
Region-Based Image Querying�

Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Maliky

Computer Science Division
University of California at Berkeley

Berkeley, CA 94720
fcarson,sjb,hayit,malikg@cs.berkeley.edu

Abstract

Retrieving images from large and varied collections us-
ing image content as a key is a challenging and important
problem. In this paper we present a new image represen-
tation which provides a transformation from the raw pixel
data to a small set of localized coherent regions in color and
texture space. This so-called “blobworld” representation is
based on segmentation using the Expectation-Maximization
algorithm on combined color and texture features. The tex-
ture features we use for the segmentation arise from a new
approach to texture description and scale selection.

We describe a system that uses the blobworld representa-
tion to retrieve images. An important and unique aspect of
the system is that, in the context of similarity-based query-
ing, the user is allowed to view the internal representation
of the submitted image and the query results. Similar sys-
tems do not offer the user this view into the workings of the
system; consequently, the outcome of many queries on these
systems can be quite inexplicable, despite the availability of
knobs for adjusting the similarity metric.

1 Introduction
Very large collections of images are growing ever more

common. From stock photo collections to proprietary
databases to the Web, these collections are diverse and often
poorly indexed; unfortunately, image retrieval systems have
not kept pace with the collections they are searching. The
shortcomings of these systems are due both to the image
representations they use and to their methods of accessing
those representations to find images:

� While users often would like to find images containing
particular objects (“things”) [26], most existing image
retrieval systems represent images based only on their

�CVPR ’97 Workshop on Content-Based Access of Image and Video
Libraries. Copyright 1997 IEEE.

yThis work was supported by an NSF Digital Library Grant (IRI 94-
11334)and NSF graduate fellowships for Serge Belongie and Chad Carson.

low-level features (“stuff”), with little regard for the
spatial organization of those features.

� Systems based on user querying are often unintuitive
and offer little help in understanding why certain im-
ages were returned and how to refine the query. Often
the user knows only that she has submitted a query
for, say, a bear and retrieved very few pictures of bears
in return.

� For general image collections, there are currently no
systems that automatically classify images or recog-
nize the objects they contain.

In this paper we present a new image representation,
“blobworld,” and a retrieval system based on this repre-
sentation. While blobworld does not exist completely in
the “thing” domain, it recognizes the nature of images as
combinations of objects, and querying in blobworld is more
meaningful than with simple “stuff” representations.

We use the Expectation-Maximization (EM) algorithm to
perform automatic segmentation based on image features.
EM iteratively models the joint distribution of color and
texture with a mixture of Gaussians; the resulting pixel-
cluster memberships provide a segmentation of the image.
After the image is segmented into regions, a description
of each region’s color, texture, and spatial characteristics is
produced. In a querying task, the user can access the regions
directly in order to see the segmentation of the query image
and specify which aspects of the image are central to the
query. When query results are returned, the user sees the
blobworld representation of the returned images; this assists
greatly in refining the query.

We begin this paper by briefly discussing the current state
of image retrieval. In Section 2 we describe the blobworld
representation, from features through segmentation to region
description, and in Section 3 we present a query system
based on blobworld, as well as results from queries in a
collection of highly varied natural images.



1.1 Background
The best-known image database system is IBM’s Query

by Image Content (QBIC) [20], which allows an operator to
specify various properties of a desired image. The system
then displays a selection of potential matches to those cri-
teria, sorted by a score of the appropriateness of the match.
Region segmentation is largely manual, but the most recent
versions of QBIC [2] contain simple automated segmenta-
tion facilities. Photobook [22] incorporates more sophisti-
cated representations of texture and a degree of automatic
segmentation. Other examples of systems that identify ma-
terials using low-level image properties include Virage [13],
Candid [17], and Chabot [21]. None of these systems codes
spatial organization in a way that supports object queries.

Classical object recognition techniques rely on clean seg-
mentation of the object from the rest of the image and are
designed for fixed, geometric objects such as machine parts.
Neither constraint holds in our case: the shape, size, and
color of objects like cheetahs and polar bears are quite vari-
able, and segmentation is imperfect. Clearly, classical object
recognition does not apply. More recent techniques [23] can
identify specific objects drawn from a finite (on the order
of 100) collection, but no present technique is effective at
the general image analysis task, which requires both image
segmentation and image classification.

Earlier work has used the EM algorithm to perform seg-
mentation based on motion [1, 3], but EM has not previously
been used on joint color and texture.

