can be parameterized in many ways,
and one good choice is Rusinkiewicz’s halfway/difference
parameterization [28], shown in Fig. 1b. Using this para-
meterization in the isotropic case, the BRDF domain is
~�� ¼ ð�h; �d; �dÞ � ½0; �2Þ � ½0; �Þ � ½0; �2Þ. (�d is restricted to
½0; �Þ since �d 7�!�d þ � by reciprocity.) For glossy surfaces,
specular peaks occur at small half-angles (i.e., �h � 0), but
variation with respect to the difference angle (�d) is governed
primarily by Fresnel reflection and tends to be limited for
small and moderate values of �d [29]. Since these common
BRDF features are roughly aligned with the coordinate axes,
the halfway/difference parameterization enables tabulated
BRDFs to be significantly compressed [28].

3 THEORETICAL MOTIVATION: EXCHANGING

SPATIAL AND ANGULAR RESOLUTION

A small set of images provides only a sparse sampling of
the SBRDF. This section shows that there is a trade-off

between spatial and angular resolution and that the high
spatial resolution of images can be used to increase the
angular resolution of a recovered SBRDF. This trade-off is
described in the frequency domain, using analysis that is
conceptually similar to studies of light field sampling and
light transport [30], [31]. While it is difficult to apply these
signal-processing ideas to our problem directly in the
frequency domain (see Section 3.4), the intuition they
provide motivates the practical algorithms described in
subsequent sections.

For simplicity, in this section we restrict ourselves to the
two-dimensional case (referred to as flatland) in which
surfaces reduce to plane curves, and images are one-
dimensional. Using the 2D analog of the isotropic halfway/
difference parameterization, the SBRDF is written fðx; �h; �dÞ,
with �h; �d 2 ½� �

2 ;
�
2Þ referred to as the half-angle and

difference-angle, respectively. Motivated by the observations
of Section 2.2, we further simplify analysis by assuming that
the SBRDF is a constant function of �d and varies only with the
half-angle.4 In this case, the BRDF is a function of one angular
dimension and one spatial dimension and is written fðx; �hÞ,
where

�h ¼
�i
2
þ �o

2
;

with �i and �o denoting the local lighting and view
directions (i.e., relative to the surface normal at each point).
We emphasize that this assumption is made for purely
illustrative purposes and is not required for the practical
methods developed later.

3.1 Planar Surfaces

We begin by considering a planar surface (a line in flatland),
with distant light sources and an orthographic viewer. As
shown in Fig. 2a, the surface is observed from a fixed view
with directional light sources separated by 4�. Each image
is acquired with illumination from a single source, and
since the geometry of the surface and the view and
illumination directions are known, each pixel in these
images provides a direct sample of the unknown SBRDF.

Fig. 3a shows the resulting sampling pattern in the two-
dimensional SBRDF domain. Since the SBRDF is parameter-
ized by the half-angle, the separation between samples in the
angular dimension (along �h) is4�=2. In addition, since each
image provides a very dense (almost continuous) sampling of
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Fig. 1. (a) Input/output parameterization of the BRDF domain defined in
a local coordinate system defined by the surface normal and tangent
vector. (b) Halfway/difference parameterization of Rusinkiewicz. In the
isotropic case, the BRDF domain is parameterized by ð�h; �d; �dÞ [28].

Fig. 2. Acquisition geometry for (a) planar and (b) curved surfaces. For
curved surfaces, emitted radiance is a function of �, which parame-
terizes the spatial location, and half-angle �h, which depends on the
local lighting and view directions �i and �o.

4. In practice, this is often a good approximation for specular surfaces
when �o; �i < 60� [29].



the spatial dimension, the separation between samples in that

dimension is generally very small, so that4��4x.
To investigate this sampling pattern in the frequency

domain, we define the 2D Fourier transform in the

conventional way5 (and with I ¼
ffiffiffiffiffiffiffi
�1
p

as usual),

F ð�u;�vÞ ¼
Z Z

fðu; vÞe�2�I�uue�2�I�vv du dv;

where we are interested in the spatially varying BRDF

fðx; �hÞ with Fourier transform F ð�x;��Þ. Sampling in the

spatial domain is represented by multiplication by the

comb function

fsampledðx; �hÞ ¼ fðx; �hÞ
X
n1;n2

�ðx� n14xÞ�ð�h � n24�=2Þ;

where n1 and n2 are integers. The Fourier transform of this

sampled signal is obtained by convolution with a comb

function, which yields

Fsampledð�x;��Þ ¼
X
n1;n2

F �x �
2�n1

4x ;�� �
4�n2

4�

� �
:

In the frequency domain, the sampling process produces

shifted replicas of the SBRDF spectrum. These replicas are

at intervals of 2�=4x spatially and 4�=4� in the angular

dimension. This is shown in Fig. 3b, assuming a sufficiently

band-limited SBRDF.
In order to synthesize novel images of the surface (i.e., to

predict its appearance), the SBRDF must be reconstructed

from its samples. Accurate reconstruction that avoids aliasing

during image synthesis requires a sampling rate satisfying

the Nyquist conditions. Letting �max
x and �max

� denote the

spatial and angular bandwidths6 of the SBRDF, we require

�max
x <

�

4x �max
� <

2�

��
: ð1Þ

These sampling conditions are quite intuitive. The maximum
spatial frequency of the surface cannot exceed the pixel
resolution of the camera, and the maximum angular
frequency (which is a measure of the surface “shininess”)
cannot exceed the sampling resolution of the light sources.
Furthermore, the optimal reconstruction filter in the Fourier
domain is the elongated box shown in red in Fig. 3b, which
simply band-limits differently in the spatial and angular
dimensions according to the relations above. Intuitively,
when the SBRDF is reconstructed, each pixel is treated
separately, and the “sharpness” of the recovered specular
highlights is bounded by the number of light source locations
as noted in previous nonparametric acquisition methods [11],
[12], [13]. This result is the foundation for the analysis of
curved surfaces, discussed next.

3.2 Curved Surfaces

Acquisition for curved surfaces (plane curves in flatland) is
shown in Fig. 2b. Assuming constant curvature, we can
parameterize the spatial dimensionxby angle�, since there is
a linear relationship between the two. The goal is to
reconstruct the spatially varying BRDF fð�; �hÞ from the
samples obtained from a set of images similar to those in the
previous section.

