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Abstract

Due to illumination variability, the same object can appear
dramatically different even when viewed in fixed pose, and
this variability can confound recognition systems. This paper
summarizes recent work on developing appearance-based
methods for modeling the variability due to illumination in
the images of objects. They differ from past appearance-
based methods, however, in that a small set of training im-
ages is used to generate a representation – the illumination
cone – which models thecomplete set of imagesof an object
with Lambertian reflectance map under an arbitrary combi-
nation of point light sources at infinity. From a few images
of an object in fixed pose but varying and unknown lighting,
a surface and albedo map are reconstructed up to a family of
affine (generalized bas-relief or GBR) deformations, and the
cone representation is derived from this GBR surface. The
methods have been tested within the domain of face recog-
nition on two databases, one with 660 images of 10 faces in
fixed pose but variable lighting, and one with 1350 images of
10 faces with variable pose and lighting; the results exceed
those of popular existing methods.

1. Introduction

The images of objects and scenes can appear dramat-
ically different even when observed from the same
viewpoint because of changes in lighting (See Fig. 1).
On the one hand, vision-based robot systems can ex-
ploit this naturally occurring variability to better un-
derstand scene structure. On the other, without suitable
models of the effects of illumination, recognition sys-
tems can be confounded by this variation. Most vision
systems address this issue by (a) controlling illumina-
tion, (b) employing a representation that is invariant to
the variability, or (c) directly modeling this variability.
For example, there is a long tradition of performing
edge detection at an early stage since the presence of
an edge at an image location is thought to be largely

independent of lighting.

Here, we consider modeling the effects of illumina-
tion variability rather than trying to achieve illumina-
tion invariance, and show how these models can be ex-
ploited for reconstructing the 3-D geometry of scenes
and used to significantly increase the performance of
appearance-based recognition systems. We demon-
strate the use of these models within the context of face
recognition, but believe that they have much broader
applicability. For example, within industrial and ser-
vice robotics, it is not always possible to control the
illumination since the light cast through windows will
vary with the time of day, season and weather.

Methods have recently been introduced which use
low-dimensional representations of images of objects
to perform recognition; see for example [9, 18, 22].
These methods, often termed appearance-based meth-
ods, differ from feature-based methods in that their
low-dimensional representation is, in a least-squared
sense, faithful to the original image. Systems such
as SLAM [18] and Eigenfaces [22] have demonstrated
the power of appearance-based methods both in ease
of implementation and in accuracy.

Beyond recognition, these methods have been
shown to be useful for inspection, visual tracking, vi-
sual control, and mobile robot navigation [20]. Yet
these methods suffer from an important drawback:
recognition of an object (or face) under a particular
pose and lighting can be performed reliablyprovided
that the object has been previously seen under similar
circumstances. In other words, these methods in their
original form have no way of extrapolating to novel
viewing conditions. Here, we consider the construc-
tion of a generative appearance model and demonstrate
its usefulness for image-based rendering and recogni-
tion.

Arbitrary illumination can be modeled as a scalar
function on a four-dimensional manifold of light
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Figure 1: An example image from each subset of the Harvard Database.

rays [17] . It is also easy to show that the set of all
possiblen-pixel monochrome images of an object ob-
served in fixed pose, but over all possible illumination
conditions is a convex cone inIRn. However, without
limiting assumptions about the possible light sources,
the bidirectional reflectance density functions (BRDF),
or object geometry, it is difficult to draw limiting con-
clusions about the set of images. For example, when
the object is restricted to being convex and Lamber-
tian and when this object is illuminated by an arbitrary
number of point light sources at infinity, thisillumi-
nation coneis polyhedral, it can be characterized by
a finite number of extreme rays, it can be constructed
from a minimum of three images, and its dimension
equals the number of distinct surface normals [3].

Now, as a point light source (nearby or at infinity)
assumes different locations, both the shading and shad-
owing in an image change. For any finite set of point
light sources illuminating an object viewed under ei-
ther orthographic or perspective projection, there is an
equivalence class of object shapes having the same
set of shadows [14]. Members of this equivalence
class differ by a four parameter family of projective
transformations, and the shadows of a transformed ob-
ject are identical when the same transformation is ap-
plied to the light source locations. Under orthographic
projection, this family is the generalized bas-relief
(GBR) transformation, a subgroup of affine transfor-
mations [1]. Furthermore, for objects with Lambertian
surfaces illuminated by distant light sources, the equiv-
alence class of object shapes which preserves shadows
also preserves surface shading. Hence, two objects dif-
fering by a GBR transformation have identical illumi-
nation cones. A natural implication is that two mem-
bers of an equivalence class cannot be distinguished
from a fixed viewpoint, and any reconstruction algo-
rithm can only recover structure up to this family of
transformations [1, 14].

