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Abstract

It is well known in the photometric stereo literature

that uncalibrated photometric stereo, where light source

strength and direction are unknown, can recover the surface

geometry of a Lambertian object up to a 3-parameter linear

transform known as the generalized bas relief (GBR) ambi-

guity. Many techniques have been proposed for resolving

the GBR ambiguity, typically by exploiting prior knowledge

of the light sources, the object geometry, or non-Lambertian

effects such as specularities. A less celebrated consequence

of the GBR transformation is that the albedo at each sur-

face point is transformed along with the geometry. Thus,

it should be possible to resolve the GBR ambiguity by ex-

ploiting priors on the albedo distribution. To the best of our

knowledge, the only time the albedo distribution has been

used to resolve the GBR is in the case of uniform albedo.

We propose a new prior on the albedo distribution : that

the entropy of the distribution should be low. This prior is

justified by the fact that many objects in the real-world are

composed of a small finite set of albedo values.

1. Introduction

A fundamental problem in machine vision is to recover

the surface geometry of an object given a set of input im-

ages taken of the object. In photometric stereo, first pro-

posed by Woodham [14], the illumination is varied in each

image while the camera and object remain fixed. When

the object is Lambertian and the illumination is a distant

point light source, the surface normal and albedo at each

position on the object’s surface can be recovered from as

few as three images if the light source positions are known

(assuming non-Lambertian effects like shadows and inter-

reflections are negligible). If the light source positions are

unknown, then the surface normals and albedo map can be

recovered up to a 3× 3 linear transformation using singular

value decomposition. Moreover, it has been shown that only

a 3-parameter subset of these transformations, known as the

Figure 1. An illustration of the effects of a GBR transformation on

the distribution of surface albedos. The top row shows the true

albedo distribution which is very peaked while the GBR trans-

formed (µ = 3, ν = 1.5, λ = 0.5) albedo distribution shown

in the bottom row is significantly spread out.

Generalized Bas-Relief (GBR) ambiguity, preserve surface

integrability [1, 10]. Thus, given three or more images of a

Lambertian scene acquired under light sources of unknown

direction and strength, the surface can be reconstructed up

to a GBR transformation by enforcing surface integrability

(using, for example, the algorithm of Yuille and Snow [15]).

To resolve the GBR ambiguity, additional constraints must

be imposed.

Prior works on resolving the GBR ambiguity involve as-

sumptions about (a) the light sources [15], (b) the distri-

bution of albedos on the surface [1, 8], (c) the surface re-

flectance [1, 8, 4], and (d) the geometry of the surface [3, 7].

Yuille and Snow [15] assume knowledge of light source in-

tensities, while several algorithms [1, 8] assume constant

albedo over the entire surface to resolve the parameters of

the GBR. Drbohlav and Sara [4] assume non-Lambertian

reflectance, and recover the parameters of the GBR by as-

suming that the surface normal corresponding to a specular

highlight bisects the viewing direction and the light source

direction. Georghiades [6] shows that the GBR can be re-

solved by assuming that the reflectance of the surface is

well described by the Torrance-Sparrow reflectance model.

Georghiades et al. [7] use priors on surface geometry, while



Chandraker et al. [3] assume that the surface geometry leads

to interreflections which can then be utilized to resolve the

GBR.

In this paper, we propose a novel technique for resolving

the GBR ambiguity based on minimization of the entropy of

the recovered albedos. The hypothesis is based on the ob-

servation that in general the GBR transformation smears the

distribution of albedos. For example, if the albedo is con-

stant over the entire surface, the distribution of the albedos

is a delta function with zero entropy. After a GBR trans-

formation, the observed albedo distribution is a function of

the surface geometry and the GBR parameters, and is there-

fore no longer constant across the surface. This smearing of

the albedo values in turn increases the entropy of the albedo

distribution (see Figure 1).

This paper makes the following contributions,

– Presents an intuitive conjecture that the GBR can be

resolved by minimizing the entropy of the GBR trans-

formed albedos.

– Proves the above conjecture under certain assumptions

about the distribution of normals and albedos.

– Empirically shows that the above conjecture has excel-

lent performance on synthetic as well as real images.

– Identifies degenerate configurations of the surface nor-

mals and the albedos for which the conjecture fails to

resolve the GBR.

