
Seleting Promising LandmarksMarkus Knapek Riardo Swain Oropeza David J. KriegmanComputer Siene Computer SieneTehnial University of Munih Bekman InstituteUniversity of Illinois, Urbana-Champaignmknapek�brain.nefo.med.uni-muenhen.de fswain1, kriegmang�uiu.eduAbstratMany approahes to visual servoing and mobilerobot navigation are based on traking feature pointsor landmarks in images. But are all features pointsequally e�etive as landmarks? Here we develop meth-ods for seleting within an image those landmarkswhih are both pereptually salient and visually dis-tintive, and onsequently are readily reognized in aseond image aquired from a di�erent viewpoint. Em-pirially, we haraterize the performane of the reog-nition method and then demonstrate that the seletionproess does in fat hoose the landmarks whih aremore likely to be reognized.1 IntrodutionNearly all approahes to visual servoing are basedon traking feature points in an image sequene thatorrespond to the projetion of viewpoint independentfeatures of the 3-D sene or objet [5, 6, 14℄. Sim-ilarly, numerous approahes to vision-based mobilerobot navigation reognize and possibly trak land-marks [1, 7, 9, 12, 18℄. Exept within spei� ap-pliations, most visual servoing implementations haveeither used a atalogue of model/appliation spei�landmarks or relied on a person to initialize traking.In most mobile robotis implementations, the robot'slandmark reognition system is provided with a ata-logue of domain-spei� reognizable landmarks (e.g.lane boundaries, eiling light, bar odes, door edges,et.). Reently, it has beome possible to trak atframe rates a modest number of features (on the orderof a dozen) on onventional personal omputers usingfor example X-vision [2℄. Yet in a sene or for an objetof interest, there may be hundreds or thousands of fea-ture points whih ould serve as landmarks. In fat,part of the proess of most feature-based struture-from-motion algorithms is to establish orrespondeneamongst a large number of features. For real-timerobot ontrol using urrent methods, only a frationof the possible features an be onsidered and traked.

Hene, one must selet from the plethora of andidateimage loations, those features whih are very \trak-able" (salient) and readily reognized (distintive).In this paper, we address the problem of selet-ing from a single monohrome image those landmarkswhih are both salient and distintive. By salient,we mean that the landmark should readily \pop out"from the bakground by some detetion mehanism.By distintive, we mean that the landmark is unlikelyto be onfused during reognition. For example, ared �re extinguisher is likely to salient in almost anyenvironment sine it stands out from its bakground.However, it would be a dismal landmark in a �re ex-tinguisher fatory beause even thought eah extin-guisher might stand out from the bakground, it wouldbe diÆult to distinguish one extinguisher from an-other.Our methods are task and domain independent.This is both a strength and a weakness. By beingdomain-independent, the same method should applyto robots wandering indoors or outdoors. Yet there ismore to \what makes a good landmark" than perep-tion, and the set of hosen landmarks must be usefulfor the task. On the other hand, inorporating do-main and task spei� onstraints an failitate thelandmark seletion. On the whole, while domain andtask spei� visual ontrol methods have yielded im-pressive performane in the laboratory, these methodsare often brittle in pratie, and so we hoose to fouson domain-independent seletion methods here.There is too wide a literature on feature trak-ing, visual servoing, and landmark-based navigation tosummarize here. There have also been a few papers onthe proess of seleting useful features points or land-marks in image data [12, 15, 18, 19, 20℄. However,this approah is very strongly motivated by the imagedatabase indexing and reognition work of Shmid andMohr [10, 11℄ whih in turn builds on [16, 17℄.



