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tWe introdu
e a new shape des
riptor, the shape 
ontext, for 
orre-sponden
e re
overy and shape-based obje
t re
ognition. The shape
ontext at a point 
aptures the distribution over relative positionsof other shape points and thus summarizes global shape in a ri
h,lo
al des
riptor. Shape 
ontexts greatly simplify re
overy of 
or-responden
es between points of two given shapes. Moreover, theshape 
ontext leads to a robust s
ore for measuring shape similar-ity, on
e shapes are aligned.The shape 
ontext des
riptor is tolerant to all 
ommon shape de-formations. As a key advantage no spe
ial landmarks or key-pointsare ne
essary. It is thus a generi
 method with appli
ations in ob-je
t re
ognition, image registration and point set mat
hing. Usingexamples involving both handwritten digits and 3D obje
ts, weillustrate its power for obje
t re
ognition.1 Introdu
tionThe last de
ade has seen in
reased appli
ation of statisti
al pattern re
ognitionte
hniques to the problem of obje
t re
ognition from images [8, 7, 6℄. Typi
ally,an image with n pixels is regarded as an n dimensional feature ve
tor formed by
on
atenating the brightness values of the pixels. Given this representation, a num-ber of di�erent strategies have been tried, e.g. nearest-neighbor te
hniques afterextra
ting prin
ipal 
omponents [8, 7℄, or training a dis
riminative 
onvolutionalneural network 
lassi�er [6℄. Impressive performan
e has been demonstrated ondatasets su
h as digits and fa
es.In our opinion, a ve
tor of pixel brightness values is a somewhat unsatisfa
toryrepresentation of an obje
t. Basi
 invarian
es e.g. to translation, s
ale and smallamount of rotation must be obtained by suitable pre-pro
essing or by the use ofenormous amounts of training data [6℄. This has motivated alternative approa
hessu
h as [1℄ who �nd key points or landmarks, and re
ognize obje
ts using the spatialarrangements of point sets. However not all obje
ts have distinguished key points(think of a 
ir
le for instan
e), and using key points alone sa
ri�
es the shapeinformation available in smooth portions of obje
t 
ontours.



Our approa
h therefore uses a general representation of shape { a set of pointssampled from the 
ontours on the obje
t. Ea
h point is asso
iated with a noveldes
riptor, the shape 
ontext, whi
h des
ribes the 
oarse arrangement of the restof the shape with respe
t to the point. This des
riptor will be di�erent for dif-ferent points on a single shape S; however 
orresponding (homologous) points onsimilar shapes S and S0will tend to have similar shape 
ontexts. Shape 
ontextsare distributions and 
an be 
ompared using the �2 statisti
. Corresponden
es be-tween the point sets of S and S0 
an be found by solving a bipartite weighted graphmat
hing problem with edge weights Cij de�ned by the �2 distan
es of the shape
ontexts of points i and j. Given 
orresponden
es, we 
an 
al
ulate a similaritymeasure between the shapes S and S0. This similarity measure 
an be used in anearest-neighbor 
lassi�er for obje
t re
ognition.Appealing features of the approa
h are that it is very simple and robust, the stan-dard invarian
es are built in for free, and as a 
onsequen
e we develop a 
lassi�erwhi
h is e�e
tive when only a small number of training examples are available.This paper is organized as follows. We �rst dis
uss related work on shape mat
hingin Se
t. 2. Next, we introdu
e the shape 
ontext and our method for establishing
orresponden
es in Se
t. 3. We present experiments whi
h show that shape mat
h-ing using this approa
h is robust and a

urate. Re
ognition results on the MNISTdigit dataset and the Columbia COIL dataset are in Se
t. 4. We 
on
lude in Se
t. 5.2 Related Work on Shape Mat
hingIn the 
ontext of image retrieval and shape similarity, several shape des
riptors havebeen proposed, ranging from moments and Fourier des
riptors to Hausdor� distan
eand the medial axis transform. For an overview and a detailed dis
ussion of shapemat
hing te
hniques, the reader is referred to [9℄. It should be emphasized that ourapproa
h is generi
ally appli
able as opposed to most shape mat
hing te
hniquesthat are restri
ted to silhouettes and 
losed 
urves. In our framework shape refers toany type of boundary information, and in 
onsequen
e, our algorithm is appli
ablefor a large variety of re
ognition problems.At its 
ore, shape 
ontexts 
an be understood as a point set mat
hing te
hnique.Most 
losely related is the work of [3℄ whi