2 The blobworld image representation
The blobworld representation is related to the notion of

photographic or artistic scene composition. In the sense
discussed in [27], the blobworld descriptors constitute an
example of a summary representation in that they are concise
and relatively easy to process in a querying framework.

Blobworld is distinct from color-layout matching as in
QBIC in that it is designed to find objects or parts of ob-
jects. Each image may be visualized by an ensemble of 2-D
ellipses, or “blobs,” each of which possesses a number of
attributes. The number of blobs in an image is typically less
than ten. Each blob represents a region of the image which
is roughly homogeneous with respect to color or texture.
A blob is described by its dominant colors, mean texture
descriptors, and spatial centroid and scatter matrix. (See
Figs. 3–6 for a visualization of blobworld.)

2.1 Extracting color and texture features
Our goal is to assign the pixels in the original image to a

relatively small number of groups, where each group repre-
sents a set of pixels that are coherent in their color and local
texture properties; the motivation is to reduce the amount
of raw data presented by the image while preserving the in-
formation needed for the image understanding task. Given

the unconstrained nature of the images in our database, it is
important that the tools we employ to meet this goal be as
general as possible without sacrificing an undue amount of
descriptive power.

2.1.1 Color

We treat the hue-saturation-value (HSV) color space as a
cone: for a given point (h; s; v), h and sv are the angular and
radial coordinates of the point on a disk of radius v at height
v; all coordinates range from 0 to 1. Points with small v
are black, regardless of their h and s values. The cone rep-
resentation maps all such points to the apex of the cone, so
they are close to one another. The Cartesian coordinates of
points in the cone, (sv cos(2�h); sv sin(2�h); v), can now
be used to find color differences. This encoding allows us to
operationalize the fact that hue differences are meaningless
for very small saturations (those near the cone’s axis). How-
ever, this scheme ignores the fact that for large values and
saturations, hue differences are more perceptually relevant
than saturation and value differences.

2.1.2 Texture

Texture is a well-researched property of image regions,
and many texture descriptors have been proposed, includ-
ing multi-orientation filter banks [12, 19] and the second-
moment matrix [7, 10]. We will not elaborate here on the
classical approaches to texture segmentation and classifica-
tion, both of which are challenging and well-studied tasks.
Rather, we introduce a new perspective related to texture
descriptors and texture grouping motivated by the content-
based retrieval task.

Whereas color is a point property, texture is a local-
neighborhood property. It does not make sense to talk about
the texture of zebra stripes at a particular pixel without spec-
ifying a neighborhood around that pixel. In order for a
texture descriptor to be useful, it must provide an adequate
description of the underlying texture parameters and it must
be computed in a neighborhood which is appropriate to the
local structure being described.

The first requirement could be met to an arbitrary degree
of satisfaction by using multi-orientationfilter banks such as
steerable filters; we chose a simpler method that is sufficient
for our purposes. The second requirement, which may be
thought of as the problem of scale selection, does not enjoy
the same level of attention in the literature. This is unfortu-
nate, since texture descriptors computed at the wrong scale
only confuse the issue.

In this work, we introduce a novel method of scale selec-
tion which works in tandem with a fairly simple but informa-
tive set of texture descriptors. The scale selection method is
based on edge/bar polarity stabilization, and the texture de-
scriptors arise from the windowed second moment matrix.
Both are derived from the gradient of the image intensity,

2



which we denote by rI. We compute rI using the first
difference approximation along each dimension. This oper-
ation is often accompanied by smoothing, but we have found
this preprocessing operation unnecessary for the images in
our collection.

To make the notion of scale concrete, we define the scale
to be the width of the Gaussian window within which the
gradient vectors of the image are pooled. The second mo-
ment matrix for the vectors within this window, computed
about each pixel in the image, can be approximated using

M�(x; y) = G�(x; y) � (rI)(rI)T (1)

where G�(x; y) is a separable binomial approximation to a
Gaussian smoothing kernel with variance �2.

At each pixel location, M�(x; y) is a 2 � 2 symmetric
positive semidefinite matrix; thus it provides us with three
pieces of information about each pixel. Rather than work
with the raw entries in M� , it is more common to deal with
its eigenstructure [5, 7]. Consider a fixed scale and pixel
location, let �1 and �2 (�1 � �2) denote the eigenvalues of
M� at that location, and let � denote the argument of the
principal eigenvector. When �1 is large compared to �2,
the local neighborhood possesses a dominant orientation,
as specified by �. When the eigenvalues are comparable,
there is no preferred orientation, and when both eigenval-
ues are negligible, the local neighborhood is approximately
constant.

