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Abstract

Many approaches to wvisual servoing and mobile
robot navigation are based on tracking feature points
or landmarks in images. But are all features points
equally effective as landmarks? Here we develop meth-
ods for selecting within an image those landmarks
which are both perceptually salient and visually dis-
tinctive, and consequently are readily recognized in a
second image acquired from a different viewpoint. Em-
pirically, we characterize the performance of the recog-
nition method and then demonstrate that the selection
process does in fact choose the landmarks which are
more likely to be recognized.

1 Introduction

Nearly all approaches to visual servoing are based
on tracking feature points in an image sequence that
correspond to the projection of viewpoint independent
features of the 3-D scene or object [5, 6, 14]. Sim-
ilarly, numerous approaches to vision-based mobile
robot navigation recognize and possibly track land-
marks [1, 7, 9, 12, 18]. Except within specific ap-
plications, most visual servoing implementations have
either used a catalogue of model/application specific
landmarks or relied on a person to initialize tracking.
In most mobile robotics implementations, the robot’s
landmark recognition system is provided with a cata-
logue of domain-specific recognizable landmarks (e.g.
lane boundaries, ceiling light, bar codes, door edges,
etc.). Recently, it has become possible to track at
frame rates a modest number of features (on the order
of a dozen) on conventional personal computers using
for example X-vision [2]. Yet in a scene or for an object
of interest, there may be hundreds or thousands of fea-
ture points which could serve as landmarks. In fact,
part of the process of most feature-based structure-
from-motion algorithms is to establish correspondence
amongst a large number of features. For real-time
robot control using current methods, only a fraction
of the possible features can be considered and tracked.
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Hence, one must select from the plethora of candidate
image locations, those features which are very “track-
able” (salient) and readily recognized (distinctive).

In this paper, we address the problem of select-
ing from a single monochrome image those landmarks
which are both salient and distinctive. By salient,
we mean that the landmark should readily “pop out”
from the background by some detection mechanism.
By distinctive, we mean that the landmark is unlikely
to be confused during recognition. For example, a
red fire extinguisher is likely to salient in almost any
environment since it stands out from its background.
However, it would be a dismal landmark in a fire ex-
tinguisher factory because even thought each extin-
guisher might stand out from the background, it would
be difficult to distinguish one extinguisher from an-
other.

Our methods are task and domain independent.
This is both a strength and a weakness. By being
domain-independent, the same method should apply
to robots wandering indoors or outdoors. Yet there is
more to “what makes a good landmark” than percep-
tion, and the set of chosen landmarks must be useful
for the task. On the other hand, incorporating do-
main and task specific constraints can facilitate the
landmark selection. On the whole, while domain and
task specific visual control methods have yielded im-
pressive performance in the laboratory, these methods
are often brittle in practice, and so we choose to focus
on domain-independent selection methods here.

There is too wide a literature on feature track-
ing, visual servoing, and landmark-based navigation to
summarize here. There have also been a few papers on
the process of selecting useful features points or land-
marks in image data [12, 15, 18, 19, 20]. However,
this approach is very strongly motivated by the image
database indexing and recognition work of Schmid and
Mohr [10, 11] which in turn builds on [16, 17].



2 Recognizing and Selecting Land-
marks

Many methods for tracking have been developed in-
cluding corner tracking, line tracking, region tracking,
blob tracking, color tracking, 3-D model tracking, etc.
In general, trackers continually estimate some param-
eter vector representing some attributes of the tracked
object (e.g. image location, scale, lighting, 3-D pose,
shape, etc.) which are presumed to be varying contin-
uously. One class of trackers that is particularly useful
for robot navigation provides over time the image loca-
tion of the projection of a local (small) region or point
of a 3-D scene. Tracking a modest number of such fea-
tures can be used to localize the robot, navigate using
visual servoing, or recognize a place. Typically, the
local region is represented by a template. When track-
ing, a region of an image is searched for the location
which minimizes the sum of squared differences (SSD)
between the template and the image intensities about
the location. Due to 3-D viewpoint changes however,
the image pattern will differ from the template, and
this is sometimes modeled as an affine image warp [2].

Here, our goal is to select distinctive templates
(landmarks) from one image which can be readily rec-
ognized in a second image acquired from a different
viewpoint. Let the irradiance (intensity) across the
image plane be denoted by I(z,y) where z and y are
the image coordinates.

