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Abstract

Prior work has argued that when a Lambertian surface
in fixed pose is observed in multiple images under varying
distant illumination, there is an equivalence class of sur-
faces given by the generalized bas-relief (GBR) ambiguity
that could have produced these images. In contrast, this pa-
per shows that for general nonconvex surfaces, interreflec-
tions completely resolve the GBR ambiguity. In turn, the
full Euclidean geometry can be recovered from uncalibrated
photometric stereo for which the light source directions and
strengths are unknown. Further, we show that surfaces with
a translational symmetry do not lend enough constraints to
be disambiguated by interreflections.

1. Introduction

It has long been established that interreflections between
surface patches form a vital component of scene inference
[7]. The concept of an interreflection kernel, which explains
the physics of mutual illumination, has existed in literature
pertaining to the field of radiometry for over half a cen-
tury [13]. Efficient algorithms to find approximate solu-
tions to the rendering equation [10] (which is a manifesta-
tion of interreflections in real surfaces), such as radiosity
methods [2], form a cornerstone of computer graphics re-
search.

But curiously, an overwhelming majority of computer vi-
sion algorithms simply ignore the effect of interreflections.
Even strongly intensity dependent techniques such as pho-
tometric stereo [17] and shape from shading [9] fail to sub-
stantively account for the augmentation to observed image
intensity due to mutual illumination. The practical difficulty
encountered arises due the complex structure of the kernel -
each point in the range of the kernel encodes the geometric
and radiometric structure of the entire domain.

Thus, while interreflection effects are deemed significant
in real imaging situations and treated as a complex nui-
sance, it almost seems non-sequitur that they can actually

Figure 1. The first column shows a few synthetic input im-
ages. The second column shows the result of traditional
uncalibrated photometric stereo reconstruction, which can
be disambiguated only up to a GBR-transformation. Two
such ambiguous reconstructions are shown. The final col-
umn shows the true reconstruction obtained by our algo-
rithm where the GBR ambiguity is resolved by considering
interreflections. See Section 4.3.

aid the surface reconstruction process in any manner. Yet,
we show that incorporating mutual illumination into our im-
age formation model makes Euclidean reconstruction from
uncalibrated photometric stereo possible.

It has been shown [1, 12] that without interreflections,
uncalibrated photometric stereo can recover a Lambertian
surface illuminated by distant point light sources only up
to a generalized bas-relief (GBR) transformation. (If an
object’s true surface, viewed under orthographic projec-
tion, is z = f(x, y), then the GBR-transformed surface is
f̄ = λf(x, y)+µx+νy, which can be considered as a scal-
ing along the viewing direction composed with an additive
plane. See Figure 1.)

The presence of interreflections results in counterintu-
itive shading effects in images, such as Figure 2. Thus,
when interreflections are present but ignored, calibrated
photometric stereo with known light sources can only re-
cover a pseudo-normal field. Hence, uncalibrated photo-
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Figure 2. Intensity profile across a horizontal cross-section
of a concave dihedral angle. One might expect intensity to
fall at a greater distance from light source, but note the sharp
rise in intensity towards the center due to interreflections.

metric stereo in the presence of interreflections yields a
GBR-transformation of the "pseudo-surface" (a term we
will use to denote the surface constituted by the integrable
normal field closest to the pseudo-normal field).

While a rigorous proof is presented in subsequent sec-
tions, the intuition behind our claim that interreflections re-
solve the GBR ambiguity is a simple one : distance is not an
invariant for the group of GBR-transformations, whereas in-
terreflections are strongly distance-dependent phenomena.
Though the bas-relief ambiguity is resolved for general 3D
surfaces using interreflections, we prove that a non-linear
ambiguity remains in the case of surfaces with translational
symmetry. Our experiments, designed to accommodate the
sheer size of the interreflection kernel, validate these claims.

2. Background

2.1. Previous Work

Formalization of the contribution of interreflections to-
wards the image of a parametrizable surface can be achieved
through a Fredholm integral equation of the second kind,
which can be solved through the Neumann series [15]. A
finite element method to solve the forward problem was
presented for surfaces with translational symmetry in [4].
We show that the inverse problem is ill-constrained for such
surfaces. The extent to which some vision algorithms like
shape from shading and edge detection err in ignoring inter-
reflections is discussed in [5].