2. Background

2.1. Photometric Stereo

The classical photometric stereo algorithm assumes

a Lambertian surface illuminated by distant point light

sources and viewed by an orthographic camera. Consider

acquiring M images, each taken with a different lighting

configuration, with N pixels in each image. Ignoring shad-

ows and interreflections, the image intensity at the ith pixel

in the jth image is given by,

Iij = ρin
⊤

i sj (1)

where ρi and ni are the albedo and surface normal at the

ith pixel position and sj encodes the magnitude and direc-

tion of the jth directional light source. To simplify analysis,

we find it convenient to express Equation 1 in matrix form.

Stacking the pixels in each image row-wise and the images

column-wise, we get

I = BS (2)

where,

– I ∈ R
N×M stores the pixels from all input images.

Each column contains the set of pixels from a single

image, and each row corresponds to a different lighting

condition.

– B ∈ R
N×3 encodes the surface normal/albedo at each

pixel. The ith row corresponds to the product of the

albedo with the surface normal vector at the ith pixel;

i.e., Bi,: = ρin
⊤

i .

– S ∈ R
3×M encodes the light source direction and in-

tensity for each image. The jth column contains the

jth light source vector sj .

If S is known, B can be obtained by solving the over-

constrained linear system in Equation 2. On the other hand,

if S is unknown, B and S can be recovered only up to a

GBR transformation as mentioned in Section 1.

2.2. The Generalized BasRelief Ambiguity

Consider a Lambertian surface defined by a height map

z = f(x, y) and albedo map ρ(x, y) with surface normal

n =
(− ∂z

∂x
,− ∂z

∂y
,1)

q

( ∂z
∂x

)2+( ∂z
∂y

)2+1
. Then a GBR transformation has the

following effect on the albedo and surface normal,

ρ̂ = ρ‖n⊤
G

−1‖ n̂
⊤ =

n
⊤
G

−1

‖n⊤G−1‖
(3)

where ρ̂, n̂, and G are the transformed albedo, transformed

surface normal, and GBR transformation matrix respec-

tively. A GBR transformation depends on three parameters

µ, ν, and λ and has the following form [1],

G =





1 0 0
0 1 0
µ ν λ



 ; G
−1 =

1

λ





λ 0 0
0 λ 0
−µ −ν 1



 . (4)

In terms of Equation 2, a GBR yields transformed B and S

matrices,

I = BG
−1

GS = B̂Ŝ. (5)

3. Entropy Minimization

Differential entropy is a natural measure of the ”peaki-

ness” of a probability density function f and is defined as

H(f) = −

∫

S

f(x) log (f(x))dx (6)

where S is the support of f (ie, f(x /∈ S) = 0,∀x). Entropy

minimization has been previously used in vision algorithms

to estimate parameters that result in a peaky distribution of

some observed quantity. Finlayson et al. [5] use an intuitive

argument to justify the use of entropy minimization to es-

timate the direction of projection in log-chromaticity space



for obtaining an intrinsic image. Similarly, entropy has been

used to define a prior in unsupervised clustering when the

number of clusters are not known [11].

In the following subsection, in addition to providing in-

tuitive arguments in support of minimizing the entropy for

resolution of the GBR parameters, we prove that under cer-

tain assumptions about the distribution of the albedos and

the surface normals, the minimum entropy solution is lo-

cally optimal.

3.1. An Entropy Based Cost Function

A large percentage of man-made (for example, toys) and

natural objects (for example, fruits and vegetables) are com-

posed primarily of a small set of dominant albedo values1.

The probability density function (pdf) of the albedos of such

objects will be very close to the sum of a set of delta func-

tions. Even the objects that don’t consist of a small set of

dominant albedos (for example, human skin) will typically

have pdf’s that are peaked (i.e., it is very uncommon for an

object to have a truly uniform set of albedos).

Equation 3 suggests that the distribution of GBR trans-

formed albedos depends on the the distribution of the true

albedos as well as the distribution of γ = ‖n⊤
G

−1‖. In the

absence of a GBR transformation (i.e. G = I3×3), the pdf of

γ is a delta function centered at one (i.e. δ(γ−1)). The GBR

has the effect of smearing this delta function, and thereby

increasing the entropy of the distribution of the GBR trans-

formed albedos. To motivate this, Figure 2 shows the effects

of a few GBR transformations on both the surface geome-

try and the albedo distribution of a synthetic surface. For

this surface, GBR transformations clearly smooth out the

distribution of albedos.