Scale selection
We may think of � as controlling the size of the integra-

tion window around each pixel within which the outer prod-
uct of the gradient vectors is averaged. � has been called
the integration scale or artificial scale by various authors
[7, 10] to distinguish it from the natural scale used in linear
smoothing of raw image intensities. Note that � = �(x; y);
the scale varies across the image.1

In order to select the scale at which M� is computed,
i.e. to determine the function �(x; y), we make use of a
local image property known as the polarity. The polarity
is a measure of the extent to which the gradient vectors
in a certain neighborhood all point in the same direction.2

(In the computation of second moments, this information
is lost in the outer product operation; i.e., gradient vector
directions differing by 180� are indistinguishable.) The
polarity at a given pixel is computed with respect to the
dominant orientation � in the neighborhood of that pixel.
For ease of notation, let us consider a fixed scale and pixel
location. We define polarity as

p =
jE+ �E�j
E+ +E�

1Strictly speaking, eqn. (1) is a sliding inner product, not a convolution,
since �(x; y) is spatially variant.

2The polarity is related to the quadrature phase as discussed in [9, 11].

(b) flow;
σ = 2.5

(a) flow;
σ = 1.5

b

e

σ = 0

a c
d

(c) 2-D texture;
σ = 1.5

(d) edge
σ = 0

(e) uniform

Figure 1. Five sample patches from a zebra image.
(a) and (b) have stripes (1-D 
ow) of di�erent fre-
quencies and orientations, (c) is a region of 2-D
texture, (d) contains an edge, and (e) is a uniform
region.

The definitions of E+ and E� are

E+ =
X

(x;y)2Ω

G�(x; y)[rI � n̂]+

and
E� =

X

(x;y)2Ω

G�(x; y)[rI � n̂]�

where [q]+ and [q]� are the rectified positive and negative
parts of their argument, n̂ is a unit vector perpendicular to�,
and Ω represents the neighborhood under consideration. We
can think of E+ and E� as measures of how many gradient
vectors in Ω are on the “positive side” and “negative side”
of the dominant orientation, respectively. Note that p ranges
from 0 to 1. A similar measure is used in [18] to distinguish
a flow pattern from an edge.

The behavior of the polarity p� in typical image regions
can be summarized as follows (see Fig. 1):

Edge: The presence of an edge is signaled by p� holding
values close to 1 for all �.

Texture: In regions with 2-D texture or 1-D flow, p� decays
with � due to the presence of multiple orientations.

Uniform: When a neighborhood possesses a constant in-
tensity, p� takes on arbitrary values since the gradient
vectors have negligible magnitudes and therefore ar-
bitrary angles.

The process of selecting a scale is based on the derivative
of the polarity with respect to scale. First, we compute the
polarity at every pixel in the image for �k = k=2; k =

3



0; 1; : : : ; 7, thus producing a “stack” of polarity images
across scale. Then, for each k, the polarity image com-
puted at scale �k is convolved with a Gaussian with stan-
dard deviation 2�k. We will refer to the smoothed polarity
images as p̃�k . We select the scale as the first value of�k for
which the difference between successive values of polarity
(p̃�k � p̃�k�1 ) is less than 2%. In this manner, we are per-
forming a soft version of local spatial frequency estimation,
since the smoothed polarity tends to stabilize once the scale
window encompasses one approximate period. Since we
stop at �k = 3:5, the largest period we can detect is approx-
imately 10 pixels. Note that when the period is undefined,
as is the case in uniform regions, the selected scale is not
meaningful and is set to zero. Quantitatively, we declare a
pixel to be uniform if its mean contrast across scale is less
than 0:1.

Another method of scale selection that has been pro-
posed [10] is based on localizing extrema across scale of an
invariant of M� , such as the trace or determinant. In this
algorithm, which is applied to the problem of estimating the
slant and tilt of surfaces with tangential texture, it is nec-
essary to perform natural smoothing at a scale tied to the
artificial scale. We found that this extra smoothing compro-
mised the spatial localization ability of our scale selection
method.