h proposes an iterative optimization algo-rithm to jointly determine point 
orresponden
es and underlying image transforma-tions, where typi
ally some generi
 transformation 
lass is assumed, e.g. aÆne or,more generally, thin plate splines. This formulation leads to a diÆ
ult non{
onvexoptimization problem whi
h is solved using deterministi
 annealing. [3℄.As we will show, shape 
ontexts will greatly simplify the mat
hing part, leading toa very robust point registration te
hnique. It is invariant to s
ale and translationand to a large extent robust to rotation and deformation. Extensions in
orporatingrotational invarian
e and lo
al appearan
e features may be found in [2℄.3 Shape ContextShape 
ontext analysis begins by 
onverting the edge elements of a shape into a setofN feature points. These points 
an be on internal or external 
ontours. They neednot, and typi
ally will not, 
orrespond to key-points su
h as maxima of 
urvatureor in
e
tion points. We prefer to sample the shape with roughly uniform spa
ing,though this is also not 
riti
al. An example using the shape in Figure 1(a) is shownin Figure 1(
). Note that this shape, despite being very simple, does not admit the
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r(e) (f) (g) (h)Figure 1: Shape 
ontext 
omputation and mat
hing. (a,b) Original shapes. (
,d)Sampled edge points. (e-g) Example shape 
ontexts for referen
e samples markedby Æ; �; / in (
,d). Ea
h shape 
ontext is a log-polar histogram of the 
oordinatesof the rest of the point set measured using the referen
e point as the origin. Herewe have used 5 and 12 bins for log r and �, respe
tively. (Dark=large value.) Notethe visual similarity of the shape 
ontexts for Æ and �, whi
h were 
omputed forrelatively similar points on the two shapes. By 
ontrast, the shape 
ontext for / isquite di�erent. (g) Corresponden
es found using bipartite mat
hing, with weightsde�ned by the �2 distan
e between histograms.use of silhouette-based methods due to its internal 
ontour. Now 
onsider the setof ve
tors originating from a point in Figure 1(
) to all other points in the shape.These ve
tors express the appearan
e of the entire shape relative to the referen
epoint. Obviously, this set of N � 1 ve
tors is a ri
h des
ription, sin
e as N getslarge, the representation of the shape be
omes exa
t.The full set of ve
tors as a shape des
riptor is inappropriate sin
e shapes and theirsampled representation may vary from one instan
e to another. In 
ontrast, weidentify the distribution over relative positions as a robust and 
ompa
t, yet dis-
riminative des
riptor. For a point P on the shape, we 
ompute a 
oarse histogramof the relative 
oordinates of the remaining N � 1 points. This histogram is de-�ned to be the shape 
ontext of P . The referen
e orientation for the 
oordinatesystem 
an be absolute or relative to a given axis. In this paper we will assume anabsolute referen
e orientation, i.e. angles measured relative to the positive x-axis.The des
riptor should be more sensitive to di�eren
es in nearby pixels. We thuspropose to use a log-polar 
oordinate system. An example is shown in Fig. 1(e).Throughout this paper we have used 12 equally spa
ed angle bins and 5 equallyspa
ed log-radius bins.An attra
tive 
hara
teristi
 of the shape 
ontext is the invarian
e to 
ommon de-formations. Invarian
e to translation is intrinsi
 to the shape 
ontext de�nitionsin
e everything is measured with respe
t to points on the obje
t. To a
hieve s
aleinvarian
e we normalize all radial distan
es by the median distan
e � between allN2 point pairs in the shape. Choosing the median provides robustness to outliers.Robustness to signi�
ant rotations 
an be a
hieved by iterating the steps of mat
h-
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Figure 2: Randomized point set mat
hing results. Left: Results from [3℄ Right:Results for shape 
ontext mat
hing. The x axis shows � and the y axis showsaverage parameter estimation error. � : pd = 0:0; ps = 0:0; Æ : pd = 0:1; ps = 0:1,+ : pd = 0:3; ps = 0:1; � : pd = 0:5; ps = 0:1. Ea
h data point represents the meanover 500 trial runs.ing and point set alignment a few times, as shown in the evaluation below. As wewill empiri
ally demonstrate, shape 
ontexts are robust to additions and deletions.In a 
ompanion paper [2℄ we extended the shape 
ontext des
riptor to 
ompleterotational invarian
e employing relative instead of absolute frames.Mat
hing Shape Contexts In determining shape 
orresponden
