
Shape Context: A new desriptor forshape mathing and objet reognitionSerge Belongie, Jitendra Malik and Jan PuzihaDepartment of Eletrial Engineering and Computer SienesUniversity of California at BerkeleyBerkeley, CA 94720, USAfsjb,malik,puzihag�s.berkeley.eduAbstratWe introdue a new shape desriptor, the shape ontext, for orre-spondene reovery and shape-based objet reognition. The shapeontext at a point aptures the distribution over relative positionsof other shape points and thus summarizes global shape in a rih,loal desriptor. Shape ontexts greatly simplify reovery of or-respondenes between points of two given shapes. Moreover, theshape ontext leads to a robust sore for measuring shape similar-ity, one shapes are aligned.The shape ontext desriptor is tolerant to all ommon shape de-formations. As a key advantage no speial landmarks or key-pointsare neessary. It is thus a generi method with appliations in ob-jet reognition, image registration and point set mathing. Usingexamples involving both handwritten digits and 3D objets, weillustrate its power for objet reognition.1 IntrodutionThe last deade has seen inreased appliation of statistial pattern reognitiontehniques to the problem of objet reognition from images [8, 7, 6℄. Typially,an image with n pixels is regarded as an n dimensional feature vetor formed byonatenating the brightness values of the pixels. Given this representation, a num-ber of di�erent strategies have been tried, e.g. nearest-neighbor tehniques afterextrating prinipal omponents [8, 7℄, or training a disriminative onvolutionalneural network lassi�er [6℄. Impressive performane has been demonstrated ondatasets suh as digits and faes.In our opinion, a vetor of pixel brightness values is a somewhat unsatisfatoryrepresentation of an objet. Basi invarianes e.g. to translation, sale and smallamount of rotation must be obtained by suitable pre-proessing or by the use ofenormous amounts of training data [6℄. This has motivated alternative approahessuh as [1℄ who �nd key points or landmarks, and reognize objets using the spatialarrangements of point sets. However not all objets have distinguished key points(think of a irle for instane), and using key points alone sari�es the shapeinformation available in smooth portions of objet ontours.



Our approah therefore uses a general representation of shape { a set of pointssampled from the ontours on the objet. Eah point is assoiated with a noveldesriptor, the shape ontext, whih desribes the oarse arrangement of the restof the shape with respet to the point. This desriptor will be di�erent for dif-ferent points on a single shape S; however orresponding (homologous) points onsimilar shapes S and S0will tend to have similar shape ontexts. Shape ontextsare distributions and an be ompared using the �2 statisti. Correspondenes be-tween the point sets of S and S0 an be found by solving a bipartite weighted graphmathing problem with edge weights Cij de�ned by the �2 distanes of the shapeontexts of points i and j. Given orrespondenes, we an alulate a similaritymeasure between the shapes S and S0. This similarity measure an be used in anearest-neighbor lassi�er for objet reognition.Appealing features of the approah are that it is very simple and robust, the stan-dard invarianes are built in for free, and as a onsequene we develop a lassi�erwhih is e�etive when only a small number of training examples are available.This paper is organized as follows. We �rst disuss related work on shape mathingin Set. 2. Next, we introdue the shape ontext and our method for establishingorrespondenes in Set. 3. We present experiments whih show that shape math-ing using this approah is robust and aurate. Reognition results on the MNISTdigit dataset and the Columbia COIL dataset are in Set. 4. We onlude in Set. 5.2 Related Work on Shape MathingIn the ontext of image retrieval and shape similarity, several shape desriptors havebeen proposed, ranging from moments and Fourier desriptors to Hausdor� distaneand the medial axis transform. For an overview and a detailed disussion of shapemathing tehniques, the reader is referred to [9℄. It should be emphasized that ourapproah is generially appliable as opposed to most shape mathing tehniquesthat are restrited to silhouettes and losed urves. In our framework shape refers toany type of boundary information, and in onsequene, our algorithm is appliablefor a large variety of reognition problems.At its ore, shape ontexts an be understood as a point set mathing tehnique.Most losely related is the work of [3℄ whih proposes an iterative optimization algo-rithm to jointly determine point orrespondenes and underlying image transforma-tions, where typially some generi transformation lass is assumed, e.g. aÆne or,more generally, thin plate splines. This formulation leads to a diÆult non{onvexoptimization problem whih is solved using deterministi annealing. [3℄.As we will show, shape ontexts will greatly simplify the mathing part, leading toa very robust point registration tehnique. It is invariant to sale and translationand to a large extent robust to rotation and deformation. Extensions inorporatingrotational invariane and loal appearane features may be found in [2℄.3 Shape ContextShape ontext analysis begins by onverting the edge elements of a shape into a setofN feature points. These points an be on internal or external ontours. They neednot, and typially will not, orrespond to key-points suh as maxima of urvatureor inetion points. We prefer to sample the shape with roughly uniform spaing,though this is also not ritial. An example using the shape in Figure 1(a) is shownin Figure 1(). Note that this shape, despite being very simple, does not admit the