Texture features
Once a scale �� is selected for each pixel, that pixel is

assigned three texture descriptors. The first is the polarity,
p�� . The other two, which are taken from M�� , are the
anisotropy, defined as a = 1 � �2=�1, and the normalized
texture contrast3, defined as c = 2

p
�1 + �2. These are

related to derived quantities reported in [10].

2.1.3 Combining color and texture features
The final color/texture descriptor for a given pixel con-

sists of six values: three for color and three for texture. The
three color components are the color-cone coordinates found
after spatial averaging using a Gaussian at the selected scale.
The three texture components are ac; pc, and c, computed
at the selected scale; the anisotropy and polarity are each
modulated by the contrast in analogy to the construction of
the color-cone coordinates. (Recall that anisotropy and po-
larity are meaningless in regions of low contrast.) In effect,
a given textured patch in an image first has its texture prop-
erties extracted and is then replaced by a smooth patch of
averaged color. In this manner, the color and texture prop-
erties in a given region are decoupled; for example, a zebra
is a gray horse plus stripes.

Note that in this formulation of the color/texture descrip-
tor, orientation and selected scale do not appear in the feature

3If we use a centered first difference kernel in the gradient computation,
the factor of 2 makes c range from 0 to 1.

vector; as a result, grouping can occur across variations in
scale and orientation.

2.2 Grouping with the EM Algorithm
Once an image has been processed using the above color

and texture feature extraction schemes, the result is a large
set of 6-D feature vectors, which we may regard as points
in a 6-D feature space. In order to divide these points
into groups, we make use of the Expectation-Maximization
(EM) algorithm [6] to determine the maximum likelihood
parameters of a mixture of K Gaussians inside the 6-D
feature space.

The EM algorithm is used for finding maximum likeli-
hood parameter estimates when there is missing or incom-
plete data. In our case, the missing data is the region to
which the points in the feature space belong. We estimate
values to fill in for the incomplete data (the “E-Step”), com-
pute the maximum likelihoodparameter estimates using this
data (the “M-Step”), and repeat until a suitable stopping cri-
terion is reached.

The first step in applying the EM algorithm is to initialize
a mean vector and covariance matrix to represent each of the
K groups. We initialize the means to random values and
the covariances to identity matrices. (In earlier work we
carefully chose a good initialization for EM, but we have
found that the initialization has little effect on the quality
of the resulting segmentation.) The update scheme allows
for full covariance matrices; variants include restricting the
covariance to be diagonal or a constant times the identity
matrix. Full covariance matrices are suited to our problem,
since many plausible feature clusters require extruded co-
variance shapes, e.g. the shades of gray along the axis of the
color cone.

Upon convergence, the parameters of the Gaussian mix-
ture can be inspected to determine what sort of color/texture
properties are represented by each component of the mix-
ture. Some examples of groups that can form include the
following:

� bright, bluish, and textureless regions (e.g., sky)

� anisotropic and non-polar regions (e.g., zebra hide)

� polar edges (e.g., object silhouettes)

� green weak-isotropic texture (e.g., grass)

We have thus far not discussed how to choose K, the
number of mixture components. Ideally we would like to
choose that value of K that best suits the natural number of
groups present in the image. One readily available notion of
goodness of fit is the log-likelihood. Given this indicator, we
can apply the Minimum Description Length (MDL) princi-
ple [25] to select among values of K. As a consequence of
this principle, when models using two values of K fit the

4



data equally well, the simpler model will be chosen. For our
experiments, K ranges from 2 to 5.

Once a model is selected, the next step is to perform
spatial grouping of those pixels belonging to the same
color/texture cluster. We first produce a K-level image
which encodes pixel-cluster memberships by replacing each
pixel with the label of the cluster for which it attains the high-
est likelihood (see Fig. 2(d)). To enforce a small amount of
spatial smoothness in this representation, we apply a 3 � 3
maximum-vote filter to the raw cluster-membership image.
Finally, we run the resulting image through a connected-
components algorithm to produce a set of labeled image
regions (see Fig. 2(e)). (Alternatively, one could enforce
spatial constraints by appending the pixel coordinates to the
feature vectors, though we observed that this method too
often yields unsatisfactory segmentations.)

2.3 Describing the regions
We store a simple description of each region’s color,

texture, and spatial characteristics.