An alternate solution approach is to expand the radiance
function in terms of eigenfunctions of the interreflection
kernel, which are termed "pseudo-facets" in [11]. The dis-
crete representation of the interreflection kernel was pre-
sented in [14] where shape was recovered from calibrated
photometric stereo in the presence of interreflections. Shape
from shading with a simplified (single-bounce) interreflec-
tion model is studied in [16].

Further generalization of the GBR ambiguity is achieved
by the KGBR viewpoint-lighting ambiguity [18], but inter-
reflections are ignored. Consideration of non-Lambertian
reflectance models that include specularities can also be
used to resolve the GBR ambiguity [3,6]. A specularity im-
poses a constant viewpoint constraint that requires all light
sources reflected along the viewing direction which reduces

the ambiguity. The assumption of a constant albedo was
shown to resolve the ambiguity in [1, 8]. We resolve the
GBR ambiguity using interreflections for a purely Lamber-
tian surface, without any further modifications to the re-
flectance model, so in some sense, our approach is thor-
oughly uncalibrated photometric stereo.

2.2. Notation
We denote by (S, a) the geometrical shape of a surface

in R
3 and its albedo field being imaged by an orthographic

camera with its image plane and the global coordinate sys-
tem mutually aligned. Hence S consists of points of the
form [ x, y, f(x, y) ]� = [x, f(x) ]� and the unit normal is

given by n = [−fx,−fy, 1 ]�/
√

f2
x + f2

y + 1.

2.3. Bas-Relief Ambiguity in Uncalibrated Photo-
metric Stereo

The radiance of a convex (interreflection-free) Lamber-
tian surface illuminated by a distant point light source s is

Lf,a,s(x) = Ψf,s(x)a(x)n(x)�s (1)

where the binary function Ψ, which depends purely on
the surface geometry and light source direction, determines
shadowing (Ψ = 0 for points in shadow and 1 otherwise).

Traditional photometric stereo is based on the assump-
tion that an orthographic camera is used to image a Lamber-
tian surface under direct illumination by distant point light
sources, with no interreflections. In the uncalibrated case
with no shadowing, three images with linearly independent
(unknown) light source directions suffice to simultaneously
determine the surface and light source directions up to an
invertible 3× 3 transformation. If b(x) = a(x)n(x)�, one
recovers some b̄(x) = b(x)A−� and As̄ since

Lf̄ ,ā,s̄ = Ψf̄ ,s̄b̄s̄ = Ψf,s(bA−�)(As) = Lf,a,s.

It can be shown [1] that imposing the integrability con-
straint on the recovered normal field restricts A to lie within
the group of GBR-transformations. (A 3 × 3 matrix G ∈
GBR ⊂ GL(3) must have the form

G =


 1 0 0

0 1 0
µ ν λ


 (2)

where µ, ν, λ ∈ R and λ > 0.) A GBR-transformation on
a surface-albedo pair, G : (S, a) → (S̄, ā) is defined by a
transformation on the normal field and albedo

n̄ =
G−�n
‖G−�n‖ and ā = a‖G−�n‖ (3)

while the corresponding transformation on the light source
s ∈ R

3 is G : s → s̄ = Gs.



The following two theorems establish that the gener-
alized bas-relief transformation is the only transformation
that preserves both the shading and shadowing of a Lam-
bertian surface.

Theorem 1 (Kriegman and Belhumeur). The image of
the shadow boundaries (cast and attached) of a Lamber-
tian surface S and light source s are identical to that of
a GBR-transformed surface S̄ and light source s̄. Further,
GBR ⊂ GL(3) is the only group of transformations for
which shadow boundaries are invariant.

Theorem 2 (Belhumeur, Kriegman and Yuille). The im-
age of a Lambertian surface-albedo pair (S, a) under or-
thography with directional point light source s is identical
to that of a GBR-transformed surface-albedo pair (S̄, ā)
and light source s̄.