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r(e) (f) (g) (h)Figure 1: Shape ontext omputation and mathing. (a,b) Original shapes. (,d)Sampled edge points. (e-g) Example shape ontexts for referene samples markedby Æ; �; / in (,d). Eah shape ontext is a log-polar histogram of the oordinatesof the rest of the point set measured using the referene point as the origin. Herewe have used 5 and 12 bins for log r and �, respetively. (Dark=large value.) Notethe visual similarity of the shape ontexts for Æ and �, whih were omputed forrelatively similar points on the two shapes. By ontrast, the shape ontext for / isquite di�erent. (g) Correspondenes found using bipartite mathing, with weightsde�ned by the �2 distane between histograms.use of silhouette-based methods due to its internal ontour. Now onsider the setof vetors originating from a point in Figure 1() to all other points in the shape.These vetors express the appearane of the entire shape relative to the referenepoint. Obviously, this set of N � 1 vetors is a rih desription, sine as N getslarge, the representation of the shape beomes exat.The full set of vetors as a shape desriptor is inappropriate sine shapes and theirsampled representation may vary from one instane to another. In ontrast, weidentify the distribution over relative positions as a robust and ompat, yet dis-riminative desriptor. For a point P on the shape, we ompute a oarse histogramof the relative oordinates of the remaining N � 1 points. This histogram is de-�ned to be the shape ontext of P . The referene orientation for the oordinatesystem an be absolute or relative to a given axis. In this paper we will assume anabsolute referene orientation, i.e. angles measured relative to the positive x-axis.The desriptor should be more sensitive to di�erenes in nearby pixels. We thuspropose to use a log-polar oordinate system. An example is shown in Fig. 1(e).Throughout this paper we have used 12 equally spaed angle bins and 5 equallyspaed log-radius bins.An attrative harateristi of the shape ontext is the invariane to ommon de-formations. Invariane to translation is intrinsi to the shape ontext de�nitionsine everything is measured with respet to points on the objet. To ahieve saleinvariane we normalize all radial distanes by the median distane � between allN2 point pairs in the shape. Choosing the median provides robustness to outliers.Robustness to signi�ant rotations an be ahieved by iterating the steps of math-
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Figure 2: Randomized point set mathing results. Left: Results from [3℄ Right:Results for shape ontext mathing. The x axis shows � and the y axis showsaverage parameter estimation error. � : pd = 0:0; ps = 0:0; Æ : pd = 0:1; ps = 0:1,+ : pd = 0:3; ps = 0:1; � : pd = 0:5; ps = 0:1. Eah data point represents the meanover 500 trial runs.ing and point set alignment a few times, as shown in the evaluation below. As wewill empirially demonstrate, shape ontexts are robust to additions and deletions.In a ompanion paper [2℄ we extended the shape ontext desriptor to ompleterotational invariane employing relative instead of absolute frames.Mathing Shape Contexts In determining shape orrespondenes, we aim tomeet two riteria: (1) orresponding points should have very similar desriptors,and (2) the orrespondenes should be unique.Consider a point i on the �rst shape and a point j on th seond shape. We omparethe shape ontexts at i and j to ome up with a ost Ci;j for mathing these twopoints. Let the K-bin (normalized) histogram at i be g(k) and at j be h(k). Thenthe ost Ci;j is given by the �2 statistiCi;j = 12 KXk=1 [g(k)� h(k)℄2g(k) + h(k)Given the set of osts Ci;j between all pairs of points i on the �rst shape and jon the seond shape we want to minimize the total ost of mathing subjet tothe onstraint that the mathing be one-to-one. This is an instane of the squareassignment (or weighted bipartite mathing) problem, whih an be solved in O(N3)time using the Hungarian method. In our experiments, we use the omparativelymore eÆient algorithm of [5℄. The input to the assignment problem is a squareost matrix with entries Ci;j . The result is a permutation �(i) suh that the sumPi Ci;�(i) is a minimum. The result of applying this algorithm to the letter-Aexample is shown in Figure 1(h).When the number of samples on two shapes is not equal, the ost matrix an bemade square by adding \dummy" nodes to eah point set with a onstant mathingost of �d. The same tehnique may also be used even when the sample numbersare equal to allow for robust handling of outliers.One a orrespondene between points is established, we an estimate the transfor-mation between them. Assuming a noisy measurement model, one usually restritsthe lass of allowed transformations to obtain robust estimators. In this work, werestrit attention to aÆne transformations whih onsist of a translation followedby an arbitrary linear map. Sine the orrespondenes are known the aÆne trans-formation is estimated using standard least squares methods. These two steps anbe iterated to ahieve additional preision. However, the initial estimate of orre-spondenes is often suÆient to obtain an exellent estimate of the underlying aÆne