Color and texture descriptors
The two dominant colors within a connected component

are chosen by using the EM algorithm to fit a mixture of
two Gaussians in the HSV cone. The details are as before
except that in this case we restrict the covariances to be a
constant times the identity matrix. Upon convergence, the
two mean vectors are recorded as the dominant colors in the
region. When the color distribution inside the HSV cone
is in fact unimodal, both means become nearly coincident;
we have not found it necessary to apply model selection
between K = 1 and K = 2.

For each image region (blob) we store the mean texture
descriptors (i.e., anisotropy, orientation, contrast) and the
top two colors. We do not store the selected scale, since we
want to be invariant to scales in the range �k = 0; : : : ; 3:5.
Although polarity is used for scale selection, we discard it
here, since in any textured or uniform region it is approxi-
mately zero by virtue of the scale selection process.

Spatial descriptors
The geometric descriptors of the blob are simply the

centroid c and scatter matrix S of the blob region; the
centroid provides a notion of position, while the scatter
matrix provides an elementary shape description. In the
querying process discussed in Section 3.1, centroid sepa-
rations are expressed using Euclidean distance. The deter-
mination of the distance between scatter matrices, which is
slightly more complicated, is based on the three quantities
[det(S)]1=2 =

p
�1�2, 1 � �2=�1, and �. (�1 and �2 are the

eigenvalues and � the argument of the principal eigenvector
of S.) These three quantities represent approximate area,
eccentricity, and orientation.

(a) (b)

(e) (f)

(d)

(c)

Figure 2. Creating the blobworld representation. (a)
Original image. (b) Estimated scale using polarity-
based scale selection. The displayed values range
from � = 0 (black) to � = 3:5 (white). (c) The
six components of the color/texture feature vectors,
each of which is bounded between 0 (white) and 1
(black). The top images represent the three locally
smoothed HSV color-cone coordinates. The bottom
images represent the coordinates in texture space;
from left to right, we have ac, pc and c. The zebra
hide is highly anisotropic and in general has high
texture contrast. The polarity is largest around the
edges, where the shading gradient points primar-
ily in one direction. (d) The results of clustering
the feature vectors shown above into K = 2; 3; 4; 5
groups using EM to learn a mixture of Gaussians.
Pixel cluster memberships are shown as one of up
to �ve gray levels. Application of the MDL principle
suggests that the rightmost image (K = 5) provides
the best segmentation of the data. Most noticeable
in this segmentation are oriented texture, which is
found throughout the zebra hide, and tan, uniform
or low-contrast texture, which accounts for most of
the background. (e) The segmentation for K = 5
(as chosen by MDL) after application of a 3 � 3
max-vote �lter. The individual connected compo-
nents in this image which possess an area greater
than 2% of the total image area go on to produce
blobs. (f) The blobworld representation. Each blob
encodes summary information about the underlying
color, texture and shape properties.

5



3 Image retrieval by querying

Anyone who has used a search engine, text-based or oth-
erwise, is familiar with the reality of unwanted matches.
Often in the case of text searches this results from the use
of ambiguous keywords, such as “bank” or “interest” [28].
Unfortunately, with image queries it is not always so clear
why things go wrong. Unlike with text searches, in which
the user can see the words in a document, none of the cur-
rent content-based image retrieval systems allows the user
to see exactly what the system is looking for in response
to a similarity-based query. Simply allowing the user to
submit an arbitrary image (or sketch) and set some abstract
knobs without knowing how they relate to the input image
in particular implies a degree of complexity that searching
algorithms do not have. As a result, a query for a polar bear
can return just about any object under the sun if the query is
not based on image regions, the segmentation routine fails
to “find” the bear in the submitted image, or the submitted
image contains other distinctive objects. Without realizing
that the input image was not properly processed, the user can
only wonder what went wrong. In order to help the user for-
mulate effective queries and understand their results, as well
as to minimize disappointment due to overly optimistic ex-
pectations of the system, the system should visually display
its representation of the submitted image and the resulting
images.

3.1 Querying in blobworld

In our system, the user composes a query by submitting
an image to the segmentation/feature extraction algorithm in
order to see its blobworld representation, selecting the blobs
to match, and finally specifying the relative importance of
the blob features. The user may also submit blobs from
several different images. (For example, a query might be
the disjunction of the blobs corresponding to airplanes in
several images, in order to provide a query that looks for
airplanes of several shades.)