These theorems were proved, respectively, in [12] and
[1] under assumptions of general surface conditions - we
assume the same throughout this paper.

2.4. The Interreflection Kernel

The interreflection equation computes the radiance, in
the presence of interreflections, emitted by a point x on a
surface S with surface normal n and albedo a, when illumi-
nated by a point light source s, as

L(x) = Ψf,s(x)a(x)n(x)�s+ a(x)
∫
S

K(x,x′)L(x′)dS′

(4)
Here dS′ represents a differential surface element at x′ and
K is the symmetric, positive semi-definite interreflection
kernel, which is a function of the local surface orientation
at points x and x′ as well as the global surface geometry.
More specifically,

K(x,x′) =
(n�(−r))(n′�r)V (x,x′)

(r�r)2
(5)

represents the fraction of light emitted by point x′ that is in-
cident on x, subject to a visibility criterion V that evaluates
to 1 when the surface geometry allows for two points to be
visible to each other, else evaluates to 0. The global shape
determines the value of V to be 0 when x and x′ are oc-
cluded, else the local orientation at the two points governs
V according to

V (x,x′) =
(n�(−r) + |n�(−r)|

2|n�(−r)|
)(n′�r + |n′�r|

2|n′�r|
)
(6)

Here r = x − x′ stands for the displacement from x′ to x.

2.5. Calibrated Photometric Stereo

For a practical implementation, the surface is considered
discretized into, say, m facets, each of constant albedo and
radiance. Then, the interreflection kernel is an m×m matrix
K, whose entries are given by

Kij =
(n�

i rij) (n�
j rji)

(r�ijrij)2
dAj

v�nj
Vij (7)

where V is the visibility matrix, Aj is the area of facet j
and v is the viewing direction (which is the same for all
facets under orthographic projection). Kii is set to 0 for all
i. The radiosity equation can now be modified to its discrete
formulation

L = (I − PK)−1Ls (8)

where L = [L1, . . . , Lm]� is the radiance vector, Ls =
[Ls1, . . . , Lsm]� is the source contribution vector, P is a
diagonal matrix composed of albedo values and K is the
interreflection kernel matrix in (7).

This discrete formulation is used in [14] to recover a
"pseudo-normal field" by treating the radiance field as that
of a directly illuminated surface. This pseudo-normal field
is then iteratively projected on to an integrable normal field
to obtain a surface estimate and the interreflection kernel is
computed which yields a next estimate for the surface. It
can also be shown that the "pseudo-shape" is less concave
than the true shape.

3. Euclidean Reconstruction with Uncali-
brated Photometric Stereo

3.1. Resolving Bas-Relief Ambiguities

As discussed above, assuming interreflection effects to
be absent, two surfaces differing by a GBR-transformation,
when viewed under orthographic projection in suitably
transformed lighting conditions, would produce exactly the
same images. We prove in the following theorem that the
presence of interreflections ensures that images of surfaces
differing by a GBR are not the same.

Proposition 1. There does not exist a non-trivial GBR-
transformation G of a Lambertian surface-albedo pair
(S, a) that, with light sources correspondingly transformed,
results in the same shading configuration under an ortho-
graphic camera when interreflections are present.

Proof. Let (S̄, ā) be a GBR-transformed surface-albedo
pair associated with the original surface-albedo pair (S, a).
We note that n̄�r̄ = (G−�n/‖G−�n‖)(Gr) =
n�r/‖G−�n‖, thus, from (5) and (6),

K̄(x̄, x̄′) =
(r�r)2

‖G−�n‖‖G−�n′‖
K(x,x′)

(r�G�Gr)2
. (9)



Substituting (9) and (3) into (4), the radiance at a point
on the GBR-transformed surface is

L̄(x̄) = Ψf̄ ,s̄ ān̄�s̄ + ā

∫
S̄

K̄(x̄, x̄′)L̄(x̄′)dS̄′

= Ψf,san�s + ‖G−�n‖a

×
∫
S̄′

(r�r)2

‖G−�n‖ ‖G−�n′‖
K(x,x′)