To derive an expression for �h in terms of the global
positions of the camera and light source (�c and �l), we use
the convention that � is positive in the direction shown in
Fig. 2b. Then,

�h ¼
�l � �þ �c � �

2
¼ �l þ �c

2
� � ¼ h� �;

where h ¼ ð�l þ �cÞ=2 can be thought of as the “global half-
angle.” Thus, we can reparameterize7 the spatially varying
BRDF:

fð�; �hÞ ¼ fð�; h� �Þ:

Fig. 4a depicts the resulting sampling pattern in the SBRDF
domain. Assuming uniformly spaced samples on the surface
(but see Section 3.4), the spacing between samples is denoted
4� and is analogous to 4x in the planar case. The spacing
between successive global half-angles (4h) is simply 4�=2,
just as in the planar case, and as before, 4h�4�. The
sampling pattern is now rotated, however, as shown in Fig. 4a.
In this figure, each image corresponds to a line with negative
slope and a y-intercept at h. Along each of these image lines,
the net sample spacing is

ffiffiffi
2
p
4�. The perpendicular distance

between lines is4h=
ffiffiffi
2
p
¼ 4�=ð2

ffiffiffi
2
p
Þ. As we now show, this

shearing pattern leads to interesting consequences in the
frequency domain.

In the SBRDF domain, the continuous signal is multi-
plied by a comb function with the pattern shown in Fig. 4a.
The effect in the frequency domain is described by
convolution with a similar comb function, but with different
periods along the two axes. To determine these periods, we
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5. In general, one would need to use a Fourier series for periodic angular
values and a continuous infinite domain for the spatial component.
However, the core analysis is not affected by these issues and, in what
follows, we omit the limits of integration, allowing whichever interpretation
is more convenient for the reader.

6. We assume rectangular bandlimits for simplicity. There does not
appear to be a physical basis for assuming, for example, an elliptical
spectrum, nor would it significantly affect the results.

7. It is important to note that while the half-angle parameterization is
helpful in representing real BRDFs, it is not critical to enable reflectance
sharing. For example, if the SBRDF were a function of fð�; �iÞ instead of
fð�; �hÞ, we would simply write �i ¼ �l � �, with h replaced by �l in (2),
leading to essentially the same form.

Fig. 3. (a) Spatial/angular sampling pattern for SBRDF acquisition using
a planar surface. Sample spacing is high along the spatial dimension
(4x) but lower along the angular dimension (4�=2). (b) Fourier
spectrum of the sampled SBRDF. Green rectangles correspond to the
original spectrum, which is replicated along spatial and angular
frequencies. The red box in the middle corresponds to the ideal
reconstruction filter.



note that the sampling pattern in Fig. 4a is obtained by
rotating the planar sampling pattern (Fig. 3a) by þ45�. The
linear transformation theorem [32] then tells us that the
Fourier transform of the planar comb function will also be
rotated by þ45�, and that the sampling rates will be scaled
appropriately. More formally, the comb function in the
frequency domain is (with m1 and m2 integers),

COMBðu; vÞ ¼ 4
ffiffiffi
2
p

� m1

4�
uffiffiffi
2
p þ vffiffiffi

2
p

� �

þ
ffiffiffi
2
p

� m2

4� � uffiffiffi
2
p þ vffiffiffi

2
p

� �
;

ð2Þ

and the Fourier transform of the sampled curved-surface
SBRDF is

Fsampledð��;��Þ ¼X
m1;m2

F �� �
4�m1

4� þ
�m2

4� ;�� �
4�m1

4� �
�m2

4�

� �
:
ð3Þ

To provide some intuition, consider the set of replicas
with m2 ¼ 0. In this case, the replicas indexed by m1 lie on a
45� line with a sample spacing of 4

ffiffiffi
2
p

�=4� as calculated

earlier. Replicas with m2 6¼ 0 lie on parallel lines, and since
the spatial sampling rate is typically large relative to the
angular sampling rate, these lines are well separated. This
pattern of replicas—analogous to Fig. 3b—is shown in
Fig. 5a. Note from this figure that the conditions for alias-
free synthesis remain similar to the planar case, as does the
optimal reconstruction filter. In particular, given sampling
rates 4� and 4� the conditions for alias-free image
synthesis are

�max
� <

�

24� �max
� <

2�

4� : ð4Þ

3.3 Reflectance Sharing

As in the planar case, the bounds in (4) suggest that we can
accurately recover an SBRDF from a small number of images
(i.e., a large 4�) provided that there is only low-frequency
variation in the angular dimension. A synthetic example of an
object that satisfies this criteria is shown in the inset in Fig. 5a,
where even though there is high-frequency spatial variation
(significant texture), the reflectance at each point is quite
diffuse (i.e., it is nearly Lambertian).

What is very different from the planar case is that in
addition to diffuse surfaces like that shown in Fig. 5a, we can
also recover reflectance like that shown in the inset of Fig. 5b.
This surface is characterized by low-frequency spatial
variation (little texture) and high-frequency angular variation
(sharp highlights). The frequency-domain effects of sampling
this type of SBRDF are depicted in the graph in Fig. 5b. The
spectrum of the SBRDF is a rectangle that is elongated in the
angular frequency dimension, and the optimal reconstruc-
tion filter (shown in red) maintains this shape. The limits on
the SBRDF spectrum for alias-free synthesis are:

�max
� <

2�

4� �max
� <

�

24� : ð5Þ

Here, the maximum spatial bandwidth (i.e., in the
�-dimension) is constrained by the separation of light source
directions4�, while the angular bandwidth is constrained by
the spatial sampling 4�. This is in direct opposition to the
limits of (4), and it means, for example, that we can recover
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Fig. 4. (a) Sampling pattern in the SBRDF domain for acquisition using a
curved surface. Unlike the planar case of Fig. 3a, the sampling pattern is
oriented at 45� to the axes, as per Section 3.2. Spacing in the two
directions is

ffiffiffi
2
p
4� and 4�=ð2

ffiffiffi
2
p
Þ with 4��4�. (b) The comb

function (in the frequency domain) is described by (2). Sampling the
SBRDF according to (a) corresponds to convolution in the frequency
domain by this comb function, which has the same rotated form.

Fig. 5. Fourier transforms of sampled SBRDFs obtained from observations of curved surfaces. Green rectangles correspond to the original
frequency spectra for predominantly (a) diffuse and (b) specular reflectance, and central red rectangles are the ideal reconstruction filters. Insets
contain examples of diffuse and specular surfaces under directional illumination.



very sharp specular highlights from a single image (with
dense spatial sampling) like that shown in Fig. 5b. The
optimal reconstruction filter is a low-pass filter with a small
cutoff frequency in the spatial dimension, which in the
SBRDF domain, corresponds to an averaging over a large
spatial extent. We refer to this averaging process as reflectance
sharing, since it enables the use of the high spatial resolution
available in images to increase the angular resolution of the
recovered reflectance function.