We define an “atomic query” as one which specifies a
particular blob to match (e.g., “like-blob-1”). A “compound
query” is defined as either an atomic query or a conjunc-
tion or disjunction of compound queries (“like-blob-1 and
like-blob-2”). We might expand this definition to include
negation (“not-like-blob-1”) and to allow the user to specify
two blobs with a particular spatial relationship as an atomic
query (“like-blob-1-left-of-blob-2”).

Once a compound query is specified, we score each
database image based on how closely it satisfies the com-
pound query. The score�i for each atomic query (like-blob-
i) is calculated as follows:

1. Find the feature vector vi for the desired blob bi. This
vector consists of the stored color, texture, position,
and shape descriptors.

2. For each blob bj in the database image:

(a) Find the feature vector vj for bj.

(b) Find the Mahalanobis distance between vi
and vj using the diagonal covariance ma-
trix (feature weights) set by the user:

dij =
�
(vi � vj)TΣ�1(vi � vj)

� 1
2 .

(c) Measure the similarity between bi and bj using

�ij = e�
dij

2 . This score is 1 if the blobs are
identical in all relevant features; it decreases as
the match becomes less perfect.

3. Take �i = maxj �ij .

The compound query score for the database image is cal-
culated using fuzzy-logic operations [15]. For example, if
the query is “like-blob-1 and (like-blob-2 or like-blob-3),”
the overall score for the image is minf�1;maxf�2; �3gg.
The user can also specify a weighting �i for each atomic
query. If “like-blob-i” is part of a disjunction in the com-
pound query, the weighted score is �0i = �i�i; if it is in a
conjunction, the weighted score is �0i = 1 � �i � (1 � �i).

We then rank the images according to overall score and
return the best matches, indicating for each image which
set of blobs provided the highest score; this information
will help the user refine the query. After reviewing the
query results, the user may change the weighting of the blob
features or may specify new blobs to match.

3.2 Results
We have performed a variety of queries using a set of

2000 images from the commercial Corel stock photo col-
lection. The images we used for these experiments include
airplanes, flowers, eagles, people, mountains, deserts, fields,
sunsets, night scenes, buildings, and a wide variety of ani-
mals. Sample queries are shown in Figs. 3–6.

4 Image retrieval by automatic classification
Another option for image retrieval is to design a system

that would examine the images in a collection and automat-
ically categorize each image or recognize particular objects
of interest. Such a system must use machine learning to
create some representation of the categories or objects; it
would not be practical for a designer to hand-code the hun-
dreds or thousands of classifiers that would be required for
an interesting system.We have performed experiments us-
ing a simple Bayes classifier [24] on a discretized version of
blobworld. Details can be found in [4].

6



Figure 3. Query for tiger images. 28% of the top 50
images are tigers; tiger images make up 5% of the
database.

Figure 4. Query for zebra images. 24% of the top 50
images are zebras, while less than 2% of the images
in the database are zebras.

Figure 5. Query for airplane images. 38% of the
top 50 images are airplanes (34% are eagles); 5% of
the database images are airplanes, 5% eagles.

Figure 6. Query for sunset images. 62% of the
top 50 images are sunsets; about 5% of the images
in the database are sunsets.

7



5 Conclusions
We have proposed a new method which uses Expectation-

Maximization on color and texture jointly to provide an
image segmentation, as well as a new image representation
(blobworld) which uses this segmentation and its associated
descriptors to represent image regions explicitly. We have
demonstrated a query mechanism that uses blobworld to
retrieve images and help guide user queries, and we have
presented results from the query system.

The most promising areas for future work are improved
segmentation and the more advanced shape description that
improved segmentation would make possible. Our current
shape features clearly do not encode all the spatial informa-
tion about the blob. “Stuff” properties and simple spatial
information alone are not enough to identify objects; a zebra
is fundamentally different from a striped awning, and shape
is the defining feature that differentiates the two. While
much work remains to be done in the field of shape descrip-
tion, some possibilities include perimeter-based descriptions
such as Fourier descriptors [14] and boundary-based foot-
print matching [16], moment-based approaches [14], and
body-plan recognition [8].

Acknowledgments
We would like to thank David Forsyth, Joe Hellerstein,

Ginger Ogle, and Robert Wilensky for useful discussions
related to this work.

References
[1] E. Adelson and Y. Weiss. A unified mixture framework for

motion segmentation: Incorporating spatial coherence and
estimating the number of models. In Proc. IEEE Comput.
Soc. Conf. Comp. Vision and Pattern Recogn., pages 321–
326, 1996.