(r�G�Gr)2
L̄(x̄′)dS̄′

(10)

as Ψf̄ ,s̄ ān̄�s̄ = Ψf,san�s from Theorems 1 and 2.
Now, assume to the contrary that the original surface and

the GBR-transformed surface produce the same images,

L̄(x̄) = L(x). (11)

We recall the assumption of orthography and for the
Cartesian (image coordinate) surface parametrization it pro-
vides, the Jacobian for the change of coordinates in a GBR-
transformation is identity. Let N = [−fx,−fy, 1 ]� =
‖N‖n be the un-normalized surface normal, then a differ-
ential area element on the surface is given by

dS = ‖Sx × Sy‖dxdy

= ‖[1, 0, fx]� × [0, 1, fy]�‖dxdy = ‖N‖dxdy (12)

Using equations (11) and (12), relation (10) becomes

L(x) =L̄(x̄)

=Ψf,san�s

+ a

∫
S̄′

(r�r)2

‖G−�n′‖
K(x,x′)

(r�G�Gr)2
L(x′)‖N̄′‖dx̄′ dȳ′

=Ψf,san�s

+ a

∫
S

K(x,x′)(r�r)2

(r�G�Gr)2
L(x′)

‖G−�N′‖
‖G−�n′‖ dx′ dy′

(13)

where we have used the definition of GBR-transformation
N̄ = G−�N and the identity Jacobian to change the coor-
dinate system. From (12), the radiance in (13) becomes

L(x) =Ψf,san�s + a

∫
S

K(x,x′)(r�r)2

(r�G�Gr)2
L(x′)‖N′‖dx′ dy′

=Ψf,san�s + a

∫
S

K(x,x′)(r�r)2

(r�G�Gr)2
L(x′)dS′

(14)

Comparing equations (4) and (14), since the surfaces we
assumed are general, it can be easily seen that G�G is
forced to be identity. That is, G must be a rotation matrix.
But G is a generalized bas-relief transformation and must
have the structure outlined in (2). Unit norm on the columns

forces µ = ν = 0 and λ = ±1. Moreover, as λ > 0 by
definition of a GBR transformation, we must have λ = 1.
Thus, G can only be the identity matrix, which contradicts
our assumption of a non-trivial GBR-transformation. We
have shown that the original and GBR-transformed surfaces
cannot produce the same images and our proof stands com-
pleted.

The above proof was contingent on the fact that the vis-
ibility between two points does not change due to a GBR
transformation. We note that as a consequence of Theo-
rem 1 the occlusion relationship between two points is also
invariant under a GBR transformation. So, we have been
able to drop the assumption in [14] that required all the sur-
face points be visible to each other.

From Theorem 1, the GBR-transformation is the only
surface transformation that preserves the shadowing config-
uration. For a reconstruction method based solely on shad-
ows, we have just demonstrated that the unknown GBR-
transformation of the surface can be resolved by interreflec-
tions. So, we can assert that no two surface-albedo pairs
can produce the same images in presence of interreflections
and shadows. In fact, for any technique that can reconstruct
a surface up to an unknown GBR, the ambiguity can be re-
solved in the presence of interreflections.

3.2. Surfaces with No Shadows

In practice, it is hard to deal with shadows. Often, they
are not visible everywhere on the surface. Moreover, they
inevitably lead to computationally more complex optimiza-
tion problems. Therefore, we investigate the problem for
surfaces with no shadows as well.

Proposition 2. There does not exist a non-trivial transfor-
mation of a Lambertian surface-albedo pair (S, a), with
light sources correspondingly transformed, that results in
the same shading configuration under an orthographic
camera when interreflections are present.

Proof. We may consider the surface-albedo pair (S, a) and
its light sources s as fixed or known quantities. Now, sup-
pose there exists another surface-albedo pair (S̄, ā) and we
will show that this leads to an inconsistency.

