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tMany approa
hes to visual servoing and mobilerobot navigation are based on tra
king feature pointsor landmarks in images. But are all features pointsequally e�e
tive as landmarks? Here we develop meth-ods for sele
ting within an image those landmarkswhi
h are both per
eptually salient and visually dis-tin
tive, and 
onsequently are readily re
ognized in ase
ond image a
quired from a di�erent viewpoint. Em-piri
ally, we 
hara
terize the performan
e of the re
og-nition method and then demonstrate that the sele
tionpro
ess does in fa
t 
hoose the landmarks whi
h aremore likely to be re
ognized.1 Introdu
tionNearly all approa
hes to visual servoing are basedon tra
king feature points in an image sequen
e that
orrespond to the proje
tion of viewpoint independentfeatures of the 3-D s
ene or obje
t [5, 6, 14℄. Sim-ilarly, numerous approa
hes to vision-based mobilerobot navigation re
ognize and possibly tra
k land-marks [1, 7, 9, 12, 18℄. Ex
ept within spe
i�
 ap-pli
ations, most visual servoing implementations haveeither used a 
atalogue of model/appli
ation spe
i�
landmarks or relied on a person to initialize tra
king.In most mobile roboti
s implementations, the robot'slandmark re
ognition system is provided with a 
ata-logue of domain-spe
i�
 re
ognizable landmarks (e.g.lane boundaries, 
eiling light, bar 
odes, door edges,et
.). Re
ently, it has be
ome possible to tra
k atframe rates a modest number of features (on the orderof a dozen) on 
onventional personal 
omputers usingfor example X-vision [2℄. Yet in a s
ene or for an obje
tof interest, there may be hundreds or thousands of fea-ture points whi
h 
ould serve as landmarks. In fa
t,part of the pro
ess of most feature-based stru
ture-from-motion algorithms is to establish 
orresponden
eamongst a large number of features. For real-timerobot 
ontrol using 
urrent methods, only a fra
tionof the possible features 
an be 
onsidered and tra
ked.

Hen
e, one must sele
t from the plethora of 
andidateimage lo
ations, those features whi
h are very \tra
k-able" (salient) and readily re
ognized (distin
tive).In this paper, we address the problem of sele
t-ing from a single mono
hrome image those landmarkswhi
h are both salient and distin
tive. By salient,we mean that the landmark should readily \pop out"from the ba
kground by some dete
tion me
hanism.By distin
tive, we mean that the landmark is unlikelyto be 
onfused during re
ognition. For example, ared �re extinguisher is likely to salient in almost anyenvironment sin
e it stands out from its ba
kground.However, it would be a dismal landmark in a �re ex-tinguisher fa
tory be
ause even thought ea
h extin-guisher might stand out from the ba
kground, it wouldbe diÆ
ult to distinguish one extinguisher from an-other.Our methods are task and domain independent.This is both a strength and a weakness. By beingdomain-independent, the same method should applyto robots wandering indoors or outdoors. Yet there ismore to \what makes a good landmark" than per
ep-tion, and the set of 
hosen landmarks must be usefulfor the task. On the other hand, in
orporating do-main and task spe
i�
 
onstraints 
an fa
ilitate thelandmark sele
tion. On the whole, while domain andtask spe
i�
 visual 
ontrol methods have yielded im-pressive performan
e in the laboratory, these methodsare often brittle in pra
ti
e, and so we 
hoose to fo
uson domain-independent sele
tion methods here.There is too wide a literature on feature tra
k-ing, visual servoing, and landmark-based navigation tosummarize here. There have also been a few papers onthe pro
ess of sele
ting useful features points or land-marks in image data [12, 15, 18, 19, 20℄. However,this approa
h is very strongly motivated by the imagedatabase indexing and re
ognition work of S
hmid andMohr [10, 11℄ whi
h in turn builds on [16, 17℄.