The limits in (5) also indicate that the recovered spatial
frequencies are constrained by the separation of light
sources. Given only a single image, for example, the spatial
bandwidth is limited to zero (since 4�!1), and we can
only recover accurate reflectance for homogeneous surfaces
without texture. Information about spatial variation or
inhomogeneity in the SBRDF can only be obtained with
additional images that provide observations of specular
highlights in multiple regions of the surface.

This spatial/angular trade-off can be further understood
by noting that the product of the bounds on bandwidth in
the spatial and angular dimensions is always given by

�max
� �max

� <
�2

4�4� : ð6Þ

This expression tells us that we can recover high SBRDF
frequencies in one of the spatial or angular dimensions from a
sparse set of images, but not both simultaneously. Conven-
tional SBRDF acquisition methods [11], [12], [13] present only
one possible approach. They treat each spatial sample
separately and provide very high spatial resolution with
limited angular resolution. By contrast, we seek to share
reflectance spatially, estimating an SBRDF with high angular
frequency at the cost of a decrease in spatial resolution.

It is also interesting to note that if the surface curvature
k is explicitly represented through the relation � ¼ kx, the
bandwidth limits are given by �max

� < 2�k=4� and �max
� <

�=k4� (and (6) still holds). Thus, as long as there is some
curvature (k > 0), we can recover very high angular
frequencies, provided the spatial frequencies are strongly
bandlimited.

Finally, we emphasize that glossy reflectance like that in
Fig. 5b generally cannot be recovered from sparse images in
the planar case.8 Indeed, given the sampling pattern of
Fig. 3a, the repeated spectra for a glossy surface would
overlap. It is the surface curvature that causes the rotated
patterns in Fig. 3, which in turn allows the recovery of high-
frequency angular reflectance from sparse images.

3.4 Images and Irregular Sampling

The analysis of this section relies on the assumption that
samples in the spatial dimension are uniformly spaced on
the surface. For image-based data, however, samples are
uniformly spaced on the image-plane, and for curved objects
this leads to a very irregular sampling of the object’s
surface. Thus, while Fourier analysis provides insight and
motivation for the reflectance sharing approach, it is
difficult to implement a practical frequency-based method
using these ideas. Instead, the remainder of this paper

develops a scattered data interpolation method using radial
basis functions, with weights to trade off the extent of
sharing in the spatial and angular dimensions. In the
context of the preceding analysis, this is analogous to
building a reconstruction filter by selecting appropriate cut-
off frequencies in the spatial and angular dimensions.

4 SBRDF PARAMETERIZATION

At the core of our approach is the interpolation of scattered
data in multiple dimensions, the success of which depends
on how the SBRDF is parameterized. The previous section
used the special case of plane curves to describe how the
assumption of angular compressibility and the halfway/
difference parameterization are important for correctly
framing the problem. Inspired by this theory, this section
considers the three-dimensional case and introduces a new
parameterization for the angular dimensions of an SBRDF.
Based on this parameterization, our interpolation technique
is discussed in Sections 6 and 7.

The halfway/difference BRDF parameterization of Rusin-
kiewicz [28] was described in Section 2.2. The existence of
singularities at �h ¼ 0 and �d ¼ 0 and the required periodicity
(�d 7�!�d þ �) make this parameterization unsuitable for
most interpolation techniques, and in order to address this,
we define a mapping ð�h; �d; �dÞ 7�!ðu; v; wÞ, as

ðu; v; wÞ ¼ sin �h cos 2�d; sin �h sin 2�d;
2�d
�

� �
; ð7Þ

which is shown in Fig. 6. This mapping defines a new
parameterization for the angular dimensions of an SBRDF
(i.e., the BRDF domain.) It eliminates the singularity at �h ¼
0 and ensures that the BRDF fðu; v; wÞ satisfies reciprocity.
In addition, the mapping is such that the remaining
singularity occurs at �d ¼ 0, where the light and view
directions are equivalent. This is desirable because this
configuration is difficult to create in practice, which makes
it unlikely to occur during acquisition. During synthesis,
however, it must be handled with care.

4.1 Considerations for Image-Based Acquisition

As mentioned previously, the halfway/difference parame-
terization increases compression rates since common
features such as specular and retro-reflective peaks are
aligned with the coordinate axes [28]. The modified
parameterization of (7) maintains this property, since
specular events cluster along the w-axis, and retro-reflective
peaks occur in the plane w ¼ 0.

These parameterizations are useful for image-based data
for an additional reason: They separate the sparsely and
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8. Again, using perspective cameras and near-field illumination, angular
information can be obtained in the planar case [17].

Fig. 6. The mapping in (7) creates a BRDF parameterization suitable for
interpolation. The BRDF fðu; v; wÞ is guaranteed to satisfy reciprocity,
the parameterization is defined for all values of �h, BRDF samples from
a single image lie on a plane of constant w, and specular events are
clustered near the w-axis, enabling significant compression.



densely sampled dimensions of the BRDF. (Marschner’s
parameterization [33] also shares this property.) To see this,
note that for orthographic projection and distant light-
ing—or more generally, when scene relief is relatively
small—a single image of a curved surface provides BRDF
samples lying in a plane of constant �d, since this angle is
independent of the surface normal. Indeed, for the flatland
case of Section 3.2, the difference angle is

�d ¼
�c � �� �l þ �

2
¼ �c � �l

2
; ð8Þ

which depends on the global camera and light positions but

not the spatial location �.
While each (orthographic) image provides only one

sample of the �d dimension, it represents a nearly continuous
sampling of �h and �d. As a result, a set of images provides
dense sampling of ð�h; �dÞ but only as many samples of �d as
there are images.9 Conveniently, this irregular sampling
obtained from image-based data corresponds well with the
behavior of general BRDFs, which vary slowly in the sparsely
sampled �d-dimension, especially when �d is small [29]. At the
same time, by imaging curved surfaces, we ensure that the
sampling rate of the half-angle �h is high enough to accurately
recover the high-frequency variation (e.g., due to specular
highlights) that is generally observed in that dimension.

5 SCATTERED DATA INTERPOLATION

Recall that our goal is to estimate a continuous SBRDF
fð~xx;~��Þ from a set of samples fi 2 IR5 drawn from images of
a surface with known geometry. Our task is complicated by
the fact that, as discussed in Section 3.4, the input samples
are very nonuniformly distributed.