es, we aim tomeet two 
riteria: (1) 
orresponding points should have very similar des
riptors,and (2) the 
orresponden
es should be unique.Consider a point i on the �rst shape and a point j on th se
ond shape. We 
omparethe shape 
ontexts at i and j to 
ome up with a 
ost Ci;j for mat
hing these twopoints. Let the K-bin (normalized) histogram at i be g(k) and at j be h(k). Thenthe 
ost Ci;j is given by the �2 statisti
Ci;j = 12 KXk=1 [g(k)� h(k)℄2g(k) + h(k)Given the set of 
osts Ci;j between all pairs of points i on the �rst shape and jon the se
ond shape we want to minimize the total 
ost of mat
hing subje
t tothe 
onstraint that the mat
hing be one-to-one. This is an instan
e of the squareassignment (or weighted bipartite mat
hing) problem, whi
h 
an be solved in O(N3)time using the Hungarian method. In our experiments, we use the 
omparativelymore eÆ
ient algorithm of [5℄. The input to the assignment problem is a square
ost matrix with entries Ci;j . The result is a permutation �(i) su
h that the sumPi Ci;�(i) is a minimum. The result of applying this algorithm to the letter-Aexample is shown in Figure 1(h).When the number of samples on two shapes is not equal, the 
ost matrix 
an bemade square by adding \dummy" nodes to ea
h point set with a 
onstant mat
hing
ost of �d. The same te
hnique may also be used even when the sample numbersare equal to allow for robust handling of outliers.On
e a 
orresponden
e between points is established, we 
an estimate the transfor-mation between them. Assuming a noisy measurement model, one usually restri
tsthe 
lass of allowed transformations to obtain robust estimators. In this work, werestri
t attention to aÆne transformations whi
h 
onsist of a translation followedby an arbitrary linear map. Sin
e the 
orresponden
es are known the aÆne trans-formation is estimated using standard least squares methods. These two steps 
anbe iterated to a
hieve additional pre
ision. However, the initial estimate of 
orre-sponden
es is often suÆ
ient to obtain an ex
ellent estimate of the underlying aÆne
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Figure 3: Handwritten digit re
ognition on the MNIST dataset. Left: Test set errorsof a 1-NN 
lassi�er using SSD and Shape Contexts as distan
e measures. Right:some example ones, sevens, and eights, illustrating the high degree of intra-
lassvariability.transformation without any iteration, resulting in an extremely fast algorithm.Empiri
al Robustness Evaluation In order to study the robustness of shape
ontexts for re
overing 
orresponden
es, we performed the random point set mat
h-ing experiment des
ribed in [3, Se
t. 5.2℄. This experiment 
onsists of repeatedlygenerating a random point set and mat
hing it to a distorted version of itself.The model point set is made by 
hoosing 50 points uniformly at random in a unitsquare. The parameter values for the distorting transformation are drawn indepen-dently and uniformly at random from the following intervals: �0:5 < tx; ty < 0:5(translation), �27Æ < � < 27Æ (rotation), and 0:5 � ea � 2 (s
ale). Points in thetransformed set are deleted and spurious points added a

ording to the fra
tionspd 2 f0; 0:1; 0:3; 0:5g and ps 2 f0; 0:1g, respe
tively. Jitter is introdu
ed by addingindependent Gaussian noise with � = f0:01; 0:02; : : : ; 0:08g to ea
h 
oordinate be-fore transformation. The measure of performan
e is based on the average errorbetween the a
tual and the estimated transformation parameters. To obtain ourparameter estimates, we iterated the steps of mat
hing and least-squares alignmentre
overy four times. We added dummy nodes with �d = 0:15 to make the totalnumber of nodes in ea
h point set 60. A 
omparison of the two sets of results isshown in Fig. 2.4 ResultsA straightforward strategy for re
ognition is to use a 1-NN 
lassi�er with shape
ontext dissimilarity as the distan
e measure. The overall algorithm has 3 steps:(1) estimate aÆne transforms between a prototype and a query shape, (2) applythe aÆne transform and re
ompute the shape 
ontexts for the transformed pointset, and (3) s
ore the mat
h by summing up the shape 
ontext distan
es betweenea
h point on a shape to its most similar point on the other shape1.Case study 1: Digit re
ognition The �rst experiment is 
on
erned with theMNIST dataset of handwritten digits, whi
h 
onsists of 60,000 training and 10,0001We a
tually obtain two s
ores, one proje
ting referen
e shape onto query shape andone vi
e versa. The �nal s
ore is obtained by taking the maximum.