2 Reognizing and Seleting Land-marksMany methods for traking have been developed in-luding orner traking, line traking, region traking,blob traking, olor traking, 3-D model traking, et.In general, trakers ontinually estimate some param-eter vetor representing some attributes of the trakedobjet (e.g. image loation, sale, lighting, 3-D pose,shape, et.) whih are presumed to be varying ontin-uously. One lass of trakers that is partiularly usefulfor robot navigation provides over time the image loa-tion of the projetion of a loal (small) region or pointof a 3-D sene. Traking a modest number of suh fea-tures an be used to loalize the robot, navigate usingvisual servoing, or reognize a plae. Typially, theloal region is represented by a template. When trak-ing, a region of an image is searhed for the loationwhih minimizes the sum of squared di�erenes (SSD)between the template and the image intensities aboutthe loation. Due to 3-D viewpoint hanges however,the image pattern will di�er from the template, andthis is sometimes modeled as an aÆne image warp [2℄.Here, our goal is to selet distintive templates(landmarks) from one image whih an be readily re-ognized in a seond image aquired from a di�erentviewpoint. Let the irradiane (intensity) aross theimage plane be denoted by I(x; y) where x and y arethe image oordinates.Sine we are interested in traking the projetion ofpoint-like features, we an haraterize I(x; y) loallyabout a point (x0; y0) by its di�erential struture. Inpartiular, onsider the vetor of partial derivatives upk-th order whih is known as the k-jet; for example,the 2-jet of I(x; y) is given by:F(x; y) = 26666664 IIxIyIxxIxyIyy
37777775The k-jet or some funtion of the k-jet an serveas a representation of a landmark. We now sum-marize the basi landmark seletion and reognitionmethod whih diretly follows elements of the reog-nition method of Shmid and Mohr [10℄. To selet thelandmarks:1. A detetor is applied to the entire image to se-let potential landmarks whih should be readilytraked (salient).

2. The potential landmarks are haraterized by afeature vetor derived from the k-jet.3. The potential landmarks are ordered by distin-tiveness, and the most distintive ones are re-tained.Similarly, the landmarks are reognized in a seondimage:1. The same detetor is applied to the image, butwith lower thresholds, to identify andidate loa-tions of landmarks.2. Eah andidate is again haraterized by a featurevetor omputed from the K-jet.3. Eah seleted landmark is reognized by nearestneighbor lassi�ation using a Mahalanobis dis-tane.2.1 DetailsThe motivation for separating the seletion proessinto two steps with the two riteria of salieny and dis-tintiveness is omputational ost. To sort l andidatelandmarks based on their distintiveness requires om-puting the similarity of all pairs of landmarks whih isO(l2). Without a proess for preseleting salient fea-tures, l ould be the number of pixels n in an image,approximately 300,000. Instead, a set of suÆientlysalient landmarks, whih are expeted to be readilytraked, are deteted in the image using an O(n) pro-ess. Typially a few hundred potential landmarks aredeteted, and the most distintive ones are seletedamongst the l � 200 andidates.Following [10℄ andidate landmarks are deteted us-ing the Harris orner detetor [3℄ whih an be viewedas a suessor to Morave's interest operator [8℄. Thebasi idea of the Harris detetor is to ompute a or-nerness measure (x; y) from I(x; y) whih essentiallydetermines the prinipal urvatures of the autoorre-lation funtion; feature loations are taken as thoseloations p = (x; y) whih are loal maxima of (x; y)and exeed a threshold �h.The neighborhood of eah feature loation p anthen be haraterized by its k-jet. However, the k-jet learly depends on the loation and orientation ofthe amera. To model the possible hanges to theimage pattern and to the k-jet, let us assume thatI(x; y) in the neighborhood of p is the projetion of aplanar Lambertian surfae with non-onstant albedo.It is well known that the hange of oordinates be-tween images of a plane aquired at di�erent view-points is a projetive transformation. However whenthe neighborhood is small, the hange of oordinates



in the neighborhood an be approximated by an aÆnetransformation p0 = Ap+ t. The e�et of A 2 GL(2)an be haraterized as a ombination of rotation, in-dependent saling along the axis, and shearing, whilethe e�et of t is learly to translate the pattern. As-suming that the detetor's response is insensitive toA (this has been on�rmed for the Harris detetor formoderate values of A in [11℄), then we are really onlyinterested in haraterizing the hanges to the k-jetunder linear transforms A.Two possibilities are to either model the variationin the k-jet as a funtion of A or ompute a funtion ofthe k-jet whih is invariant to A; we hoose the later.If the amera motion is onstrained or if elements ofthe amera motion an be diretly measured, then wemay only be interested in invariane to ertain sub-groups of GL(2), e.g. image plane rotations, SO(2).As disussed in [16, 17℄, one an ompute funtions ofthe K-jet whih are invariant to di�erent subgroupsof A, so alled di�erential invariants of I(x; y). Forexample, the following omplete set of 3rd-order dif-ferential invariants under SO(2) was used by Shmidand Mohr [10℄ and will be used below:
Fr(x; y) =