2 Re
ognizing and Sele
ting Land-marksMany methods for tra
king have been developed in-
luding 
orner tra
king, line tra
king, region tra
king,blob tra
king, 
olor tra
king, 3-D model tra
king, et
.In general, tra
kers 
ontinually estimate some param-eter ve
tor representing some attributes of the tra
kedobje
t (e.g. image lo
ation, s
ale, lighting, 3-D pose,shape, et
.) whi
h are presumed to be varying 
ontin-uously. One 
lass of tra
kers that is parti
ularly usefulfor robot navigation provides over time the image lo
a-tion of the proje
tion of a lo
al (small) region or pointof a 3-D s
ene. Tra
king a modest number of su
h fea-tures 
an be used to lo
alize the robot, navigate usingvisual servoing, or re
ognize a pla
e. Typi
ally, thelo
al region is represented by a template. When tra
k-ing, a region of an image is sear
hed for the lo
ationwhi
h minimizes the sum of squared di�eren
es (SSD)between the template and the image intensities aboutthe lo
ation. Due to 3-D viewpoint 
hanges however,the image pattern will di�er from the template, andthis is sometimes modeled as an aÆne image warp [2℄.Here, our goal is to sele
t distin
tive templates(landmarks) from one image whi
h 
an be readily re
-ognized in a se
ond image a
quired from a di�erentviewpoint. Let the irradian
e (intensity) a
ross theimage plane be denoted by I(x; y) where x and y arethe image 
oordinates.Sin
e we are interested in tra
king the proje
tion ofpoint-like features, we 
an 
hara
terize I(x; y) lo
allyabout a point (x0; y0) by its di�erential stru
ture. Inparti
ular, 
onsider the ve
tor of partial derivatives upk-th order whi
h is known as the k-jet; for example,the 2-jet of I(x; y) is given by:F(x; y) = 26666664 IIxIyIxxIxyIyy
37777775The k-jet or some fun
tion of the k-jet 
an serveas a representation of a landmark. We now sum-marize the basi
 landmark sele
tion and re
ognitionmethod whi
h dire
tly follows elements of the re
og-nition method of S
hmid and Mohr [10℄. To sele
t thelandmarks:1. A dete
tor is applied to the entire image to se-le
t potential landmarks whi
h should be readilytra
ked (salient).

2. The potential landmarks are 
hara
terized by afeature ve
tor derived from the k-jet.3. The potential landmarks are ordered by distin
-tiveness, and the most distin
tive ones are re-tained.Similarly, the landmarks are re
ognized in a se
ondimage:1. The same dete
tor is applied to the image, butwith lower thresholds, to identify 
andidate lo
a-tions of landmarks.2. Ea
h 
andidate is again 
hara
terized by a featureve
tor 
omputed from the K-jet.3. Ea
h sele
ted landmark is re
ognized by nearestneighbor 
lassi�
ation using a Mahalanobis dis-tan
e.2.1 DetailsThe motivation for separating the sele
tion pro
essinto two steps with the two 
riteria of salien
y and dis-tin
tiveness is 
omputational 
ost. To sort l 
andidatelandmarks based on their distin
tiveness requires 
om-puting the similarity of all pairs of landmarks whi
h isO(l2). Without a pro
ess for presele
ting salient fea-tures, l 
ould be the number of pixels n in an image,approximately 300,000. Instead, a set of suÆ
ientlysalient landmarks, whi
h are expe
ted to be readilytra
ked, are dete
ted in the image using an O(n) pro-
ess. Typi
ally a few hundred potential landmarks aredete
ted, and the most distin
tive ones are sele
tedamongst the l � 200 
andidates.Following [10℄ 
andidate landmarks are dete
ted us-ing the Harris 
orner dete
tor [3℄ whi
h 
an be viewedas a su

essor to Morave
's interest operator [8℄. Thebasi
 idea of the Harris dete
tor is to 
ompute a 
or-nerness measure 
(x; y) from I(x; y) whi
h essentiallydetermines the prin
ipal 
urvatures of the auto
orre-lation fun
tion; feature lo
ations are taken as thoselo
ations p = (x; y) whi
h are lo
al maxima of 
(x; y)and ex
eed a threshold �h.The neighborhood of ea
h feature lo
ation p 
anthen be 
hara
terized by its k-jet. However, the k-jet 
learly depends on the lo
ation and orientation ofthe 
amera. To model the possible 
hanges to theimage pattern and to the k-jet, let us assume thatI(x; y) in the neighborhood of p is the proje
tion of aplanar Lambertian surfa
e with non-
onstant albedo.It is well known that the 
hange of 
oordinates be-tween images of a plane a
quired at di�erent view-points is a proje
tive transformation. However whenthe neighborhood is small, the 
hange of 
oordinates