There are many methods for interpolating scattered data
in this relatively high-dimensional space, but for our
problem, interpolation using radial basis functions provides
the most attractive choice. Given a set of samples, an RBF
interpolant is computed by solving a linear system of
equations, and the existence and uniqueness is guaranteed
with few restrictions on the sample points. Thus, unlike
homogeneous BRDF representations such as spherical
harmonics, Zernike polynomials, wavelets, and the basis
of Matusik et al. [15], an RBF representation does not
require a local preprocessing step to resample the input
data at regular intervals.

Additionally, for a fixed number of samples, the required
computation and the resulting size of an RBF representation
grow relatively slowly as the dimension increases. This is in
contrast to methods such as piecewise polynomial splines
(e.g., [34]) and local methods like polynomial regression (e.g.,
[14]) and the push/pull algorithm of Gortler et al. [24]. These
alternative methods require either a triangulation of the
domain or a tabulation of function values, both of which
become computationally prohibitive in high dimensions.
(Jaroszkiewicz and McCool [20]handle this by approximating
the high-dimensional SBRDF by a product of 2D functions,
each of which is triangulated independently.)

5.1 Radial Basis Functions

To briefly review RBF interpolation (see, e.g., [35], [36]),
consider a general function gð~xxÞ; ~xx 2 IRd from which we have
N samples fgig at sample points f~xxig. This function is
approximated by a sum of a low-order polynomial and a set of
scaled, radially symmetric basis functions centered at the
sample points:

gð~xxÞ � ~ggð~xxÞ ¼ pð~xxÞ þ
XN
i¼1

�i ðk~xx�~xxikÞ; ð9Þ

where pð~xxÞ is a polynomial of order n or less,  : IRþ !
IR is a continuous function, and k � k is the Euclidean
norm. The sample points ~xxi are referred to as centers and
the RBF interpolant ~gg satisfies the interpolation condi-
tions ~ggð~xxiÞ ¼ gð~xxiÞ.

Given a choice of n, an RBF  , and a basis for the
polynomials of order n or less, the coefficients of the
interpolant are given by the solution of the linear system

� P
P> 0

� �
~��
~cc

� �
¼ ~gg

0

� �
; ð10Þ

where �ij ¼  ðk~xxi �~xxjkÞ, ~��i ¼ �i,~ggi ¼ gi, Pij ¼ pjð~xxiÞ, where
fpjg are the polynomial basis functions, and ~cci ¼ ci are the
coefficients in this basis of the polynomial term in ~gg. This
system is invertible (and the RBF interpolant is uniquely
determined) in arbitrary dimensions for many choices of  ,
with only mild conditions on n and the locations of the data
points [37], [38].

In practical cases, the samples fgig are affected by noise,
and it is desirable to allow the interpolant to deviate from
the data points, balancing the smoothness of the interpolant
with its fidelity to the data. This is accomplished by
replacing � in (10) with �� �NI, where I is the identity
matrix and � is a stiffness parameter. Further details are
provided by Wahba [39].

In many cases, we can benefit from using radially asym-
metricbasisfunctionswhicharestretchedincertaindirections,
and here we use them to: 1) control the trade-off between
spatial and angular resolution, and 2) manage the irregularity
in our sampling pattern. (Recall that the ðu; vÞdimensions are
sampled almost continuously while we have only as many
samples ofwas we have images.) Following Dinh et al. [40], an
asymmetric radial function is created by scaling the Euclidean
distance in (9) so that the basis functions become

 ðkMð~xx�~xxiÞkÞ; ð11Þ

where M 2 IRd�d. In our case, we choose M to be a diagonal
matrix whose entries reflect the expected relative rates of
change in the spatial and angular dimensions, and the
relative sampling rates of the three angular dimensions.
(See Sections 6 and 7.)

When the number of samples is large (N > 10; 000),
solving (10) requires care and can be difficult—or impossi-
ble—using direct methods. This limitation has been
addressed quite recently, and iterative fitting methods [41]
and fast multipole methods (FMMs) for efficient evaluation
[42] exist for many choices of  in many dimensions. In
some cases, solutions for systems with over half a million
centers have been reported [43]. The next sections include
investigations of the number of RBF centers required to
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purposes; it is not required by the method.



accurately represent image-based reflectance data, and we
find this number to be sufficiently small to allow the use of
direct methods.

6 HOMOGENEOUS SURFACES

This section applies RBF interpolation to homogeneous
surfaces, where we seek to estimate a global BRDF that is
not spatially varying. The derived representation may be
useful for interpolating image-based BRDF data [10], [14],
[15]. The theoretical analysis in Section 3 shows that the
variation with respect to the half-angle can be estimated from
a single image of a homogeneous, curved surface. While more
images are needed to acquire the full BRDF, this section
shows that a sparse set often suffices.

As discussed in Section 4, for homogeneous BRDF data,

reflectance is a function of three dimensions, ðu; v; wÞ. In IR3, a

good choice for  is the linear (or biharmonic) RBF,  ðrÞ ¼ r,
with n ¼ 1, since in this case, the interpolant from (10) exists

for any noncoplanar data, is unique, minimizes a general-

ization of the thin-plate energy, and is therefore the smoothest

in some sense [37], [43]. The BRDF is expressed as

~ffð~��Þ ¼ c1 þ c2uþ c3vþ c4wþ
XN
i¼1

�ik~��� ~��ik; ð12Þ

where ~��i ¼ ðui; vi; wiÞ represents a BRDF sample point
obtained from the input images, and ~�� and ~cc are found by
solving (10). As discussed in the previous section, we can
benefit from the use of radially asymmetric basis functions,
and for homogeneous BRDF data, this is accomplished using
M ¼ diagð1; 1;mwÞ. For mw < 1, the basis functions are
elongated in the w dimension, which is appropriate since
our sampling rate is much lower in that dimension. The
appropriate value of this parameter depends on the angular
density of the input images, and empirically we find that
typical values for mw are between 0.1 and 0.5.

As a practical consideration, since each pixel represents a
sample point~��i, even with modest image resolution, using all
available samples as RBF centers is computationally prohi-
bitive. Much of this data is redundant, however, and an
accurate BRDF representation can be achieved using only a
small fraction of these centers. A sufficient subset of centers
could be chosen using knowledge of typical reflectance
phenomena. (To represent sharp specular peaks, for example,
RBF centers are generally required near �h ¼ 0.) Alterna-
tively, Carr et al. [43] present an effective greedy algorithm for
choosing this subset without assuming prior knowledge, and
a slightly modified version of the same algorithm is applied
here. The procedure begins by randomly selecting a small
subset of the sample points~��i and fitting an RBF interpolant to
these. Next, this interpolant is evaluated at all sample points
and used to compute the radiance residuals, "i ¼ ðfi � ~ff
ð~��iÞÞ cos �i, where �i is the angle between the surface normal at
the sample point and the illumination direction. Finally,
points where "i is large are appended as additional RBF
centers, and the process is repeated until the desired fitting
accuracy is achieved.