2666666666666664
IIxIx + IyIyIxxIxIx + 2IxyIxIy + IyyIyIyIxx + IyyIxxIxx + 2IxyIxy + IyyIyyIxxxIyIyIy � 3IxxyIxIyIy + 3IxyyIxIxIy�IyyyIxIxIxIxxxIxIyIy � 2IxxyIxIxIy + IxxyIyIyIy�2IxyyIxIyIy + IxyyIxIxIx + IyyyIxIxIyIxxxIxIxIy + 2IxxyIxIyIy � IxxyIxIxIx�2IxyyIxIxIy + IxyyIyIyIy � IyyyIxIyIyIxxxIxIxIx + 3IxxyIxIxIy + 3IxyyIxIyIy+IyyyIyIyIy

3777777777777775Of ourse, one an use similar di�erential invari-ants for other possibly relevant subgroups of GL(2),e.g. rotation and sale hanges, slant and sale, et.In general, a K-jet at a point is represented as a vetorwith 1=2(k + 1)(k + 2) independent elements. For asubgroup with d degrees of freedom, the resulting dif-ferential invariant is omposed of 1=2(k+1)(k+2)�delements. If the amera/objet motion is restrited,than it may be bene�ial (lower error rates) to hoosea subgroup with fewer degrees of freedom. This trade-o� will be seen in Setion 3Sine digital images are disrete, one needs a meansto ompute the partial derivatives determining the k-jet. As is ommon pratie, the disrete values are in-terpolated with a Gaussian, and derivatives are takenwith respet to the interpolated signal. This is aom-plished by �ltering the image with a kernel given bypartial derivatives of a Gaussian with some variane

�. The hoie of the Gaussian kernel and the result-ing sale spae for di�erent hoies of � is disussedin [16℄.To ompare two feature points p1 and p2 detetedin two images, whih are desribed by a feature vetorsf1 and f2 (feature vetor f i ould be omputed fromF(pi) orFr(pi)), we determine their Mahalanobis dis-tane d(p1;p2) = (f2 � f1)t��1(f2 � f1): (1)The ovariane matrix � is taken as the pooled o-variane of the feature vetor omputed from  or-responding points, ideally aquired over many imagepairs having the range of onditions and features ex-peted in the appliation domain. In our experiments,it was omputed from 21 pairs of images with about80 features per image. The ovariane matrix is om-puted as: � = nXi=1(f2i � f1i )(f2i � f1i )t:Reognition of landmark p1 is then simply determinedby �nding the feature in the seond image whose Ma-halanobis distane to f1 is smallest.This also suggests a method for determining themost distintive landmark. Assuming that the ex-peted variation of a landmark's desription as a fea-ture vetor is well haraterized by the ovariane ma-trix �, then two landmarks whose Mahalanobis dis-tane is small are more likely to be onfused (mislas-si�ed) in other images than two landmarks whih arefar apart. For a set of landmarks P = fpjg, this sug-gests a distintiveness measure for a landmark pi 2 P .Æ(pi) = minpj2P;pi 6=pj d(pi;pj) (2)The set of andidate landmarks an be sorted by Æ(pi)where the most distintive landmark has the largestvalue of Æ(pi).3 Experimental resultsA series of experiments has been performed to har-aterize the performane of the reognition methodand to assess the utility of seleting the most perep-tually distintive landmarks.3.1 Experimental protoolThree sets of images were gathered with amonohrome amera mounted on a Nomadis Super-sout mobile robot. The algorithms were implementedin Matlab. In the �rst sequene, the robot moved
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RobotFigure 1: Experimental Setup: As the robot moved in10m steps along the two trajetories (a straight lineaway from the sene, and along a irular ar with theamera pointing toward the sene), 25 images wereaquired.along a 2.5m linear trajetory away from the sene,and images were aquired every 10m; �gure 2 showsfour images from the sequene. The seond sequeneof twenty �ve images of the same sene was aquiredas the robot moved along a irular ar as shown inFigure 1. The third sequene was aquired by rotatingthe amera about the optial axis in 15 degree steps.3.2 Landmark ReognitionThe goal of the �rst set of experiments is to har-aterize the performane of the landmark reognitionproess over the three sequenes of images. From thelinear sequene of 25 images, we onsidered pairs thatwere 20m, 30m,...,100m apart; for eah separation,seletion and reognition was performed on 15 pairs,and the results were averaged.Though most landmarks are orretly reognized,some are inorretly mathed. Beause of the largenumber of landmark reognition tests being performed(e.g. eah data point in Figure 4 represents the mathof 750 landmarks), manual evaluation of the resultsis nearly impossible. And sine ground truth is un-available, we use the following automati evaluationmethod. Given two images, the epipolar geometry isdetermined using a variant of Zhang's algorithm [21℄whih is based on the Hartley's 8-point algorithm [4℄for estimating the fundamental matrix and RANSACto be robust to outliers. We onsider a seleted land-mark and the orresponding reognized landmark to