Nevertheless, this leads to a method for image-based
rendering and reconstruction. In particular, given three
or more images of a Lambertian surface with a con-
tinuous depth function illuminated by unknown light

sources at infinity, surface geometry and an albedo map
can be estimated up to a generalized bas-relief transfor-
mation. Nothing in the shading or shadows can be used
to further resolve this ambiguity. Synthetic images of
the surface can be rendered using ray-tracing for mul-
tiple point or extended light sources. Even though the
surface is only recovered up to a GBR transformation,
every image will be physically valid. Class specific in-
formation can be used to select a representative mem-
ber of the equivalence class, and images can be ren-
dered from arbitrary viewpoints as well [6].

Surface reconstruction up to a GBR transformation
and the illumination cone representation have been
married to produce a representation useful for object
recognition. From three or more images of a contin-
uous (possibly non-convex) Lambertian surface, the
GBR surface can be reconstructed, and extreme rays
of its illumination cone can be constructed. For a col-
lection of objects, each object is represented by a cone,
and recognition is performed through nearest neighbor
classification by measuring the minimal distance of an
image to each cone. We demonstrate the utility of this
approach to the problem of face recognition (a class of
non-convex and non-Lambertian objects with similar
geometry). The method has been tested on a database
with 660 images of 10 faces in fixed pose but variable
lighting. The object representations was also extended
to include variable viewpoints (see Sec. 5.) and our
method was also tested on a database with 1350 im-
ages of 10 faces with variable pose and lighting.

In the following section, we summarize some prop-
erties of the illumination cones of convex objects while
in Section. 3. we discuss issues related to the con-
struction of cone representations for non-convex Lam-
bertian objects. In Sec. 4.1., we provide experimen-
tal results for recognizing faces in fixed pose, but un-
der variable lighting while in Sec. 5. we consider is-
sues of recognition under variation in both pose and
lighting (The methods and experimental results pre-
sented in Section 5. should be considered prelimi-
nary). Much of the material in this paper was presented
in [1, 3, 6, 7, 14].



2. The Illumination Cone

In earlier work, it was shown that for an object with
convex shape and Lambertian reflectance, the set of all
n-pixel images under an arbitrary combination of point
light sources forms a convex polyhedral cone in the
image spaceIRn. This cone can be constructed from
as few as three images [3]. Here we summarize the
relevant results.

To begin, consider a convex object with a Lamber-
tian reflectance function which is illuminated by a sin-
gle point source at infinity. Letx 2 IRn denote an
image of this object withn pixels. LetB 2 IRn�3
be a matrix where each row ofB is the product of the
albedo with the inward pointing unit normal for a point
on the surface projecting to a particular pixel in the im-
age. A point light source at infinity can be represented
by s 2 IR3 signifying the product of the light source
intensity with a unit vector in the direction of the light
source. A convex Lambertian surface with normals and
albedo given byB, illuminated bys, produces an im-
agex given by x = max(Bs;0); (1)

wheremax(Bs;0) sets to zero all negative compo-
nents of the vectorBs. The pixels set to zero cor-
respond to the surface points lying in anattached
shadow. Convexity of the object’s shape is assumed
at this point to avoidcast shadows(shadows that the
object casts on itself). While attached shadows are de-
fined by a simple local geometric conditions, cast shad-
ows must satisfy a global condition. When no part of
the surface is shadowed,x lies in the 3-D subspaceL
given by the span of the matrixB [9, 19, 21]; the sub-
setL0 � L having no shadows (i.e., intersecting with
the non-negative orthant) forms a convex cone [3].

The illumination subspaceL slices through other or-
thants as well as the non-negative orthant. LetLi be
the intersection of the illumination subspaceL with an
orthanti in IRn through whichL passes. Certain com-
ponents ofx 2 Li are always negative and others al-
ways greater than or equal to zero. Since image inten-
sity is always non-negative, the image corresponding
to points inLi is formed by a projectionPi determined
by Equation 1. The projectionPi is such that it leaves
the non-negative components ofx 2 Li untouched,
while the negative components ofx become zero. The
projected setPi(Li) is also a convex cone.L intersects
at mostn(n� 1)+ 2 orthants [3], and so the set of im-
ages created by varying the direction and strength of a
single light source at infinity is given by the union of
at mostn(n� 1)+2 convex cones, each of which is at
most three dimensional.