It should be noted that an algorithmic choice of center
locations could increase the efficiency of the resulting
representation, since center locations would not necessarily
need to be stored for each material. However, this would

require assumptions about the function being approxi-
mated, and here, we choose to emphasize generality over
efficiency by using the greedy algorithm.

6.1 Evaluation

To evaluate the BRDF representation in (12), we perform
comparisons to both parametric BRDF models and to a
nonlinear basis (the isotropic Lafortune model [44]). The
models are fit to synthetic images of a sphere, and their
accuracy is measured by their ability to predict the
appearance of the sphere under novel conditions. (Other
representations such as wavelets and the Matusik bases are
excluded from this comparison because they require dense,
uniform samples.)

The input images simulate data from image-based BRDF
measurement systems like those in [10], [14], [15]. They are
orthographic, directional-illumination images with a resolu-
tion of 100� 100, and are generated such that �d is uniformly
sampled in ½0; �2	. The accuracy of the recovered models is
measured by the relative RMS radiance error over 21 im-
ages—also uniformly spaced in �d—that are not used as
input. For these simulations, we use both specular and diffuse
reflectance, one drawn from measured data (the metallic-blue
BRDF, courtesy of Matusik et al. [15]), and the other generated
using the physics-based Oren-Nayar model [9].

Fig. 7 shows the accuracy of increasingly complex RBF and
Lafortune representations fit to 10 input images. The
complexity of the RBF representation is measured by the
number of centers selected by the greedy algorithm, and that
of the Lafortune model is measured by the number of
generalized cosine lobes. An unusually large number of lobes
are shown (two or three lobes is typical) so that the resulting
Lafortune and RBF representations have comparable degrees
of freedom. It is important to note, however, that the size of
each representation is different for equivalent complexities;
an N-lobe isotropic Lafortune model requires 3N þ 1 para-
meters, while an N-center RBF interpolant requires 4N þ 4.

Since the basis functions of the Lafortune model are

designed for representing BRDFs and are therefore em-

bedded with knowledge of general reflectance behavior, they

provide a reasonably good fit with a small number of lobes.

For example, a 6-lobe Lafortune model (19 parameters) yields
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Fig. 7. Accuracy of the RBF representation as the number of centers is
increased using a greedy algorithm. The input is 10 images of a sphere
synthesized using the metallic-blue BRDF measured by Matusik et al.
[15]. This is compared to the isotropic Lafortune representation [44] with
an increasing number of lobes. Less than 1,000 centers are sufficient to
represent the available reflectance information using RBFs, whereas the
limited flexibility of the Lafortune basis and the existence of local minima
in the nonlinear fitting process limit the accuracy of the Lafortune
representation. (See text for details.)



the same RMS error as a 300-center RBF model (1,204 para-

meters). In addition to being compact, the Lafortune model

has the advantage of being more suitable for direct rendering

[5]. But, the accuracy of this representation is fundamentally

limited; the lack of flexibility and the existence of local

minima in the required nonlinear fitting process prevent the

Lafortune model from accurately representing the reflectance

information available in the input images.
In contrast, RBFs provide a general linear basis and with a

sufficient number of centers, they can represent any
“smooth” function with arbitrary accuracy (e.g., [36]). Here,
the RBF representation converges with less than 1,000 centers,
suggesting that only a small fraction of the available centers
are needed to summarize the reflectance information in the
10 input images.

Similar conclusions are drawn from a second experiment
in which we investigate the accuracy of these and other
representations with a fixed level of complexity and an
increasing number of input images. Results are shown in
Figs. 8 and 9 for predominantly specular and diffuse
reflectance. (Here, six lobes are used in the Lafortune
representation since the results do not change significantly
with additional lobes.) Since RMS error is often not an
accurate perceptual metric, these figures also include
synthetic spheres rendered with the recovered models. This
experiment demonstrates the flexibility of the RBF represen-
tation, which captures both the Fresnel effects in Fig. 8 and the
retro-reflection in Fig. 9. Parametric models do not typically
afford this flexibility—while it may be possible to find a
parametric model that fits a specific BRDF quite well, it is very
difficult to find a model that accurately fits general BRDFs.

7 INHOMOGENEOUS SURFACES

The previous section suggests that RBFs can provide a
useful representation for homogeneous BRDFs. In this
section, we show that essentially the same representation

can be used to handle spatially varying reflectance as well.
It enables the exchange between spatial and angular
resolution (as described in Section 3), and drastically
reduces the number of required input images. We begin
by assuming that the 5D SBRDF varies slowly in the spatial
dimensions and, in the next section, we show how this can
be generalized to handle rapid spatial variation in terms of
a multiplicative albedo or texture.

In the homogeneous case, the BRDF is a function of three
dimensions, and the linear RBF  ðrÞ ¼ r yields a unique
interpolant that minimizes a generalization of the thin-plate
energy. Although optimality cannot be proven, this RBF has
shown to be useful in higher dimensions as well since it
provides a unique interpolant in any dimension for any n
[35]. In the spatially varying case, the SBRDF is a function
of five dimensions, and we let~qq ¼ ðx; y; u; v; wÞ be a point in
its domain. Using the linear RBF with n ¼ 1, the SBRDF is
given by

~ffð~qqÞ ¼ pð~qqÞ þ
XN
i¼1

�ik~qq �~qqik; ð13Þ

where pð~qqÞ ¼ c1 þ c2xþ c3yþ c4uþ c5vþ c6w.
We can use any parameterization of the surface ~ss, and

there has been significant recent work on determining
good parameterizations for general surfaces (e.g., [46],
[47]). The ideal surface parameterization is one that
preserves distance, meaning that k~xx1 �~xx2k is equivalent
to the geodesic distance between ~ssð~xx1Þ and ~ssð~xx2Þ. For
simplicity, here we treat the surface as the graph of a
function, with ~ssðx; yÞ ¼ ðx; y; sðx; yÞÞ; ðx; yÞ � ½0; 1	 � ½0; 1	.

The procedure for recovering the parameters in (13) is

almost exactly the same as in the homogeneous case. The

coefficients of ~ff are found by solving (10) using a subset of the

input SBRDF samples and this subset is chosen using a greedy

algorithm. Radially asymmetric basis functions are realized

using M ¼ diagðmxy;mxy; 1; 1;mwÞ, where mxy controls the
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Fig. 8. Top: Error in the estimated BRDF for an increasing number of
images of a metallic-blue sphere. As the number of images increases,
the RBF representation (with 1,000 centers) approaches the true BRDF,
whereas the isotropic Ward model [45] and the Lafortune representation
are too restrictive to provide an accurate fit. Bottom: Synthesized
images using the three BRDF representations estimated from 12 input
images, where the angle between the source and view directions is 140�.