Figure 2: Four images of the sequene in whih therobot moved along a linear trajetory in 10m steps.be false mathes if they do not lie within two pixels ofthe orresponding epipolar lines. Clearly, this fails todetet false mathes when they happen to lie on thesame epipolar line, but onsidering that our imageshave 480 rows, only about 1% of the false matheswill be mislabelled. In addition, some of the seletedlandmarks will not be reognized in the seond image;in some ases, they are not deteted or the Maha-lanobis distane exeeds a threshold, but more oftenthe seleted landmark is not present in the seond im-age due to olusion or the hange in the �eld of view.Unfortunately, there is no automati way to asertainthe ause of the lak of a math, and so we report theerror rate as the total number of inorret mathesdivided by the number mathed landmarks.Two di�erent feature sets were used for landmarkseletion and reognition, the third order k-jet andthe rotation invariant. Figure 6 shows a pair of im-ages with the seleted and reognized landmarks whileFigure 4 shows a plot of the error rate for landmarkreognition over the linear image sequene. Not sur-prisingly, the error rate inreases with the separationbetween the amera positions. Figure 5 shows the er-ror rates for image pairs over the ar of amera posi-tions. Figure 6 shows a pair of images with the seletedand reognized landmarks, while Figure 7 shows theerror rates for images where the amera rotated aboutthe optial axis.Interestingly, for the linear and ar sequenes theerror rate is higher when the invariants were used thanwhen just the k-jets were used. For a mobile robotmoving along the ground, there is little roll in the