If an object is illuminated byk light sources at in-
finity, then the image is given by the superposition of
the images which would have been produced by the
individual light sources, i.e.,x = kXi=1 max(Bsi;0) (2)

wheresi is a single light source. It follows that the
set of all possible imagesC of a convex Lambertian
surface created by varying the direction and strength
of an arbitrary number of point light sources at infinity
is a convex cone.

The cone can be constructed as the convex hull of
the n(n � 1) + 2 single light source convex cones.
Alternatively, any image in the coneC (including the
boundary) can be found as a convex combination of
extreme rays(extreme images) given byxij = max(Bsij ;0); (3)

where sij = bi � bj : (4)

The vectorsbi andbj are the rows ofB with i 6= j.
For a surface withm � n independent surface nor-
mals, there are at mostm(m � 1) extreme rays. And
since there are a finite number of extreme rays, this
convex illumination cone is polyhedral.

3. Constructing the Illumination Cone

Equations 3 and 4 suggest a way to construct the il-
lumination cone for each object: gather three or more
images under varying illumination without shadowing
and use these images to estimate the three-dimensional
illumination subspaceL. One way of estimating this
is to normalize the images to be of unit length, and
then use singular value decomposition (SVD) to esti-
mate the best three-dimensional orthogonal basisB�
in a least-squares sense. Note that the basisB� dif-
fers fromB by an unknown linear transformation, i.e.,B = B�A whereA 2 GL(3); for any light source,x = Bs = (B�A)(A�1s) [11]. Nonetheless fromB�,
the extreme rays defining the illumination coneC can
be computed using Eqs. 3 and 4. We now consider
three issues or problems that arise in using this method
for nonconvex objects such as faces – See [7] for de-
tailed solutions.

The first problem that arises with the above proce-
dure is with the estimation ofB�. For even a convex
object whose Gaussian image covers the Gauss sphere
(i.e., its occluding contour is visible), there is only one
light source direction (the viewing direction) for which



no point on the surface is in shadow. For any other light
source direction, shadows will be present. For non-
convex objects, shadowing in the modeling images is
likely to be more pronounced. When SVD is used to
estimateB� from images with shadows, these system-
atic errors can bias its estimate significantly.

The next problem is that usuallym, the number of
independent normals inB, can be large (more than a
thousand) hence the number of extreme rays needed to
completely define the illumination cone can run in the
millions. Therefore, we must approximate the cone in
some fashion; in this work, we choose to use a small
number of extreme rays (images). The hope is that
a sub-sampled cone will provide an adequate approx-
imation that negligibly decreases recognition perfor-
mance; in our experience, around 60-80 images are
sufficient, provided that the corresponding light source
directionssij are more or less uniform on the illumi-
nation sphere. The resulting coneC� is a subset of the
object’s true coneC. An alternative approximation toC can be obtained by directly sampling the space of
light source directions rather than generating the sam-
ples through Eq. 4. While the resulting images form
the extreme rays of the representationC� and lie on the
boundary ofC, they are not necessarily extreme rays ofC. AgainC� is a subset ofC.

The last issue arises because objects such as faces
are non-convex, and so cast shadows can cover signif-
icant portions of the face under extreme illumination
(See the images from Subsets 4 and 5 in Figure 1.)
However, the image formation model given by Eq. 1
does not account for cast shadows. For the light source
direction associated with each extreme ray given by
Equation 4, we need to determine which pixels (ele-
ments) ofxij will fall in a cast shadow.

It has been shown [1, 23] that from multiple images
where the light source directions are unknown, one
can only recover a Lambertian surface up to a three-
parameter family given by the generalized bas-relief
(GBR) transformation. This family of affine transfor-
mations scales the relief (flattens or extrudes) and in-
troduces an additive plane. Consequently, when com-
puting s�ij from B�, the light source direction differs
from the true light source by a GBR transformation.
Since shadows are preserved under these transforma-
tions [1], images synthesized from a surface whose
normal field is given byB� and illuminated by light
sources�ij will have correct shadowing. Thus, in con-
structing the extreme rays of the cone, we first recon-
struct a surface and then use ray-tracing techniques to
determine which points lie in a cast shadow. It should
be noted that the vector fieldB� estimated via SVD
may not be integrable, so prior to reconstructing the

surface up to GBR, integrability ofB� is enforced.

a.

b.

c.