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Figure 4: 3D obje
t re
ognition. Left: 
omparison of test set error for SSD, ShapeContexts (SC), and Shape Contexts with K-medoid prototypes (SC') vs. number ofprototype views. For SSD and SC, we varied the number of prototypes uniformlyfor all obje
ts. For SC', the number of prototypes per obje
t has been 
hosenadaptively, see text. Right: K-medoid prototype views for two di�erent examples,using an average of 6 prototypes per obje
t.test digits, see [6℄ for a des
ription and results. However, sin
e we are mainlyinterested in understanding shape, and thus in generalizing from few examples, wepresent here results for small training sets 
hosen at random from the full set. Thetest set error plotted in Fig. 3 has been evaluated over 1000 randomly 
hosen testdigits using a 1{NN 
lassi�er. Two di�erent similarity measures, shape 
ontext(SC) and sum of squared di�eren
es (SSD) are used to provide a dire
t 
omparison.A signi�
ant improvement 
an be seen when shape 
ontexts are used to provide thedistan
e measure, resulting in an error rate as low as 3.8% 
ompared to 7.7% forSSD for 2000 training images.2Case study 2: 3D obje
t re
ognition The se
ond experiment involves 20
ommon household obje
ts sele
ted from the COIL-100 database [7℄. Ea
h obje
twas photographed on a turntable with rotation in
rements of 5Æ for a total of72 views per obje
t. Ea
h image is gray-s
ale and 128 � 128. We prepared ourtraining sets by sele
ting a number of equally spa
ed views for ea
h obje
t. Theremaining views were then used for testing. Fig. 4(a) shows the performan
e ofshape 
ontext mat
hing (SC) 
ompared to SSD using 1-NN. The shape 
ontext testswere performed with the same settings as in the digit experiment using 100 pointsrandomly sampled from the Canny edges of ea
h image. SSD is known to performvery well on this database due to the la
k of variation in lighting [4℄. Our method,being dependent on features abstra
ted away from the raw image brightnesses, doesnot share this sensitivity. Naturally one 
ould bene�t from 
ombining appearan
ebased features with shape 
ontexts, but in the present work we fo
us ex
lusively onshape.Beyond re
ognition, shape 
ontext allows for the de�nition of a generi
 shape sim-ilarity measure. In [2℄ we exploited this property in the 
ontext of image retrieval.Here we demonstrate a 
lustering appli
ation whi
h allows us to sele
t a set ofprototypi
al images for a given 
lass, an appli
ation known as editing. We relyon a grouping te
hnique for pairwise data known as K-medoids. K-medoids 
anbe seen as a variant of K{means that restri
ts prototype positions to data points,2For Eu
lidean k-NN an error rate of 5.0% using 60,000 training images is reported [6℄.



but it readily generalizes to arbitrary similarity data. Con
retely, �rst a matrix ofpairwise similarities between all possible prototypes is 
omputed and stored. For agiven number of K prototypes the K-medoid algorithm then iterates two steps: (i)For a given assignment of points to (abstra
t) 
lusters a prototype is sele
ted byminimizing the average distan
e of the prototype to all elements in the 
luster, and(ii) given the set of prototypes, points are then reassigned to 
lusters a

ording tothe nearest prototype. Though heuristi
 at a �rst glan
e this s
heme 
an be maderigorous by deriving a joint 
ost fun
tion for both steps.In the re
ognition 
ontext this te
hnique 
an also be used to optimally allo
ateresour
es, i.e. more prototypes are allo
ated to diÆ
ult shapes. In this 
ase we runseparate 
lustering algorithms for ea
h 
ategory. We employ a splitting strategy,however, we 
hoose the 
luster to split based on the asso
iated overall mis
lassi�
a-tion error, thus 
oupling the di�erent editing pro
esses. Two examples of the pro-totypes sele
ted using this method in the COIL experiment are shown in Fig. 4(b).The 
urve marked SC' in Fig. 4(a) shows the improved 
lassi�
ation performan
eusing this prototype sele
tion strategy instead of equally-spa
ed views.5 Con
lusionWe have presented a new approa
h to 
omputing shape similarity and 
orrespon-den
es based on the shape 
ontext des
riptor. Shape 
ontext is simple and easy toapply, yet provides an extraordinarily ri
h des
riptor for point sets greatly improvingpoint set registration, shape mat
hing and shape re
ognition. In our experiments wehave demonstrated invarian
e to several 
ommon image transformations, in
ludingsigni�
ant 3D rotations of real-world obje
ts.A
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