Since we are interested in tracking the projection of
point-like features, we can characterize I(z,y) locally
about a point (zg,yo) by its differential structure. In
particular, consider the vector of partial derivatives up
k-th order which is known as the k-jet; for example,
the 2-jet of I(z,y) is given by:
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The k-jet or some function of the k-jet can serve
as a representation of a landmark. We now sum-
marize the basic landmark selection and recognition
method which directly follows elements of the recog-
nition method of Schmid and Mohr [10]. To select the
landmarks:

1. A detector is applied to the entire image to se-
lect potential landmarks which should be readily
tracked (salient).

2. The potential landmarks are characterized by a
feature vector derived from the k-jet.

3. The potential landmarks are ordered by distinc-
tiveness, and the most distinctive ones are re-
tained.

Similarly, the landmarks are recognized in a second
image:

1. The same detector is applied to the image, but
with lower thresholds, to identify candidate loca-
tions of landmarks.

2. Each candidate is again characterized by a feature
vector computed from the K-jet.

3. Each selected landmark is recognized by nearest
neighbor classification using a Mahalanobis dis-
tance.

2.1 Details

The motivation for separating the selection process
into two steps with the two criteria of saliency and dis-
tinctiveness is computational cost. To sort [ candidate
landmarks based on their distinctiveness requires com-
puting the similarity of all pairs of landmarks which is
O(I?). Without a process for preselecting salient fea-
tures, [ could be the number of pixels n in an image,
approximately 300,000. Instead, a set of sufficiently
salient landmarks, which are expected to be readily
tracked, are detected in the image using an O(n) pro-
cess. Typically a few hundred potential landmarks are
detected, and the most distinctive ones are selected
amongst the [ ~ 200 candidates.

Following [10] candidate landmarks are detected us-
ing the Harris corner detector [3] which can be viewed
as a successor to Moravec’s interest operator [8]. The
basic idea of the Harris detector is to compute a cor-
nerness measure c¢(z,y) from I(z,y) which essentially
determines the principal curvatures of the autocorre-
lation function; feature locations are taken as those
locations p = (z,y) which are local maxima of ¢(z, y)
and exceed a threshold 7.

The neighborhood of each feature location p can
then be characterized by its k-jet. However, the k-
jet clearly depends on the location and orientation of
the camera. To model the possible changes to the
image pattern and to the k-jet, let us assume that
I(z,y) in the neighborhood of p is the projection of a
planar Lambertian surface with non-constant albedo.
It is well known that the change of coordinates be-
tween images of a plane acquired at different view-
points is a projective transformation. However when
the neighborhood is small, the change of coordinates



in the neighborhood can be approximated by an affine
transformation p’ = Ap +t. The effect of A € GL(2)
can be characterized as a combination of rotation, in-
dependent scaling along the axis, and shearing, while
the effect of t is clearly to translate the pattern. As-
suming that the detector’s response is insensitive to
A (this has been confirmed for the Harris detector for
moderate values of A in [11]), then we are really only
interested in characterizing the changes to the k-jet
under linear transforms A.

Two possibilities are to either model the variation
in the k-jet as a function of A or compute a function of
the k-jet which is invariant to A; we choose the later.
If the camera motion is constrained or if elements of
the camera motion can be directly measured, then we
may only be interested in invariance to certain sub-
groups of GL(2), e.g. image plane rotations, SO(2).
As discussed in [16, 17], one can compute functions of
the K-jet which are invariant to different subgroups
of A, so called differential invariants of I(z,y). For
example, the following complete set of 3rd-order dif-
ferential invariants under SO(2) was used by Schmid
and Mohr [10] and will be used below:
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Of course, one can use similar differential invari-
ants for other possibly relevant subgroups of GL(2),
e.g. rotation and scale changes, slant and scale, etc.
In general, a K-jet at a point is represented as a vector
with 1/2(k + 1)(k + 2) independent elements. For a
subgroup with d degrees of freedom, the resulting dif-
ferential invariant is composed of 1/2(k+1)(k+2)—d
elements. If the camera/object motion is restricted,
than it may be beneficial (lower error rates) to choose
a subgroup with fewer degrees of freedom. This trade-
off will be seen in Section 3

Since digital images are discrete, one needs a means
to compute the partial derivatives determining the k-
jet. As is common practice, the discrete values are in-
terpolated with a Gaussian, and derivatives are taken
with respect to the interpolated signal. This is accom-
plished by filtering the image with a kernel given by
partial derivatives of a Gaussian with some variance

o. The choice of the Gaussian kernel and the result-
ing scale space for different choices of o is discussed
in [16].