[2] J. Ashley et al. Automatic and semiautomatic methods for
image annotation and retrieval in QBIC. In SPIE Proc. Stor-
age and Retrieval for Image and Video Databases, pages
24–35, 1995.

[3] S. Ayer and H. Sawney. Layered representation of motion
video using robust maximum-likelihood estimation of mix-
ture models and MDL encoding. In Proc. Int. Conf. Comp.
Vision, pages 777–784, 1995.

[4] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Recog-
nition of images in large databases using a learning frame-
work. Technical Report 97-939, U.C. Berkeley CS Division,
1997.

[5] J. Bigün. Local symmetry features in image processing. PhD
thesis, Linköping University, 1988.

[6] A. Dempster, N. Laird, and D. Rubin. Maximum likeli-
hood from incomplete data via the EM algorithm. J. Royal
Statistical Soc., Ser. B, 39(1):1–38, 1977.

[7] W. Förstner. A framework for low level feature extraction.
In Proc. Europ. Conf. Comp. Vision, 1994.

[8] D. Forsyth and M. Fleck. Body plans. In Proc. IEEE Comput.
Soc. Conf. Comp. Vision and Pattern Recogn., 1997.

[9] W. T. Freeman and E. H. Adelson. The design and use
of steerable filters. In IEEE Trans. Pattern Analysis and
Machine Intelligence, volume 13, pages 891–906, 1991.

[10] J. Gårding and T. Lindeberg. Direct computation of shape
cues using scale-adapted spatial derivative operators. Int. J.
of Comp. Vision, 17, Feb 1996.

[11] G. H. Granlund and H. Knutsson. Signal Processing for
Computer Vision. Kluwer Academic Publishers, 1995.

[12] H. Greenspan et al. Learning texture discrimination rules in
a multiresolution system. IEEE Trans. Pattern Analysis and
Machine Intelligence, 16(9):894–901, 1994.

[13] A. Gupta and R. Jain. Visual information retrieval. Comm.
Assoc. Comp. Mach., 40(5), May 1997.

[14] A. Jain. Fundamentals of digital image processing. Prentice
Hall, 1989.

[15] J.-S. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft
Computing. Prentice Hall, 1997.

[16] A. Kalvin et al. Two-dimensional model-based boundary
matching using footprints. Int. J. Rob. Res., 5:38–55, 1986.

[17] P. Kelly, M. Cannon, and D. Hush. Query by image exam-
ple: the comparison algorithm for navigating digital image
databases (CANDID) approach. In SPIE Proc. Storage and
Retrieval for Image and Video Databases, pages 238–249,
1995.

[18] T. Leung and J. Malik. Detecting, localizing and grouping
repeated scene elements from an image. In Proc. Europ.
Conf. Comp. Vision, 1996.

[19] J. Malik and P. Perona. Preattentive texture discrimination
with early vision mechanisms. J. Opt. Soc. Am. A, 7(5):923–
932, 1990.

[20] W. Niblack et al. The QBIC project: querying images by
content using colour, texture and shape. In SPIE Proc. Stor-
age and Retrieval for Image and Video Databases, 1993.

[21] V. Ogle and M. Stonebraker. Chabot: Retrieval from a re-
lational database of images. IEEE Computer, 28(9), Sep
1995.

[22] A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-
based manipulation of image databases. Int. J. of Comp.
Vision, to appear.

[23] J. Ponce, A. Zisserman, and M. Hebert. Object Represen-
tation in Computer Vision—II. Number 1144 in LNCS.
Springer, 1996.

[24] B. Ripley. Pattern Recognition and Neural Networks. Cam-
bridge University Press, 1996.

[25] J. Rissanen. Modeling by shortest data description. Auto-
matica, 14:465–471, 1978.

[26] L. Schiff, N. Van House, and M. H. Butler. Unpublished
study of image database users.

[27] U. Shaft and R. Ramakrishnan. Data modeling and querying
in the PIQ image DBMS. IEEE Data Engineering Bulletin,
19(4), Dec 1996.

[28] D. Yarowsky. Word-sense disambiguation using statistical
models of Roget’s categories trained on large corpora. In
Proc. Fourteenth Int. Conf. Computational Linguistics,pages
454–460, Aug. 1992.

8