3.2. The kAlbedo Configuration

We now consider a special case when the minimum en-

tropy solution is a local optimum. Consider an object con-

sisting of k different albedo values ρi where i = 1...k,

and ρi+1 > ρi ∀i. Let αi denote the fraction of all pix-

els that have albedo ρi, and ni denote the set of normals

at these pixels. Note that
∑k

i=1 αi = 1. We assume that

the corresponding sets of surface normals ni are identi-

cally distributed on a Gauss sphere for all i = 1...k. This

implies that after GBR transformation, the density of the

term γi = ‖n⊤

i G
−1‖ will be identical to the density of

γj = ‖n⊤

j G
−1‖ for all i, j = 1...k. The density of the true

albedos can be written as

fρ(x) =
k

∑

i=1

αiδ(x − ρi) (7)

1In fact, in a recent work [9], a lower hue count in images was used as

a measure of good quality.

and the entropy can be written as

H(fρ) = −

k
∑

i=1

αi log αi (8)

In the presence of a GBR transformation, the density of

γi = ‖n⊤

i G
−1‖ is no longer a delta function. For simplicity

of derivation, we assume that fγ represents the distribution

of any γi i = 1...k after the GBR transformation (recall that

each γi is identically distributed). We also assume that fγ

is a small perturbation of the delta function, and has finite

support. In other words,

fγ(x) = 0, x /∈ [1 − ∆, 1 + ∆] (9)

and,

∫ 1+∆

1−∆

fγ(x) dx = 1. (10)

The GBR transformed albedo ρ̂ can be treated as a product

of two independent random variables ρ and γ. Therefore

the probability distribution of ρ̂ can be written as [13],

fρ̂(y) =

∫ ∞

0

fρ(x)fγ

(y

x

) 1

x
dx

=

∫ ∞

0

k
∑

i=1

αiδ(x − ρi)fγ

(y

x

) 1

x
dx

=

k
∑

i=1

αi

ρi

fγ

(

y

ρi

)

(11)

where, fγ is the same for all values of i owing to identical

distribution of ni and nj for all i, j = 1...k over the Gauss

sphere.

The entropy of the distribution of the GBR transformed

albedos can be written as

H(fρ̂)

= −

∫ ∞

0

k
∑

i=1

αi

ρi

fγ

(

y

ρi

)

log





k
∑

j=1

αj

ρj

fγ

(

y

ρj

)



 dy.

(12)

If ∆ < ρi+1−ρi

2(ρi+1+ρi)
holds for i = 1...k − 1, then the distri-

butions of transformed albedos corresponding to two differ-

ent albedos will not overlap2. Under this condition, Equa-

2This follows since (1−∆)ρi+1 > (1 + ∆)ρi.



Figure 2. The effect of GBR transformations on a two albedo surface f(x, y). (Top row) A GBR transformed surface, f̃(x, y) =
(x, y, f(x, y))G⊤ with albedo ρ̃ = ‖ñ⊤

G
−1‖. (Bottom row) The histogram of GBR transformed albedo values.

tion 12 can be re-written as,

H(fρ̂)

= −
k

∑

i=1

αi

ρi

∫ (1+∆)ρi

(1−∆)ρi

fγ

(

y

ρi

)

log
αi

ρi

fγ

(

y

ρi

)

dy

= −
k

∑

i=1

αi

∫ (1+∆)ρi

(1−∆)ρi

fγ

(

y

ρi

)

log fγ

(

y

ρi

)

d
y

ρi

−

k
∑

i=1

αi log αi +

k
∑

i=1

αi log ρi

= H(fρ) + H(fγ) +

k
∑

i=1

αi log ρi. (13)

Therefore the entropy of the distribution of the transformed

albedos is greater than the entropy of the distribution of the

correct albedos when H(fγ) +
∑k

i=1 αi log ρi > 0.

3.3. Degenerate Configurations

In the previous section we showed that minimum entropy

solution corresponds to the correct solution under certain

assumptions. Empirical evidence suggests that the mini-

mum entropy hypothesis works for a wide variety of con-

figurations. However, we have theoretically identified de-

generate cases in which the distribution of surface normals

and the surface albedo conspire such that the entropy of the

distribution of the GBR transformed albedos is lower than

or equal to the entropy of true albedo distribution.