To compare two feature points p' and p? detected
in two images, which are described by a feature vectors
f! and f? (feature vector f* could be computed from
F(p*) or F(p')), we determine their Mahalanobis dis-
tance

d(p',p?) = (£ — £1)'S71(f* — ). (1)

The covariance matrix X is taken as the pooled co-
variance of the feature vector computed from c¢ cor-
responding points, ideally acquired over many image
pairs having the range of conditions and features ex-
pected in the application domain. In our experiments,
it was computed from 21 pairs of images with about
80 features per image. The covariance matrix is com-
puted as:
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Recognition of landmark p?! is then simply determined
by finding the feature in the second image whose Ma-
halanobis distance to f! is smallest.

This also suggests a method for determining the
most distinctive landmark. Assuming that the ex-
pected variation of a landmark’s description as a fea-
ture vector is well characterized by the covariance ma-
trix X, then two landmarks whose Mahalanobis dis-
tance is small are more likely to be confused (misclas-
sified) in other images than two landmarks which are
far apart. For a set of landmarks P = {p;}, this sug-
gests a distinctiveness measure for a landmark p; € P.

d(p;) = min

d(pi, P 2
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The set of candidate landmarks can be sorted by §(p;)
where the most distinctive landmark has the largest
value of §(p;).

3 Experimental results

A series of experiments has been performed to char-
acterize the performance of the recognition method
and to assess the utility of selecting the most percep-
tually distinctive landmarks.

3.1 Experimental protocol

Three sets of images were gathered with a

monochrome camera mounted on a Nomadics Super-

scout mobile robot. The algorithms were implemented
in Matlab. In the first sequence, the robot moved
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Figure 1: Experimental Setup: As the robot moved in
10cm steps along the two trajectories (a straight line
away from the scene, and along a circular arc with the
camera pointing toward the scene), 25 images were
acquired.

along a 2.5m linear trajectory away from the scene,
and images were acquired every 10cm; figure 2 shows
four images from the sequence. The second sequence
of twenty five images of the same scene was acquired
as the robot moved along a circular arc as shown in
Figure 1. The third sequence was acquired by rotating
the camera about the optical axis in 15 degree steps.

3.2 Landmark Recognition

The goal of the first set of experiments is to char-
acterize the performance of the landmark recognition
process over the three sequences of images. From the
linear sequence of 25 images, we considered pairs that
were 20cm, 30cm,...,100cm apart; for each separation,
selection and recognition was performed on 15 pairs,
and the results were averaged.

Though most landmarks are correctly recognized,
some are incorrectly matched. Because of the large
number of landmark recognition tests being performed
(e.g. each data point in Figure 4 represents the match
of 750 landmarks), manual evaluation of the results
is nearly impossible. And since ground truth is un-
available, we use the following automatic evaluation
method. Given two images, the epipolar geometry is
determined using a variant of Zhang’s algorithm [21]
which is based on the Hartley’s 8-point algorithm [4]
for estimating the fundamental matrix and RANSAC
to be robust to outliers. We consider a selected land-
mark and the corresponding recognized landmark to

Figure 2: Four images of the sequence in which the
robot moved along a linear trajectory in 10cm steps.

be false matches if they do not lie within two pixels of
the corresponding epipolar lines. Clearly, this fails to
detect false matches when they happen to lie on the
same epipolar line, but considering that our images
have 480 rows, only about 1% of the false matches
will be mislabelled. In addition, some of the selected
landmarks will not be recognized in the second image;
in some cases, they are not detected or the Maha-
lanobis distance exceeds a threshold, but more often
the selected landmark is not present in the second im-
age due to occlusion or the change in the field of view.
Unfortunately, there is no automatic way to ascertain
the cause of the lack of a match, and so we report the
error rate as the total number of incorrect matches
divided by the number matched landmarks.

Two different feature sets were used for landmark
selection and recognition, the third order k-jet and
the rotation invariant. Figure 6 shows a pair of im-
ages with the selected and recognized landmarks while
Figure 4 shows a plot of the error rate for landmark
recognition over the linear image sequence. Not sur-
prisingly, the error rate increases with the separation
between the camera positions. Figure 5 shows the er-
ror rates for image pairs over the arc of camera posi-
tions. Figure 6 shows a pair of images with the selected
and recognized landmarks, while Figure 7 shows the
error rates for images where the camera rotated about
the optical axis.