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Figure 3: Handwritten digit reognition on the MNIST dataset. Left: Test set errorsof a 1-NN lassi�er using SSD and Shape Contexts as distane measures. Right:some example ones, sevens, and eights, illustrating the high degree of intra-lassvariability.transformation without any iteration, resulting in an extremely fast algorithm.Empirial Robustness Evaluation In order to study the robustness of shapeontexts for reovering orrespondenes, we performed the random point set math-ing experiment desribed in [3, Set. 5.2℄. This experiment onsists of repeatedlygenerating a random point set and mathing it to a distorted version of itself.The model point set is made by hoosing 50 points uniformly at random in a unitsquare. The parameter values for the distorting transformation are drawn indepen-dently and uniformly at random from the following intervals: �0:5 < tx; ty < 0:5(translation), �27Æ < � < 27Æ (rotation), and 0:5 � ea � 2 (sale). Points in thetransformed set are deleted and spurious points added aording to the frationspd 2 f0; 0:1; 0:3; 0:5g and ps 2 f0; 0:1g, respetively. Jitter is introdued by addingindependent Gaussian noise with � = f0:01; 0:02; : : : ; 0:08g to eah oordinate be-fore transformation. The measure of performane is based on the average errorbetween the atual and the estimated transformation parameters. To obtain ourparameter estimates, we iterated the steps of mathing and least-squares alignmentreovery four times. We added dummy nodes with �d = 0:15 to make the totalnumber of nodes in eah point set 60. A omparison of the two sets of results isshown in Fig. 2.4 ResultsA straightforward strategy for reognition is to use a 1-NN lassi�er with shapeontext dissimilarity as the distane measure. The overall algorithm has 3 steps:(1) estimate aÆne transforms between a prototype and a query shape, (2) applythe aÆne transform and reompute the shape ontexts for the transformed pointset, and (3) sore the math by summing up the shape ontext distanes betweeneah point on a shape to its most similar point on the other shape1.Case study 1: Digit reognition The �rst experiment is onerned with theMNIST dataset of handwritten digits, whih onsists of 60,000 training and 10,0001We atually obtain two sores, one projeting referene shape onto query shape andone vie versa. The �nal sore is obtained by taking the maximum.
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Figure 4: 3D objet reognition. Left: omparison of test set error for SSD, ShapeContexts (SC), and Shape Contexts with K-medoid prototypes (SC') vs. number ofprototype views. For SSD and SC, we varied the number of prototypes uniformlyfor all objets. For SC', the number of prototypes per objet has been hosenadaptively, see text. Right: K-medoid prototype views for two di�erent examples,using an average of 6 prototypes per objet.test digits, see [6℄ for a desription and results. However, sine we are mainlyinterested in understanding shape, and thus in generalizing from few examples, wepresent here results for small training sets hosen at random from the full set. Thetest set error plotted in Fig. 3 has been evaluated over 1000 randomly hosen testdigits using a 1{NN lassi�er. Two di�erent similarity measures, shape ontext(SC) and sum of squared di�erenes (SSD) are used to provide a diret omparison.A signi�ant improvement an be seen when shape ontexts are used to provide thedistane measure, resulting in an error rate as low as 3.8% ompared to 7.7% forSSD for 2000 training images.2Case study 2: 3D objet reognition The seond experiment involves 20ommon household objets seleted from the COIL-100 database [7℄. Eah objetwas photographed on a turntable with rotation inrements of 5Æ for a total of72 views per objet. Eah image is gray-sale and 128 � 128. We prepared ourtraining sets by seleting a number of equally spaed views for eah objet. Theremaining views were then used for testing. Fig. 4(a) shows the performane ofshape ontext mathing (SC) ompared to SSD using 1-NN. The shape ontext testswere performed with the same settings as in the digit experiment using 100 pointsrandomly sampled from the Canny edges of eah image. SSD is known to performvery well on this database due to the lak of variation in lighting [4℄. Our method,being dependent on features abstrated away from the raw image brightnesses, doesnot share this sensitivity. Naturally one ould bene�t from ombining appearanebased features with shape ontexts, but in the present work we fous exlusively onshape.Beyond reognition, shape ontext allows for the de�nition of a generi shape sim-ilarity measure. In [2℄ we exploited this property in the ontext of image retrieval.Here we demonstrate a lustering appliation whih allows us to selet a set ofprototypial images for a given lass, an appliation known as editing. We relyon a grouping tehnique for pairwise data known as K-medoids. K-medoids anbe seen as a variant of K{means that restrits prototype positions to data points,2For Eulidean k-NN an error rate of 5.0% using 60,000 training images is reported [6℄.