in the neighborhood 
an be approximated by an aÆnetransformation p0 = Ap+ t. The e�e
t of A 2 GL(2)
an be 
hara
terized as a 
ombination of rotation, in-dependent s
aling along the axis, and shearing, whilethe e�e
t of t is 
learly to translate the pattern. As-suming that the dete
tor's response is insensitive toA (this has been 
on�rmed for the Harris dete
tor formoderate values of A in [11℄), then we are really onlyinterested in 
hara
terizing the 
hanges to the k-jetunder linear transforms A.Two possibilities are to either model the variationin the k-jet as a fun
tion of A or 
ompute a fun
tion ofthe k-jet whi
h is invariant to A; we 
hoose the later.If the 
amera motion is 
onstrained or if elements ofthe 
amera motion 
an be dire
tly measured, then wemay only be interested in invarian
e to 
ertain sub-groups of GL(2), e.g. image plane rotations, SO(2).As dis
ussed in [16, 17℄, one 
an 
ompute fun
tions ofthe K-jet whi
h are invariant to di�erent subgroupsof A, so 
alled di�erential invariants of I(x; y). Forexample, the following 
omplete set of 3rd-order dif-ferential invariants under SO(2) was used by S
hmidand Mohr [10℄ and will be used below:
Fr(x; y) =

2666666666666664
IIxIx + IyIyIxxIxIx + 2IxyIxIy + IyyIyIyIxx + IyyIxxIxx + 2IxyIxy + IyyIyyIxxxIyIyIy � 3IxxyIxIyIy + 3IxyyIxIxIy�IyyyIxIxIxIxxxIxIyIy � 2IxxyIxIxIy + IxxyIyIyIy�2IxyyIxIyIy + IxyyIxIxIx + IyyyIxIxIyIxxxIxIxIy + 2IxxyIxIyIy � IxxyIxIxIx�2IxyyIxIxIy + IxyyIyIyIy � IyyyIxIyIyIxxxIxIxIx + 3IxxyIxIxIy + 3IxyyIxIyIy+IyyyIyIyIy

3777777777777775Of 
ourse, one 
an use similar di�erential invari-ants for other possibly relevant subgroups of GL(2),e.g. rotation and s
ale 
hanges, slant and s
ale, et
.In general, a K-jet at a point is represented as a ve
torwith 1=2(k + 1)(k + 2) independent elements. For asubgroup with d degrees of freedom, the resulting dif-ferential invariant is 
omposed of 1=2(k+1)(k+2)�delements. If the 
amera/obje
t motion is restri
ted,than it may be bene�
ial (lower error rates) to 
hoosea subgroup with fewer degrees of freedom. This trade-o� will be seen in Se
tion 3Sin
e digital images are dis
rete, one needs a meansto 
ompute the partial derivatives determining the k-jet. As is 
ommon pra
ti
e, the dis
rete values are in-terpolated with a Gaussian, and derivatives are takenwith respe
t to the interpolated signal. This is a

om-plished by �ltering the image with a kernel given bypartial derivatives of a Gaussian with some varian
e

�. The 
hoi
e of the Gaussian kernel and the result-ing s
ale spa
e for di�erent 
hoi
es of � is dis
ussedin [16℄.To 
ompare two feature points p1 and p2 dete
tedin two images, whi
h are des
ribed by a feature ve
torsf1 and f2 (feature ve
tor f i 
ould be 
omputed fromF(pi) orFr(pi)), we determine their Mahalanobis dis-tan
e d(p1;p2) = (f2 � f1)t��1(f2 � f1): (1)The 
ovarian
e matrix � is taken as the pooled 
o-varian
e of the feature ve
tor 
omputed from 
 