amera motion, and so it seems that the loss of in-formation by reduing the feature spae from 10 in-dependent elements to 9 elements has an impat onreognition performane. On the other hand, whenthere is signi�ant rotation about the optial axis, theperformane of the k-jet's was dismal whereas it wasmuh better with the invariants. The lear lesson isto hoose funtions that are invariant to the expetedtransformation group, but not to a larger group.3.3 Landmark SeletionTo test the seletion of pereptually distintivelandmarks, we performed the following test. The land-marks were sorted by distintiveness aording to (2).For eah image pair, we took three subsets of thesorted landmarks, namely landmarks 1-10 (the mostdistintive ones), landmarks 41-60, and landmarks 81-100. Over 26 pairs of images in the linear sequenewith varying separation, the algorithm in Se. 2 wasused to reognize these landmarks. In some imagepairs, a seleted landmark from one image may not a-tually be present in the seond image due to olusionor beause it falls outside of the �eld of view. For thisexperiment, we painfully heked all mathes manu-ally. Consequently, these results are limited to 1,300landmark pairs. The error rate is reported in Figure 8.(Note that the k-jets were evaluated with � = 2 pix-els, whih is smaller than that used for Fig. 4). Welearly see that the seleted landmarks, that are de-lared to be more distintive, are in fat more readilyreognized.4 Summary and ConlusionsWe have presented a method for seleting and re-ognizing salient landmarks based on the method ofShmid and Mohr [10℄ and a riterion for seleting themost distintive landmarks. The seletion of the mostreognizable landmarks an be important in real-timeappliations where it is not feasible to trak all possi-ble landmarks. Experimental results have harater-ized the performane of the method on indoor seneswhere a mobile robot might typially operate.It should be noted that there are numerous waysto improve the reognition performane. First, K-jetsand invariants an be omputed from olor images andwould o�er greater disriminatory power, so long asthe olor of the lighting does not vary. If illumina-tion olor were to vary, than it would be interestingto merge the olor invariants of Healey and Slater [13℄with the loal di�erential invariants. In our implemen-tation, we only onsidered rotation invariants and formobile robot navigation we in fat rarely have muhrotation about the optial axis, and so we may want

Figure 3: Two images in the linear sequene: Land-marks were seleted in the upper image and reognizedin the lower image. The lines denote orrespondenes.Note that in this pair, three mismathes oured.

Figure 4: Error rate for reognizing the �fty most dis-tintive landmarks in the linear sequene using k-jetsand loal rotational invariants.



Figure 5: Error rate for reognizing the �fty most dis-tintive landmarks in the ar sequene using k-jets andloal rotational invariants.to explore di�erential invariants over other subgroupsof GL(2), partiularly loal invariants to sale. Alter-natively, sine derivatives are omputed using a Gaus-sian �lter, it is natural to explore reognition over salespaes.Features have been mathed independently of eahother. Clearly, between a set of orrespondenes intwo images, the epipolar onstraint must be satis�ed,and this onstraint an be used to both derease theerror rate and inrease the speed. A related approahby Shmid and Mohr was to use a quasi-invariant ofa olletion of features when indexing, and this wasshown to derease the number of false mathes [10℄.For our projeted use of natural landmarks in vision-based mobile robot navigation [1℄, the expeted imageloation of the landmarks ould be predited whihwould redue the searh spae and derease the likeli-hood of false mathes suh that quasi-invariant index-ing should be unneessary.Finally, pereptual distintiveness should not bethe sole riteria for seletion. The task should also betaken into aount; for example, it is probably desir-able that the landmarks be well distributed in the im-age and not all orrespond to oplanar sene features.Furthermore, during our experimentation, we foundthat the errors whih ourred for distintive featureswere very often due to seleting viewpoint dependentfeatures suh as T-juntions or patterns that ross anolusion boundary. When the robot moves, the bak-ground in the neighborhood of the feature moves, andfeature may no longer be detetable by Harris or its de-sription by a K-jet/invariant may have hanged. An

Figure 6: Two images in the rotation sequene: Land-marks were seleted in the left image and reognizedin the right image. The lines denote orrespondenes.interesting avenue of investigation for handling bothtask onstraints and pruning of viewpoint dependentfeatures is to onsider the way the image struturein the neighborhood of a feature hanges as a robotmoves.AknowledgmentsThis researh was supported by the National Si-ene Foundation under IRI-9711967 and by DARPAunder DAAE07-98-C-L031.Referenes[1℄ G. Hager, D. Kriegman, A. Georghiades, and O. Ben-Shahar. Toward domain-independent navigation: Dy-nami vision and ontrol. In IEEE Conf. on Deision& Control, 1998.[2℄ G. Hager and K. Toyama. X vision: A portable sub-strate for real-time vision appliations. Computer Vi-sion & Image Understanding, 69(1):23{37, 1998.



Figure 7: Error rate for reognizing the �fty most dis-tintive landmarks in the sequene of images with ro-tation about the optial axis using k-jets and loalrotational invariants.
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