Let F denote the forward operator which, given light
sources s, produces images L, cf. (8). Hence, we have:

L = F̄s̄ = Fs. (15)

The light sources s and s̄ must be related by a GBR transfor-
mation, i.e., s̄ = Gs, as surface points where no interreflec-
tions are present must obey the traditional GBR. Inserting
this into (15) and realizing that it must hold for any light
source s results in

F̄G = F.



The above equation is equivalent to:

ān̄�G = (I − āK̄)F, (16)

where I and K̄ should be interpreted as operators (the iden-
tity operator and the interreflection kernel operator, respec-
tively). Factorizing out ā, we get ā(n̄�G + K̄F) = F, or
equivalently,

n̄�G + K̄F ∼ F, (17)

where ∼ denotes equality up to scale. As F is considered
known, the above equation can be regarded as an implicit
equation in the unknown depths z̄ (and G). For each sur-
face point x̄, (17) says that there are two constraints for
every depth z̄(x̄) - three equations minus one scale factor.
Thus, this is an overconstrained system with independent
equations1 and for general F there is no solution for z̄. The
proposition is proved.

It turns out to be fruitful to look at the problem in a lower
dimension as well, that is, the (orthographic) projection of
a curve in the two-dimensional plane to a one-dimensional
line. We will refer to this as the 2D case.

Proposition 3. In the 2D case, there exists a family of trans-
formations of a Lambertian curve-albedo pair (S, a), with
light sources correspondingly transformed, that results in
the same shading configuration under an orthographic (1D)
camera when interreflections are present.

Proof. Suppose that there exists a curve-albedo pair (S̄, ā)
different from (S, a). Following the same derivations as
in Proposition 2 all the way to (17), one obtains that the
hypothesized curve S̄ must satisfy,

n̄�G + K̄F ∼ F.

Contrary to the 3D case, there is now only one constraint
for every depth z̄(x) - two equations minus one scale factor.
Another way to look at the constraint, is by eliminating the
scale factor, and regard the resulting system as an operator
equation:

EG(z̄) = 0,

which depends on G. The true surface with G = I satisfies
of course the equation EG(z) = 0. And from functional
analysis it is known that the solution for an integral opera-
tor with a smooth integral kernel generally depends contin-
uously on G, and hence we will generally be able to find
a solution z̄ with G �= I. The corresponding albedo ā is
found through (16). Since G is a 2 × 2 matrix in the 2D
case, there is a family of solutions.

1The independence follows from the general surface assumption (sim-
ilar to [12]), but it can also be verified with random, synthetic data.

While the above proposition explains the observed mul-
tiplicity in reconstructions of 2D curves (see experimental
section), we need to delve deeper into the interreflection
kernel’s elements to explain the ambiguity in the case of
3D surfaces with a translational symmetry.

Definition 1. A surface S has a translational symmetry
about a direction with direction cosines (α, β, γ) in some
Cartesian coordinate system when [x, y, z]� lies on S if and
only if [x + tα, y + tβ, z + tγ]� lies on S ∀t ∈ R.

Proposition 4. For a surface S with translational symme-
try about some direction d, there exists a family of trans-
formations of the Lambertian surface-albedo pair (S, a),
with light sources correspondingly transformed, that results
in the same shading configuration under an orthographic
camera when interreflections are present.

Proof. In a 2D world, if r̃ is the distance to a point light
source from any point on the plane, light fall-off over the
plane will vary as 1/r̃ instead of the 1/r̃2 fall-off we com-
monly encounter in a 3D world. Thus, the form of the inter-
reflection kernel for a 2D curve is given by

K(x̃, x̃′) =
(n�(−r̃))(n′�r̃)

(r̃�r̃)3/2
(18)

where x̃ = [ x(s), y(s) ]� is a point on the 2D curve
parametrized by arc length and r̃ = x̃ − x̃′.

Now consider a 3D surface with a translational symme-
try. Without loss of generality, let the axis of symmetry be
the z-axis, that is, the surface is an infinite 3D extrusion of
a 2D curve on the xy-plane. Therefore, any point [x, y, z]�

that lies on the surface can be parametrized as [x̃(s), z]�

where s is the arc length parameter of the projection of the
surface on the xy-plane.