or-responding points, ideally a
quired over many imagepairs having the range of 
onditions and features ex-pe
ted in the appli
ation domain. In our experiments,it was 
omputed from 21 pairs of images with about80 features per image. The 
ovarian
e matrix is 
om-puted as: � = nXi=1(f2i � f1i )(f2i � f1i )t:Re
ognition of landmark p1 is then simply determinedby �nding the feature in the se
ond image whose Ma-halanobis distan
e to f1 is smallest.This also suggests a method for determining themost distin
tive landmark. Assuming that the ex-pe
ted variation of a landmark's des
ription as a fea-ture ve
tor is well 
hara
terized by the 
ovarian
e ma-trix �, then two landmarks whose Mahalanobis dis-tan
e is small are more likely to be 
onfused (mis
las-si�ed) in other images than two landmarks whi
h arefar apart. For a set of landmarks P = fpjg, this sug-gests a distin
tiveness measure for a landmark pi 2 P .Æ(pi) = minpj2P;pi 6=pj d(pi;pj) (2)The set of 
andidate landmarks 
an be sorted by Æ(pi)where the most distin
tive landmark has the largestvalue of Æ(pi).3 Experimental resultsA series of experiments has been performed to 
har-a
terize the performan
e of the re
ognition methodand to assess the utility of sele
ting the most per
ep-tually distin
tive landmarks.3.1 Experimental proto
olThree sets of images were gathered with amono
hrome 
amera mounted on a Nomadi
s Super-s
out mobile robot. The algorithms were implementedin Matlab. In the �rst sequen
e, the robot moved
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RobotFigure 1: Experimental Setup: As the robot moved in10
m steps along the two traje
tories (a straight lineaway from the s
ene, and along a 
ir
ular ar
 with the
amera pointing toward the s
ene), 25 images werea
quired.along a 2.5m linear traje
tory away from the s
ene,and images were a
quired every 10
m; �gure 2 showsfour images from the sequen
e. The se
ond sequen
eof twenty �ve images of the same s
ene was a
quiredas the robot moved along a 
ir
ular ar
 as shown inFigure 1. The third sequen
e was a
quired by rotatingthe 
amera about the opti
al axis in 15 degree steps.3.2 Landmark Re
ognitionThe goal of the �rst set of experiments is to 
har-a
terize the performan
e of the landmark re
ognitionpro
ess over the three sequen
es of images. From thelinear sequen
e of 25 images, we 
onsidered pairs thatwere 20
m, 30
m,...,100
m apart; for ea
h separation,sele
tion and re
ognition was performed on 15 pairs,and the results were averaged.Though most landmarks are 
orre
tly re
ognized,some are in
orre
tly mat
hed. Be
ause of the largenumber of landmark re
ognition tests being performed(e.g. ea
h data point in Figure 4 represents the mat
hof 750 landmarks), manual evaluation of the resultsis nearly impossible. And sin
e ground truth is un-available, we use the following automati
 evaluationmethod. Given two images, the epipolar geometry isdetermined using a variant of Zhang's algorithm [21℄whi
h is based on the Hartley's 8-point algorithm [4℄for estimating the fundamental matrix and RANSACto be robust to outliers. We 
onsider a sele
ted land-mark and the 
orresponding re
ognized landmark to

Figure 2: Four images of the sequen
e in whi
h therobot moved along a linear traje
tory in 10
m steps.be false mat
hes if they do not lie within two pixels ofthe 
orresponding epipolar lines. Clearly, this fails todete
t false mat
hes when they happen to lie on thesame epipolar line, but 
onsidering that our imageshave 480 rows, only about 1% of the false mat
heswill be mislabelled. In addition, some of the sele
tedlandmarks will not be re
ognized in the se
ond image;in some 
ases, they are not dete
ted or the Maha-lanobis distan
e ex
eeds a threshold, but more oftenthe sele
ted landmark is not present in the se
ond im-age due to o

lusion or the 
hange in the �eld of view.Unfortunately, there is no automati
 way to as
ertainthe 
ause of the la
k of a mat
h, and so we report theerror rate as the total number of in
orre
t mat
hesdivided by the number mat
hed landmarks.Two di�erent feature sets were used for landmarksele
tion and re
ognition, the third order k-jet andthe rotation invariant. Figure 6 shows a pair of im-ages with the sele
ted and re
ognized landmarks whileFigure 4 shows a plot of the error rate for landmarkre
ognition over the linear image sequen
e. Not sur-prisingly, the error rate in
reases with the separationbetween the 
amera positions. Figure 5 shows the er-ror rates for image pairs over the ar
 of 
amera posi-tions. Figure 6 shows a pair of images with the sele
tedand re
ognized landmarks, while Figure 7 shows theerror rates for images where the 
amera rotated aboutthe opti
al axis.Interestingly, for the linear and ar
 sequen
es theerror rate is higher when the invariants were used thanwhen just the k-jets were used. For a mobile robotmoving along the ground, there is little roll in the




amera motion, and so it seems that the loss of in-formation by redu
ing the feature spa
e from 10 in-dependent elements to 9 elements has an impa
t onre
ognition performan
e. On the other hand, whenthere is signi�
ant rotation about the opti
al axis, theperforman
e of the k-jet's was dismal whereas it wasmu
h better with the invariants. The 
lear lesson isto 
hoose fun
tions that are invariant to the expe
tedtransformation group, but not to a larger group.3.3 Landmark Sele
tionTo test the sele
tion of per
eptually distin
tivelandmarks, we performed the following test. The land-marks were sorted by distin
tiveness a