Interestingly, for the linear and arc sequences the
error rate is higher when the invariants were used than
when just the k-jets were used. For a mobile robot
moving along the ground, there is little roll in the



camera motion, and so it seems that the loss of in-
formation by reducing the feature space from 10 in-
dependent elements to 9 elements has an impact on
recognition performance. On the other hand, when
there is significant rotation about the optical axis, the
performance of the k-jet’s was dismal whereas it was
much better with the invariants. The clear lesson is
to choose functions that are invariant to the expected
transformation group, but not to a larger group.

3.3 Landmark Selection

To test the selection of perceptually distinctive
landmarks, we performed the following test. The land-
marks were sorted by distinctiveness according to (2).
For each image pair, we took three subsets of the
sorted landmarks, namely landmarks 1-10 (the most
distinctive ones), landmarks 41-60, and landmarks 81-
100. Over 26 pairs of images in the linear sequence
with varying separation, the algorithm in Sec. 2 was
used to recognize these landmarks. In some image
pairs, a selected landmark from one image may not ac-
tually be present in the second image due to occlusion
or because it falls outside of the field of view. For this
experiment, we painfully checked all matches manu-
ally. Consequently, these results are limited to 1,300
landmark pairs. The error rate is reported in Figure 8.
(Note that the k-jets were evaluated with o = 2 pix-
els, which is smaller than that used for Fig. 4). We
clearly see that the selected landmarks, that are de-
clared to be more distinctive, are in fact more readily
recognized.

4 Summary and Conclusions

We have presented a method for selecting and rec-
ognizing salient landmarks based on the method of
Schmid and Mohr [10] and a criterion for selecting the
most distinctive landmarks. The selection of the most
recognizable landmarks can be important in real-time
applications where it is not feasible to track all possi-
ble landmarks. Experimental results have character-
ized the performance of the method on indoor scenes
where a mobile robot might typically operate.

It should be noted that there are numerous ways
to improve the recognition performance. First, K-jets
and invariants can be computed from color images and
would offer greater discriminatory power, so long as
the color of the lighting does not vary. If illumina-
tion color were to vary, than it would be interesting
to merge the color invariants of Healey and Slater [13]
with the local differential invariants. In our implemen-
tation, we only considered rotation invariants and for
mobile robot navigation we in fact rarely have much
rotation about the optical axis, and so we may want

Figure 3: Two images in the linear sequence: Land-
marks were selected in the upper image and recognized
in the lower image. The lines denote correspondences.
Note that in this pair, three mismatches occured.
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Figure 4: Error rate for recognizing the fifty most dis-

tinctive landmarks in the linear sequence using k-jets
and local rotational invariants.
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Figure 5: Error rate for recognizing the fifty most dis-
tinctive landmarks in the arc sequence using k-jets and
local rotational invariants.

to explore differential invariants over other subgroups
of GL(2), particularly local invariants to scale. Alter-
natively, since derivatives are computed using a Gaus-
sian filter, it is natural to explore recognition over scale
spaces.

Features have been matched independently of each
other. Clearly, between a set of correspondences in
two images, the epipolar constraint must be satisfied,
and this constraint can be used to both decrease the
error rate and increase the speed. A related approach
by Schmid and Mohr was to use a quasi-invariant of
a collection of features when indexing, and this was
shown to decrease the number of false matches [10].
For our projected use of natural landmarks in vision-
based mobile robot navigation [1], the expected image
location of the landmarks could be predicted which
would reduce the search space and decrease the likeli-
hood of false matches such that quasi-invariant index-
ing should be unnecessary.

Finally, perceptual distinctiveness should not be
the sole criteria for selection. The task should also be
taken into account; for example, it is probably desir-
able that the landmarks be well distributed in the im-
age and not all correspond to coplanar scene features.
Furthermore, during our experimentation, we found
that the errors which occurred for distinctive features
were very often due to selecting viewpoint dependent
features such as T-junctions or patterns that cross an
occlusion boundary. When the robot moves, the back-
ground in the neighborhood of the feature moves, and
feature may no longer be detectable by Harris or its de-
scription by a K-jet/invariant may have changed. An

Figure 6: Two images in the rotation sequence: Land-
marks were selected in the left image and recognized
in the right image. The lines denote correspondences.

interesting avenue of investigation for handling both
task constraints and pruning of viewpoint dependent
features is to consider the way the image structure
in the neighborhood of a feature changes as a robot
moves.
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