For a point [x̃(s), 0]�, averaging out the contribution
from all points [x̃(s′), z]� , z ∈ R, we get the value of the
kernel at (s, s′). As the component of the surface normal at
any point along the direction of symmetry is zero, the prod-
uct n�r remains the same along the direction of symmetry.
Here r = [x̃(s), 0]� − [x̃(s′), z]� = [ x̃(s)− x̃(s′), −z ]�.
As in [4], the 3D-kernel can be computed as

K(s, s′) =
∫ ∞

−∞

(n�(−r))(n′�r)
(r�r)2

dz

= (n�(−r))(n′�r)
∫ ∞

−∞

1
(r̃�r̃ + z2)2

dz

=
π

2
(n�(−r))(n′�r)

(r̃�r̃)3/2
(19)

which is the same as the interreflection kernel for a 2D curve
up to scale. Hence, the problem can be expressed with a
2D-kernel, which is ambiguous (Proposition 3).



The implication of this result is that the multiplicity of
solutions that we postulated would occur for 2D curves will
also be observed for an infinitely long 3D surface with trans-
lational symmetry. Approximately similar effects would be
observed for surfaces that are finite, but long in the direc-
tion of translational symmetry. Moreover, since estimation
procedures are sensitive to noise, a 3D surface which is not
symmetrical, but close to symmetrical, is also expected to
yield an ambiguous reconstruction.

4. Experiments

4.1. Surface Estimation

The surface recovery is through a gradient descent mini-
mization over the unknown depth, albedo and light sources
of the least-squares errors between the measured inten-
sity Lm and that obtained from the reprojection, using
the discrete forward solution (8). Iteratively, the objective
‖L − Lm‖ as well as the Jacobian with respect to the un-
knowns are computed and the current estimate is updated
using the Levenberg-Marquardt formula. Convergence is
assumed when the relative magnitude of updates falls be-
low a reasonable threshold.

The initial estimate used for all experiments (if not oth-
erwise stated) was obtained from the (pseudo) normal field
recovered from traditional uncalibrated photometric stereo
ignoring interreflections, disambiguated up to an unknown
GBR using the technique in [19]. For noisy measurements,
one can of course never be sure to reach the global mini-
mum. The optimization was usually found to converge to
the expected 3D reconstruction, though we have encoun-
tered local minima for noise-free cases.

4.2. Simulations

Consider a (synthetic) 2D curve with both concave and
convex regions (Figure 3). Using noise-free (1D) images
and a 2D line as initialization, a pseudo-curve and a 2D
curve with interreflections are reconstructed. Both these
curves reproduce exactly the same 1D images and hence
the reprojection error is zero as expected.

Among all GBR-transformed pseudo-curves, the one
with the same light sources directions as the original one
is plotted. The pseudo-curve is less concave than the orig-
inal in regions where interreflections are present, cf. [14].
The recovered 2D curve (whose set of images under all pos-
sible lighting sources is the same as the original curve) is
some non-linear transformation of the original, supporting
our theory in Proposition 3.

Next, consider a 3D surface with (approximate) transla-
tional symmetry, such as two inclined, intersecting planes,
see Figure 4(a). Uncalibrated photometric stereo where
mutual illumination effects are ignored gives a "pseudo-
surface" that is much less concave the original, Figure 4(b).

true curve
pseudo curve
reconstructed curve

light directions

Figure 3. Ambiguity in 2D shape recovery from uncali-
brated photometric stereo with interreflections.

(a) True surface (b) Pseudo-
surface

(c) Reconstruc-
tion

Figure 4. A simulation to illustrate the reconstruction am-
biguity we predicted for the case of translational symme-
try. (a) The input geometry. (b) The "pseudo-surface" ob-
tained by uncalibrated photometric stereo without consid-
eration of interreflections. (c) The recovered (ambiguous)
surface from our algorithm. The optimization converges to
a local minimum that produces nearly the same images as
the true surface. Note the difference in height and curvature
between the reconstructed and original shapes.