Fig. 9. Top: Error in the estimated BRDF for an increasing number of
input images of a diffuse Oren-Nayar sphere. Again, the 1,000-center
RBF representation approaches the true BRDF, whereas the Lafortune
and Lambertian BRDF models are too restrictive to accurately represent
the data. Bottom: Synthesized images comparing the three BRDF
representations estimated from 12 input images, where the angle
between the source and view directions is 10�.



exchange between spatial and angular reflectance informa-

tion. When mxy 
 1, the basis functions are elongated in the

spatial dimensions, and the recovered reflectance function

approaches a single BRDF (i.e., a homogeneous representa-

tion) with rapid angular variation. Whenmxy � 1, we recover

a near-Lambertian representation in which the BRDF at each

point approaches a constant function of~��. Appropriate values

ofmxy depend on the choice of surface parameterization and

we found typical values to be between 0.2 and 0.4 for the

examples in this paper.

7.1 Evaluation

The SBRDF representation of (13) can be evaluated using

experiments similar to those for the homogeneous case.

Here, spatial variation is simulated using images of a

hemisphere with a Cook-Torrance BRDF [8] with a linearly

varying roughness parameter. Five images are shown in

Fig. 10 and they demonstrate how the highlight sharpens

from left to right across the surface.
The graph in Fig. 10 shows the accuracy of the recovered

SBRDF as a function of the number of RBF centers when it is

fit to images of the hemisphere under 10 uniformly

distributed illumination directions. The error is computed

over 40 images that are not used as input. Fewer than

2,000 centers are needed to accurately represent the spatial

reflectance information available in the input images, which

is a reasonably compact representation requiring roughly

12,000 parameters. For comparison, an SBRDF representation

for a 10,000-vertex surface consisting of two unique Lafortune

lobes at each vertex is roughly five times as large.
Fig. 11 contrasts reflectance sharing with conventional

methods that interpolate only in the angular dimensions,

estimating a separate BRDF at each point. This “no sharing”

approach is used by Matusik et al. [13] and is similar in spirit

to Wood et al. [11], who also estimate a unique view-

dependent function at each point. (In this discussion, angular

interpolation in the BRDF domain is assumed to require

known geometry, which is different from lighting interpola-

tion (e.g., [12]) that does not. For the particular example in

Fig. 11, however, the “no sharing” result can be obtained
without geometry since it is a special case of fixed viewpoint.)

For both the reflectance sharing and “no sharing” cases,
the SBRDF is estimated from images with fixed viewpoint
and uniformly distributed illumination directions such as
those in Fig. 10, and the resulting SBRDF is used to predict the
appearance of the surface under novel lighting. The top frame
of Fig. 11 shows the actual appearance of the hemisphere
under five novel conditions, and the lower frames show the
reflectance sharing and “no sharing” results obtained from
increasing numbers of input images. Note that many other
methods—most notably that of Lensch et al. [16]—are
excluded from this comparison because they require the
selection of a specific parametric model and, therefore, suffer
from the limitations discussed in Section 6.

In this example, reflectance sharing reduces the number of
required input images by more than an order of magnitude.
Five images are required for good visual results using the
RBF representation, whereas at least 150 are needed if one
does not exploit spatial coherence. Fig. 11 also shows how
differently the approaches degrade with sparse input.
Reflectance sharing provides a smooth SBRDF whose
accuracy gradually decreases away from the convex hull of
input samples. (For example, the sharp specularity on the
right of the surface is not accurately recovered when only two
input images are used.) In contrast, when interpolating only
in the angular dimensions, a small number of images
provides only a small number of reflectance samples at each
point; and as a result, severe “ghosting” occurs when the
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Fig. 10. Top: Accuracy of the SBRDF recovered by reflectance sharing
using the RBF representation in (13) as the number of centers is
increased using a greedy algorithm. The input is 10 synthetic images of
a hemisphere (five of which are shown) with linearly varying roughness.

Fig. 11. Estimating the spatially varying reflectance function from a
sparse set of images. Top frame: five images of a hemisphere under
illumination conditions not used as input. Middle frame: appearance
predicted by reflectance sharing with two and five input images. (The
input images are shown in Fig. 10; the two left-most images are used for
the two-image case.) Bottom frame: appearance predicted by inter-
polating only in the angular dimensions with 5, 50, and 150 input images.
At least 150 images are required to obtain a result comparable to the
five-image reflectance sharing result.



surface is illuminated by high-frequency environments like
the directional illumination shown here. This is easy to
understand in terms of the theoretical analysis in Section 3. In
effect, angular interpolation uses a filter of the form shown in
Fig. 5a to reconstruct a spectrum of the form of Fig. 5b, which
leads to considerable aliasing.

Even when the input images are captured from a single

viewpoint, our method recovers a full SBRDF and, as shown

in Fig. 12, view-dependent effects can be predicted. This is

made possible by spatial sharing (since each surface point is

observed from a unique view in its local coordinate frame)

and by reciprocity (since we effectively have observations in

which the view and light directions are exchanged).

8 GENERALIZED SPATIAL VARIATION

This section considers generalizations of the radial basis

function SBRDF model by softening the requirement for

spatial smoothness and uses it to model the appearance of a

human face. Since our estimate of spatially varying

reflectance allows us to synthesize images from any lighting

direction and view, an approach such as this may

eventually enable lighting and pose-insensitive recognition

that requires only a few input images for enrollment.
Rapid spatial variation can be handled using a multi-

plicative albedo or texture as in

fð~xx;~��Þ ¼ að~xxÞdð~xx;~��Þ;

where að~xxÞ is an albedo map for the surface and dð~xx;~��Þ is a
smooth function of five dimensions. As an example,
consider the human face in Fig. 13a. The function að~xxÞ
accounts for rapid spatial variation due to pigment changes,
while dð~xx;~��Þ models the smooth spatial variation that
occurs as we transition from a region where skin hangs
loosely (e.g., the cheek) to where it is taut (e.g., the nose).