ording to (2).For ea
h image pair, we took three subsets of thesorted landmarks, namely landmarks 1-10 (the mostdistin
tive ones), landmarks 41-60, and landmarks 81-100. Over 26 pairs of images in the linear sequen
ewith varying separation, the algorithm in Se
. 2 wasused to re
ognize these landmarks. In some imagepairs, a sele
ted landmark from one image may not a
-tually be present in the se
ond image due to o

lusionor be
ause it falls outside of the �eld of view. For thisexperiment, we painfully 
he
ked all mat
hes manu-ally. Consequently, these results are limited to 1,300landmark pairs. The error rate is reported in Figure 8.(Note that the k-jets were evaluated with � = 2 pix-els, whi
h is smaller than that used for Fig. 4). We
learly see that the sele
ted landmarks, that are de-
lared to be more distin
tive, are in fa
t more readilyre
ognized.4 Summary and Con
lusionsWe have presented a method for sele
ting and re
-ognizing salient landmarks based on the method ofS
hmid and Mohr [10℄ and a 
riterion for sele
ting themost distin
tive landmarks. The sele
tion of the mostre
ognizable landmarks 
an be important in real-timeappli
ations where it is not feasible to tra
k all possi-ble landmarks. Experimental results have 
hara
ter-ized the performan
e of the method on indoor s
eneswhere a mobile robot might typi
ally operate.It should be noted that there are numerous waysto improve the re
ognition performan
e. First, K-jetsand invariants 
an be 
omputed from 
olor images andwould o�er greater dis
riminatory power, so long asthe 
olor of the lighting does not vary. If illumina-tion 
olor were to vary, than it would be interestingto merge the 
olor invariants of Healey and Slater [13℄with the lo
al di�erential invariants. In our implemen-tation, we only 
onsidered rotation invariants and formobile robot navigation we in fa
t rarely have mu
hrotation about the opti
al axis, and so we may want

Figure 3: Two images in the linear sequen
e: Land-marks were sele
ted in the upper image and re
ognizedin the lower image. The lines denote 
orresponden
es.Note that in this pair, three mismat
hes o

ured.

Figure 4: Error rate for re
ognizing the �fty most dis-tin
tive landmarks in the linear sequen
e using k-jetsand lo
al rotational invariants.



Figure 5: Error rate for re
ognizing the �fty most dis-tin
tive landmarks in the ar
 sequen
e using k-jets andlo
al rotational invariants.to explore di�erential invariants over other subgroupsof GL(2), parti
ularly lo
al invariants to s
ale. Alter-natively, sin
e derivatives are 
omputed using a Gaus-sian �lter, it is natural to explore re
ognition over s
alespa
es.Features have been mat
hed independently of ea
hother. Clearly, between a set of 
orresponden
es intwo images, the epipolar 
onstraint must be satis�ed,and this 
onstraint 
an be used to both de
rease theerror rate and in
rease the speed. A related approa
hby S
hmid and Mohr was to use a quasi-invariant ofa 
olle
tion of features when indexing, and this wasshown to de
rease the number of false mat
hes [10℄.For our proje
ted use of natural landmarks in vision-based mobile robot navigation [1℄, the expe
ted imagelo
ation of the landmarks 
ould be predi
ted whi
hwould redu
e the sear
h spa
e and de
rease the likeli-hood of false mat
hes su
h that quasi-invariant index-ing should be unne
essary.Finally, per
eptual distin
tiveness should not bethe sole 
riteria for sele
tion. The task should also betaken into a

ount; for example, it is probably desir-able that the landmarks be well distributed in the im-age and not all 
orrespond to 
oplanar s
ene features.Furthermore, during our experimentation, we foundthat the errors whi
h o

urred for distin
tive featureswere very often due to sele
ting viewpoint dependentfeatures su
h as T-jun
tions or patterns that 
ross ano

lusion boundary. When the robot moves, the ba
k-ground in the neighborhood of the feature moves, andfeature may no longer be dete
table by Harris or its de-s
ription by a K-jet/invariant may have 
hanged. An

Figure 6: Two images in the rotation sequen
e: Land-marks were sele
ted in the left image and re
ognizedin the right image. The lines denote 
orresponden
es.interesting avenue of investigation for handling bothtask 
onstraints and pruning of viewpoint dependentfeatures is to 
onsider the way the image stru
turein the neighborhood of a feature 
hanges as a robotmoves.A
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