The relative error is 0.6%. Note that there may not ex-
ist a pseudo-surface which exactly reproduces the pseudo-
normal field as a pseudo-normal field can not be expected
to be integrable in general. From Proposition 4, we expect
an ambiguity in shape recovery with uncalibrated stereo re-
construction (even though the surface is not an infinitely
extruded one). And indeed, starting from a flat plane as
intialization, the optimization algorithm converges to the lo-
cal minimum in Figure 4(c). Relative error between images
produced by the recovered surface and light sources and the
original surface and light sources is less than 0.1%.
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(b) Reconstruction

Figure 5. Recovered shape for the composed sine and co-
sine surface from uncalibrated photometric stereo using in-
terreflections. Initialization was a flat planar surface. The
optimization converges to a minimum that is indistinguish-
able from the original.

Finally, a (more) general 3D surface was simulated (Fig-



(a) Input image 1 (b) Input image 2 (c) Input image 3 (d) Input image 4

(e) Outside view of reconstruc-
tion from uncalibrated photometric
stereo

(f) Outside view of reconstruction
from calibrated photometric stereo
with interreflection effects removed

(g) Outside view of reconstruction
from our uncalibrated photometric
stereo disambiguated by interreflec-
tions

Figure 6. Comparison of reconstruction approaches (a)-(d) The input images. (e) "Pseudo-surface" from uncalibrated photometric
stereo without considering interreflections disambiguated up to a GBR. (f) Reconstruction from calibrated photometric stereo that
compensates the effect of interreflections [14]. (g) Surface recovered by our uncalibrated photometric stereo taking interreflections
into account.

ure 5(a)). With just a flat plane as initialization, the re-
construction algorithm converges to a surface very close to
original, cf. Figure 5(b) with negligible relative error. This
is in agreement with Proposition 2 that the GBR ambiguity
is resolved for a general 3D surface with interreflections.

4.3. Experiments on Real Data

The paper surface used in the experiments below was
verified to be Lambertian up to 98.1% in the following way.
The paper was wrapped around a cylinder and imaged under
nearly frontal lighting. The intensity profile across a hori-
zontal cross-section (averaged across the vertical dimension
of the cylinder) was fitted to a cosine curve and the good-
ness of fit gave an estimate of the degree of Lambertianess.

We demonstrate Euclidean reconstruction for general 3D
surfaces in consonance with the theory presented in Propo-
sition 2. In the process, we provide a comparison to uncal-
ibrated photometric stereo assuming absence of interreflec-
tions as well as illustrate the similarity of reconstruction be-
tween calibrated and uncalibrated stereo when interreflec-
tions are considered.

The input (Figures 6(a) - 6(d)) consisted of images of the
interior of a tetrahedron that displayed strong interreflec-
tions. Uncalibrated photometric stereo ignoring mutual il-
lumination yields a surface that differs from the "pseudo-
surface" by a 3×3 transformation, which is further reduced
to a GBR-transformation by the method in [19]. The rela-
tive error is 16%. An exterior view of this reconstruction is
presented in Figure 6(e) and it is obvious that the recovered
"pseudo-surface" greatly differs from the true surface.

An implementation of the calibrated photometric stereo
technique in [14] which iteratively compensates for inter-
reflections yields the surface in Figure 6(f). We compare
this with the reconstruction obtained by our uncalibrated ap-
proach with interreflections (Figure 6(g)). The two appear
nearly the same with straight edges and planar faces. The er-
rors are 1.3% and 0.6% for the calibrated and uncalibrated
cases, respectively, and the resolution of the quadrilateral
mesh is 1039 patches.

The differences and similarities between the various re-
constructions can be better appreciated by a comparison
of the height profiles across a horizontal cross-section of



the three reconstructions (Figure 7). We would expect the
profile of an object containing flat planes to be composed
of nearly straight lines, while the effects of interreflection
would cause the pseudo-surface recovered by traditional
calibrated photometric stereo to be noticeably curved. The
angles between the four manually calibrated light source di-
rections and the estimated ones differ by an average of 10◦.

Figure 7. Comparison of shape recovery across a cross-
section of the tetrahedron.