In some cases, it is advantageous to express the SBRDF as a
linear combination of 5D functions. For example, Sato et al. [6]
and many others use the dichromatic model of reflectance
[48] in which the BRDF is written as the sum of an RGB diffuse
component and a scalar specular component that multiplies
the source color. We employ the dichromatic model here, and
compute the emitted radiance using

Ikð~xx;~��Þ ¼ sk akð~xxÞdkð~xx;~��Þ þ gð~xx;~��Þ
� �

cos �i; ð14Þ

where ŝs ¼ fskgk¼RGB is an RGB unit vector that describes

the color of the light source. In (14), a single function g is

used to model the specular reflectance component, while

each color channel of the diffuse component is modeled

separately. This is significantly more general than the usual

assumption of a Lambertian diffuse component, and it can

account for changes in diffuse color as a function of ~��, such

as the desaturation of the diffuse component of skin at large

grazing angles witnessed by Debevec et al. [12].

Finally, although not used in our examples, more general

spatial variation can be modeled by dividing the surface

into a finite number of regions, where each region has

spatial reflectance as described above. This technique is

used, for example, in [16], [20].

8.1 Data Acquisition and SBRDF Recovery

For real surfaces, we require geometry and a set of images

taken from known viewpoint and directional illumination.

In addition, to estimate the separate diffuse and specular

reflection components in (14), the input images must be

similarly decomposed. Specular/diffuse separation can be

performed in many ways (e.g., [6], [49]), one of which uses

linear polarizers on both the camera and light source. Two

exposures are captured for each view/lighting configura-

tion, one with the polarizers aligned (to observe the sum of

specular and diffuse components), and one with the source

polarizer rotated by 90� (to observe the diffuse component

only). The specular component is then given by the

difference between these two exposures. (See, e.g., [50].)

Geometry can also be recovered in a number of different

ways. One possibility is photometric stereo, since under the

right conditions, it provides the precise surface normals

required for reflectometry. Fig. 13 shows an example of a

decomposed image along with the corresponding geome-

try, which is recovered by applying Lambertian photo-

metric stereo to a set of diffuse (ideally Lambertian) images

like that shown in the left of the figure.

Given the geometry and a set of decomposed images, the

representation in (14) can be fit as follows: First, the effects

of shadows and shading are computed, shadowed pixels

are discarded, and shading effects are removed by dividing

by cos �i. The RGB albedo að~xxÞ in (14) is estimated as the

median of the diffuse samples at each surface point and

normalized diffuse reflectance samples are computed by

dividing by að~xxÞ. The resulting normalized diffuse samples

are used to estimate the three functions dkð~xx;~��Þ in (14) using

the RBF techniques described in Section 5.1. The samples

from the specular images are similarly used to compute g.
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Fig. 12. Actual and predicted appearance of the hemisphere under fixed

illumination and changing view. Given five input images from a single

view (Fig. 10), the reflectance sharing method recovers a full SBRDF,

including view-dependent effects.

Fig. 13. (a) and (b) Diffuse and specular components of a single input

view. (c) Geometry for SBRDF recovery and image synthesis.



8.2 Image Synthesis

In order to synthesize images under arbitrary view and

illumination, the SBRDF coordinates ~qq at each surface point

are determined by the spatial coordinates ~xx, the surface

normal, and the view and lighting directions. The radiance

emitted from that point toward the camera is then given by

(14). Because (14) involves sums over a large number of RBF

centers for each pixel, image synthesis can be slow. This

process can be accelerated, however, using computer

graphics techniques, including programmable graphics
hardware and image precomputation.

Hardware Rendering Using the GPU. Equation (14) is

well suited to implementation in graphics hardware

because the same calculations are done at each pixel. For

example, a vertex program can compute each ~qq and these

can be interpolated as texture coordinates for each pixel. A

fragment program can then perform the computation in

(13), which is simply a sequence of distance calculations.

Implementing the sum in (14) is straightforward since it is

simply a modulation by the albedo map and source color.

For the results in this section, we use one rendering pass for
each RBF center, accumulating their contributions. On a

GeForce FX 5900, rendering a 512� 512 image with 2,000 cen-

ters (and 2,000 rendering passes) is reasonably efficient,

taking approximately 30s. Further optimizations are possible,

such as considering the contributions of multiple RBF centers

in each pass.

Real-Time Rendering with Precomputed Images. To

predict appearance under complex illumination in real-time,

one can trade accuracy for rendering efficiency by using

images synthesized with the RBF representation to compute

more “rendering-friendly” representations. Suitable repre-
sentations include that of Meseth et al. [51], who precompute

lower-dimensional functions for a discrete number of view-

points and linearly interpolate between these functions at

runtime; and the double-PCA model of Nayar et al. [52], who

compress fixed-view data using an algorithm that is con-

ceptually similar to clustered PCA methods [53], [54]. Both of

these approaches allow real-time relighting of specular

objects with complex illumination and shadows.

Weemphasizethatdespite thegains inefficiencydiscussed

in this section, the RBF representation does not compete with

parametric representations for synthesis. Instead, in its

current form, it can be viewed as a useful intermediate

representation between acquisition and rendering.

8.3 Results

As a demonstration, the representation of (14) was used to
modelahumanface,whichexhibitsdiffusetexture inaddition
to smooth spatial variation in its specular component.

The spatially varying reflectance function estimated from

four camera/source configurations is shown in Figs. 14, 15,

and 16. For these results, two polarized exposures were

captured in each configuration, and the viewpoint remained

fixed throughout. For simplicity, the subject’s eyes remained

closed. (Accurately representing the spatial discontinuity at

the boundary of the eyeball would require the surface to be

segmented as mentioned in Section 7.) The average angular

separation of the light directions is 21�, spanning a large area

of frontal illumination. (See Fig. 14.) This angular sampling

rate is considerably less dense than in previous nonpara-

metric work; approximately 150 source directions would be

required to cover the sphere at this rate compared to over

2,000 source directions used by Debevec et al. [12].

In the recovered SBRDF, 2,000 centers were used for each

diffuse color channel, and 5,000 centers were used for the

specular component. (Fig. 16 shows scatter plots of the

specular component as the number of RBF centers is

increased.) Each diffuse channel requires the storage of

2,006 coefficients—the weights for 2,000 centers and six

polynomial coefficients—and 2,000 sample points ~qqi, each

with five components. This could be reduced, for example, by

using the same centers locations for all three color channels.

The specular component requires 5,006 coefficients and

5,000 centers, so the total size is 66,024 single precision

floating-point numbers, or 258kB. This is a very compact

representation of both view and lighting effects.
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Fig. 14. Actual and synthetic images for a novel illumination direction.
The polar plot indicates the input (+) and output (�) lighting directions,
with concentric circles representing angular distances of 10� and 20�

from the viewing direction. The synthetic image was rendered using the
reflectance representation in (14) fit to four input images.