Consider the image of a polyhedron with k visible faces,

and let ni be the normal associated with the ith face. The

transformed albedo of the ith face is

ρ̂i = ρi‖n
⊤

i G
−1‖ (14)

where, ρi is the albedo associated with the ith face, and G

is the GBR transform. Given a GBR G and a collection of

normals ni i = 1...k, the ith face of the polyhedron can

be painted with albedo ρi = 1/‖n⊤

i G
−1‖ so that all GBR

transformed albedos have value equal to unity, and their dis-

tribution is a delta function and the entropy is minimum.

This is clearly a degenerate configuration.

Consider a second case in which the surface is a plane,

and it contains k distinct albedos. It is easy to see that under

this condition, the distribution of ρ̂ is a sum of k delta func-

tions, regardless of what GBR transform is chosen. There-

fore, this configuration is also degenerate, and entropy does

not provide information about the GBR.

4. Experimental Validation

To empirically validate that the minimum entropy solu-

tion indeed resolves the GBR, we formulate an optimiza-

tion algorithm that solves for the parameters of the GBR

(µ, ν, and λ) given an uncalibrated set of surface normals

and albedos. Our experiments consist of the following high-

level steps,

– Photograph or render multiple images of a Lambertian

object under different lighting conditions.

– Recover the surface and light sources I = B̂Ŝ up to a

GBR transformation using the algorithm of Yuille and

Snow [15].

– Find the GBR parameters that minimize the entropy of

the albedo distribution and apply the GBR to recover

the true surface ρin
⊤

i = Bi = B̂iG.

– Validate the solution by comparing to calibrated pho-

tometric stereo results.



The following subsections describe our methodology in

more detail.

4.1. Approximating the Differential Entropy

In Section 3 we assumed knowledge of the underlying

probability density function of ρ̂. In practice, we have mea-

surements of this quantity at each pixel location and seek

to approximate the underlying distribution using these sam-

ples. While there are many powerful methods for approxi-

mating continuous distributions from samples (e.g., Parzen

windows, the mean-shift algorithm, kernel based estima-

tors, etc.), for the purpose of computing entropy we find

it sufficient to use a histogram approximation.

Histograms are beneficial because (1) they are simple to

generate from sampled data and (2) the entropy of a his-

togram can be computed as a discrete summation instead

of an integral. These properties are particularly important

in our case since we need to evaluate the entropy of the

albedo distribution under many different GBR transforma-

tions. Consider an m-bin histogram {ai}, i = 1...m gen-

erated from n i.i.d. samples with underlying distribution f .

Then the simplest estimator of the entropy H(f) is,

ĤMLE(f) = −

m
∑

i=1

ai

n
log

ai

n
(15)

which is the maximum likelihood estimator of H(f) given

its histogram. While ĤMLE(f) can exhibit significant

bias3, its variance is typically low and thus should be well

suited in a minimization framework.

A downside to using histograms is that the number of

bins and the support region must be chosen appropriately.

For the purpose of comparing albedo distributions we fix

the number of bins to some constant (256 bins were used

for most of the experimental results shown in Section 4.4).

Moreover, since we don’t want to overly favor distributions

with narrow support, we set the support to the range of the

albedo samples.

4.2. Optimization

We now turn to the problem of finding the GBR param-

eters µ, ν, and λ that minimize the entropy of the albedo

distribution. Let {b̂i = ρ̂in̂i}, i = 1...N be a set of

GBR transformed surface normals scaled by the GBR trans-

formed albedo. Then, under a proposed set of GBR pa-

rameters encoded in matrix G̃, the obtained set of albe-

dos is {ρ̃i = ‖b̂iG̃‖} from which the entropy H(fρ̃) ≃

ĤMLE(hist(ρ̃)) can be estimated as described in Section

4.1. The first thing to note is that the entropy estimate is

neither convex, nor differentiable with respect to the GBR

parameters. Given these facts, it seems finding the minima

3See [12] for a bias corrected estimator.

will be very difficult. Luckily, the number of parameters is

low and the error surface is empirically smooth. Moreover,

by making weak assumptions on the surface geometry or

lighting configuration we can bound the parameters. Empir-

ically, we find that the GBR parameters induced by the un-

calibrated photometric stereo algorithm very rarely exceed

an absolute value of 5 – even with varied light source in-

tensity. Also, because of the concave/convex ambiguity, we

can restrict λ to be positive. Based on these observations,

we restrict our search space throughout our experiments to,

−5 ≤ µ ≤ 5

−5 ≤ ν ≤ 5

0 ≤ λ ≤ 5.