As another demonstration of our algorithm, we recover
the surface of an open book in which interreflections occur
between the two sides (Figure 8). The relative error is 1.1%
and a mesh of 1256 triangles is used.

Figure 8. The first column shows two out of four input
images of the open book. The second column shows the
reconstructed surface of the book.

Finally, we tested our algorithm on more complex inputs,
namely faces. The face input images in Figure 1 were syn-
thetically generated under various point light sources from
a real 3D head scan. The reconstructed face is compared
against the structures obtained by traditional photometric
stereo methods. On the one hand, there is relatively little
interreflection in this data set, but on the other hand, the
images are noise-free. The reprojection error is negligible.

5. Discussions

We have shown that it is possible to obtain a Euclidean
reconstuction of a surface with uncalibrated photometric
stereo in the presence of interreflections. The theoretical
findings have been supported by several experiments. How-
ever, from a practical point of view, further work is needed.
For example, it is unclear exactly how sensitive the method
is to noise and under what circumstances would modelling
interreflections be advantageous. A more efficient solution

to the forward problem (for example, using a Gauss-Seidel
technique) will expedite the optimization and allow for
higher resolutions in the reconstruction.

Acknowledgments Support for this work was provided
by NSF under IIS-0308185 and EIA-0224431, the
U. C. MICRO program and the Swedish Research Coun-
cil. Many thanks to Sameer Agarwal for several fruitful
discussions and insightful comments on the nature of
interreflections.

References

[1] P. Belhumeur, D. Kriegman, and A. Yuille. The bas-relief
ambiguity. IJCV, 35(1):33–44, November 1999.

[2] M. Cohen and D. Greenberg. The hemi-cube: a radiosity so-
lution for complex environments. ACM Computer Graphics,
19(3):31–40, July 1985.

[3] O. Drbohlav and R. Sara. Specularities reduce ambiguity
of uncalibrated photometric stereo. In ECCV, pages 46–62,
2002.

[4] D. Forsyth and A. Zisserman. Mutual illumination. In CVPR,
pages 466–473, 1989.

[5] D. Forsyth and A. Zisserman. Reflections on shading. PAMI,
13(7):671–679, July 1991.

[6] A. Georghiades. Incorporating the Torrance and Sparrow
model of reflectance in uncalibrated photometric stereo. In
ICCV, pages 816–823, 2003.

[7] A. Gilchrist. The perception of surface blacks and whites.
Scientific American, 240:112–123, 1979.

[8] H. Hayakawa. Photometric stereo under a light-source with
arbitrary motion. JOSA-A, 11(11):3079–3089, 1994.

[9] B. Horn and M. Brooks, editors. Shape from Shading. MIT
Press, 1989.

[10] J. Kajiya. The rendering equation. In SIGGRAPH, pages
143–150, 1986.

[11] J. Koenderink and A. van Doorn. Geometrical modes as a
general method to treat diffuse interreflections in radiometry.
JOSA, 73(6):843–850, June 1983.

[12] D. Kriegman and P. Belhumeur. What shadows reveal about
object structure. JOSA-A, 18(8):1804–1813, 2001.

[13] P. Moon. On interreflections. JOSA, 30(5):195–205, 1940.
[14] S. Nayar, K. Ikeuchi, and T. Kanade. Shape from interreflec-

tions. In ICCV, pages 2–11, 1990.
[15] F. Tricomi. Integral Equations. Dover Publications, 1957.
[16] T. Wada, H. Ukida, and T. Matsuyama. Shape from shading

with interreflections under proximal light source: 3D shape
reconstruction of unfolded book surface from a scanner im-
age. In ICCV, pages 66–71, 1995.

[17] R. Woodham. Photometric method for determining surface
orientation from multiple images. OptEng, 19(1):139–144,
January 1980.

[18] A. Yuille, J. Coughlan, and S. Konishi. The KGBR
viewpoint-lighting ambiguity. JOSA-A, 20(1):24–31, Jan-
uary 2003.

[19] A. Yuille and D. Snow. Shape and albedo from multiple im-
ages using integrability. In CVPR, pages 158–164, 1997.