but it readily generalizes to arbitrary similarity data. Conretely, �rst a matrix ofpairwise similarities between all possible prototypes is omputed and stored. For agiven number of K prototypes the K-medoid algorithm then iterates two steps: (i)For a given assignment of points to (abstrat) lusters a prototype is seleted byminimizing the average distane of the prototype to all elements in the luster, and(ii) given the set of prototypes, points are then reassigned to lusters aording tothe nearest prototype. Though heuristi at a �rst glane this sheme an be maderigorous by deriving a joint ost funtion for both steps.In the reognition ontext this tehnique an also be used to optimally alloateresoures, i.e. more prototypes are alloated to diÆult shapes. In this ase we runseparate lustering algorithms for eah ategory. We employ a splitting strategy,however, we hoose the luster to split based on the assoiated overall mislassi�a-tion error, thus oupling the di�erent editing proesses. Two examples of the pro-totypes seleted using this method in the COIL experiment are shown in Fig. 4(b).The urve marked SC' in Fig. 4(a) shows the improved lassi�ation performaneusing this prototype seletion strategy instead of equally-spaed views.5 ConlusionWe have presented a new approah to omputing shape similarity and orrespon-denes based on the shape ontext desriptor. Shape ontext is simple and easy toapply, yet provides an extraordinarily rih desriptor for point sets greatly improvingpoint set registration, shape mathing and shape reognition. In our experiments wehave demonstrated invariane to several ommon image transformations, inludingsigni�ant 3D rotations of real-world objets.Aknowledgments This researh is supported by (ARO) DAAH04-96-1-0341, theDigital Library Grant IRI-9411334, an NSF graduate Fellowship for S.B and the GermanResearh Foundation by Emmy Noether grant PU-165/1.Referenes[1℄ Y. Amit, D. Geman, and K. Wilder. Joint indution of shape features and tree las-si�ers. IEEE Trans. Pattern Analysis and Mahine Intelligene, 19(11):1300{1305,November 1997.[2℄ S. Belongie and J. Malik. Mathing with shape ontext. In IEEE Workshop on Content-based Aess of Image and Video Libraries (CBAIVL-2000, to appear), 2000.[3℄ S. Gold et al. New algorithms for 2D and 3D point mathing: pose estimation andorrespondene. Pattern Reognition, 31(8), 1998.[4℄ D.P. Huttenloher, R.H. Lilien, and C.F. Olson. View-based reognition using aneigenspae approximation to the Hausdor� measure. PAMI, 21(9):951{955, Sept. 1999.[5℄ R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense andsparse linear assignment problems. Computing, 38:325{340, 1987.[6℄ Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based learning applied todoument reognition. Proeedings of the IEEE, 86(11):2278{2324, November 1998.[7℄ H. Murase and S.K. Nayar. Visual learning and reognition of 3-d objets from ap-pearane. Int. Journal of Computer Vision, 14(1):5{24, Jan. 1995.[8℄ M. Turk and A.P. Pentland. Eigenfaes for reognition. J. Cognitive Neurosiene,3(1):71{96, 1991.[9℄ R. C. Veltkamp and M. Hagedoorn. State of the art in shape mathing. TehnialReport UU-CS-1999-27, Utreht, 1999.