Fig. 15. Spatial variation in the estimated specular reflectance function.
(a) Synthesized specular component used to generate the image in the
right of Fig. 14. (b) Magnitude of the estimated specular SBRDF at two
surface points. Plots are the SBRDF as a function of ð�h; �dÞ for �d ¼ 5�,
with red and transparent-blue plots representing the indicated points on
the cheek and nose. (Large values of �h near the origin are outside the
convex hull of input samples and are not displayed.) For comparison, the
inset shows a Cook-Torrance lobe fit to the reflectance of the nose.



Fig. 14 shows real and synthetic images of the surface

under novel lighting conditions, and shows how a smooth

SBRDF is recovered despite the extreme sparsity of the input

images. Most importantly, the disturbing aliasing effects

observed in the “no sharing” results of Fig. 11 are avoided.

Fig. 15 shows that the recovered SBRDF is indeed spatially

varying. Fig. 15b is a ð�h; �dÞ scatter plot of the specular SBRDF

on the tip of the nose (in transparent blue) and on the cheek (in

red), and it shows that the recovered specular lobe on the nose

is substantially larger.
At first glance, the fact that this spatial variation is

recovered from such a small set of images seems to
contradict the theoretical analysis of Section 3.3. Indeed,
that section demonstrates that the maximum recovered
spatial frequency is inversely related to the spacing between
the directional light sources used for acquisition, which in
this case is extremely large. The important difference,
however, is that the theoretical analysis of Section 3.3
considers only a single specular highlight on a convex
surface. The face, on the other hand, contains a number of
concavities, so a single image provides multiple observa-
tions of specular highlights at different spatial locations.

While this synthetic result is plausible, careful examina-

tion of Fig. 14 reveals deviations from the actual image (the

relative RMS difference is 9.5 percent). For example, the

spatial discontinuity in the specular component at the

boundary of the lips is smoothed over due to the assumption

of slow spatial variation; and more generally, with such

limited input data, the representation is sensitive to noise

caused by extreme interreflection and subsurface scattering,

motion of the subject during acquisition, calibration errors in

the source positions and relative strengths, and errors in the

geometry. The accuracy could be improved, for example, by

using a high speed acquisition system such as that of Debevec

et al. [12]; by employing more sophisticated approaches for

recovering surface geometry (e.g., [55], [56]); and by identify-

ing spatial discontinuities in the SBRDF, perhaps using

clustering techniques that use diffuse color as a cue for

segmentation.

We emphasize, however, that only four input images are

used, and it would be difficult to improve the results without

further assumptions. Even a parametric method like that of

Lensch et al. [16] may perform poorly in this case since little

morethanaLambertian albedovaluecouldbe fit reliably from

the four (or less) reflectance samples available at each point.

Finally, Fig. 17 shows synthetic images with a novel

viewpoint, again demonstrating that a full SBRDF is

recovered despite the fact that only one viewpoint is used

as input.

8.4 A Special Case: One Input Image

The RBF representation can also be adapted to the extreme

case when only one input image is available. In one

(orthographic, directional illumination) image all reflectance

samples lie on a hyperplane of constant w, reducing the

dimension of the SBRDF by one.

To exploit the reduced dimension in the case when a

specular/diffuse separation is appropriate, we use a

simplified SBRDF representation and compute the surface

radiance according to

Ikð~qqÞ ¼ sk akð~xxÞ þ
XN
i¼1

�ik~qq �~qqik
 !

cos�i; ð15Þ

where ~qq ¼ ðx; y; u; vÞ. Here, the diffuse component is

modeled as Lambertian, and the albedo að~xxÞ is estimated

directly from the reflectance samples in the diffuse

component of the input image after shading and shadows

are removed. The specular component is estimated from the

specular reflectance samples using the same fitting proce-

dure as described in the previous section.

Fig. 18 shows the results of fitting the model in (15) using

N ¼ 2; 000. The model is fit to the specular and diffuse

components of a single view/lighting condition (computed

using two polarized exposures), and this model is used to

predict the appearance of the face under natural lighting from

environment maps. The results in Fig. 18 were rendered using

precomputation [52] as discussed in Section 8.2, which allows

real-time synthesis under complex lighting.

Since a single view/lighting condition is used as input,

only a 2D subset of the angular variation is recovered, and

Fresnel effects are ignored. (As done by Debevec et al. [12],

this representation could be enhanced to approximate

Fresnel effects by using a data-driven microfacet model
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Fig. 17. Synthesized images for two novel viewpoints. Even though the

input images are captured from a single viewpoint, a complete SBRDF is

recovered, including view-dependent effects.
Fig. 16. Estimated SBRDF on the cheek (red) and nose (blue) as the

number of RBF centers is increased using the greedy algorithm. The

5,000-center plots are the same as those on the right of Fig. 15.



with an assumed index of refraction.) Also, by using a

complete environment map, we necessarily extrapolate the

reflectance function beyond the convex hull of input

samples, where it is known to be less accurate. Despite

these limitations, the method obtains reasonable results,

and they would be difficult to improve without assuming a

specific parametric BRDF model (as in, e.g., [57]).

9 CONCLUSIONS AND FUTURE WORK

This paper presents a method for exploiting spatial

coherence to estimate a nonparametric, spatially varying

reflectance function from a sparse set of images of known

geometry. Reflectance estimation is framed as a scattered-

data interpolation problem in a joint spatial/angular

domain, an approach that allows the exchange of spatial

resolution for an increase in angular resolution of the

reflectance function.

The paper introduces a theoretical framework to describe

the exchange of spatial and angular reflectance resolution. It

also presents a flexible representation of reflectance based

on radial basis functions (RBFs) and shows how this

representation can be adapted to handle:

1. homogeneous BRDF data,
2. smooth spatially varying reflectance from multiple

images,
3. spatial variation with texture, and
4. a single input image.

When using this representation, the recovered reflectance
model is shown to degrade gracefully as the number of
input images decreases.

The most immediate practical issue for future work

involves computational efficiency. As presented, the RBF

representation is a useful intermediate representation of

spatially varying reflectance since it can be used in

combination with current rendering techniques based on

precomputation. To improve this, it may be possible to

develop real-time synthesis techniques directly from the

RBF representation using, for example, fast multipole

methods that reduce the evaluation of (9) from OðN2Þ to

OðN logNÞ [42].
Advancing computational power and imaging technol-

ogy are enabling the use of complex and accurate appear-

ance models for image analysis. In this context, methods for

efficiently acquiring and representing these models must be

developed. This paper takes a step in this direction by

providing a method for using sparse, image-based data sets

to recover spatial reflectance.
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