Given these bounds on the parameters, along with our

observation of smoothness in the error surface, we solve for

the GBR parameters using discrete search with coarse-to-

fine refinement. The algorithm works by iteratively sam-

pling the error function at uniform positions within the pa-

rameter space. At each iteration, the bounds are tightened

and centered around the best solution found in the previous

iteration. This process continues until the sampling interval

falls below some threshold. While other strategies such as

simulated annealing could also have been used, we found

that our method worked well enough to find an optimum in

most cases4.

4.3. Image Acquisition and PreProcessing

Prior to using any input images, we perform a num-

ber of pre-processing steps. First of all, whenever possi-

ble we remove ambient lighting by subtracting each image

from an ambient image. Next, we generate a mask image

to isolate the object from the background. This is either

done manually or automatically using thresholding. Once

this is done, we randomly scale each image by a scalar be-

tween 0.5 and 1.5. This has the effect of randomizing the

light source magnitude, which is important because many

datasets are collected using uniform magnitude which can

resolve the GBR. By randomizing the intensities we can be

certain that our algorithm is not taking advantage of uniform

light source magnitude.

After this step, we compute a visibility matrix, V, which

is used to reduce the effect of outlier pixels in the input im-

ages. V is the same size as the image matrix I and takes

value 1 if the corresponding pixel in I is an inlier or value

0 if the corresponding pixel is an outlier. We compute the

visibility matrix by excluding pixels that don’t lie close to

the linear subspace predicted by the Lambertian model (this

can be done using SVD).

4Depending on the “coarseness” of the search grid, as well as the num-

ber of samples, the optimization takes anywhere from a few minutes to a

few hours.



Next we perform uncalibrated photometric stereo on the

set of input images, discounting pixels masked by V 5,

which yields a set of GBR transformed surface normals and

albedos. Prior to searching for the GBR parameters as de-

scribed in Section 4.2, we aggressively filter any surface

points that could be outliers. This includes edge points (in

any image) as well as points that do not lie close to the pre-

dicted Lambertian subspace. Finally, we search over the

GBR parameter space to find GBR that minimizes the en-

tropy of the albedo distribution.

4.4. Results

We show results on three datasets. Figure 4 shows the

reconstruction of a synthetically generated Stanford bunny.

There are a total of 6 input images in this dataset, each ren-

dered in Povray with a different light source position. As is

clearly seen in the figure, the output of the uncalibrated pho-

tometric stereo algorithm results in an extremely flat distri-

bution of albedos. More importantly, our optimization rou-

tine clearly finds the correct GBR parameters.

Our second dataset consists of 15 images from the YaleB

face database [7]. Looking at figure 5, two things are note-

worthy : first, our minimum entropy solution appears qual-

itatively better than the reconstruction obtained from cali-

brated photometric stereo. For example, the calibrated pho-

tometric stereo result is clearly skewed in the x direction,

while the minimum entropy solution is not. We conjecture

that slight errors in the the light source vectors are bias-

ing the reconstructed surface in this case. There are also

many shadow and non-Lambertian effects in these images

that may be affecting the calibrated case. These results em-

pirically show that the albedo entropy can resolve the GBR

for images consisting of k albedos as well as more general

albedo distributions such as human faces.

Finally, Figure 6 shows the output of our algorithm on a

real surface with two albedos.

5. Conclusion

This paper presents an algorithm to resolve the General-

ized Bas-Relief ambiguity based on a novel prior on the ob-

served albedos. In addition to providing an intuitive reason-

ing in favor of entropy minimization for estimation of GBR

parameters, we show that entropy minimization provides

provably correct results under certain assumptions about the

surface normal and albedo distribution. Finally, we validate

our results on real and synthetic data.
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Figure 3. Input images. (Top row) Three of the 6 synthetic in-

put images used to generate the results in Figure 4. (Middle row)

Three of the 15 images (obtained from the Yale face database)

used to generate the results in Figure 5. (Bottom row) Three of the

5 input images used to generate the results in Figure 6.
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Figure 6. Results from (non-synthetic) images of a fish.