Figure 2: The process of constructing the coneC�: a. The
training images; b. Images corresponding to columns ofB�;
c. Reconstruction up to a GBR transformation; d. Sample
images from the illumination cone under novel lighting con-
ditions, but fixed pose.



This leads to the following steps for constructing a
representation of the illumination coneC� from a set
of images taken under unknown lighting.

1. EstimateB� from training images.

2. Enforce integrability ofB�.
3. Reconstruct the surface up to GBR.

4. For a set of light source directions that uniformly
sample the sphere, synthesize extreme rays (im-
ages) of the cone that account for cast and at-
tached shadows.

Details of the steps and the entire method can be found
in [7].

4. Recognition

The coneC� can be used in a natural way for object
recognition, and we empirically evaluate it within the
context of face recognition. In experiments described
below, we compare three recognition algorithms to the
proposed method. From a set of face images labeled
with the person’s identity (the learning set) and an un-
labeled set of face images from the same group of peo-
ple (the test set), each algorithm is used to identify the
person in the test images. For more details of the com-
parison algorithms, see [2]. We assume that the face
has been located and aligned within the image.

The simplest recognition scheme is a nearest neigh-
bor classifier in the image space [4]. An image in the
test set is recognized (classified) by assigning to it the
label of the closest point in the learning set, where dis-
tances are measured in the image space. If all of the
images are normalized to have zero mean and unit vari-
ance, this procedure is equivalent to choosing the im-
age in the learning set that bestcorrelateswith the test
image.

As correlation methods are computationally expen-
sive and require great amounts of storage, it is natural
to pursue dimensionality reduction schemes. A tech-
nique now commonly used in computer vision – par-
ticularly in face recognition – is principal components
analysis (PCA) which is popularly known asEigen-
faces[9, 16, 18, 22]. Given a collection of training
imagesxi 2 IRn, a linear projection of each imageyi = Wxi to anf -dimensional feature space is per-
formed. A face in a test imagex is recognized by pro-
jectingx into the feature space and performing nearest
neighbor classification inIRf . The projection matrixW 2 IRf�n is chosen to maximize the scatter of all
projected samples. One proposed method for handling
illumination variation in PCA is to discard fromW the

Subset 1
    
Subset 2
       
Subset 3
           
Subset 4
   
Subset 5

Figure 3: Images in the Harvard face database were acquired
by sampling half the illumination sphere at15� increments
in longitude and latitude. The highlighted lines indicate the
light source directions for Subsets 1 through 5.

three most significant principal components; in prac-
tice, this yields better recognition performance [2].

A third approach is to model the illumination vari-
ation of each face as a three-dimensional linear sub-
spaceL as described in Section 2. To perform recog-
nition, we simply compute the distance of the test im-
age to each linear subspace and choose the face corre-
sponding to the shortest distance. We call this recog-
nition scheme theLinear Subspacemethod [2]; it is a
variant of the photometric alignment method proposed
in [21] and is related to [10, 19]. While this models the
variation in intensity when the surface is completely
illuminated, it does not model shadowing.

Finally, given a test imagex, recognition usingil-
lumination conesis performed by first computing the
distance of the test image to each cone, and then choos-
ing the face that corresponds to the shortest distance.
Since each cone is convex, the distance can be found
by solving a convex optimization problem. In par-
ticular, a modified version of the non-negative linear
least squares technique contained in Matlab was used
in our implementation, and this algorithm has a com-
putational complexity ofO(n e2) wheren is the num-
ber of pixels ande is the number of extreme rays.

4.1. Experimental Results

To test the effectiveness of these recognition algo-
rithms, we performed a series of experiments on a
database from the Harvard Robotics Laboratory in
which lighting had been systematically varied [9, 10].
In each image, a subject held his/her head steady while
being illuminated by a dominant light source. The
space of light source directions, which can be param-
eterized by spherical angles, was then sampled in15�
increments. See Figure 3. From this database, we used
660 images of 10 persons (66 of each). We extracted
five subsets to quantify the effects of varying lighting.
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Figure 4: Extrapolation: When each of the methods is
trained on images with near frontal illumination (Subset 1),
this graph shows the error rates under more extreme light
source conditions.

A sample image from each subset is shown in Fig. 1.
Subset 1 (respectively 2, 3, 4, 5) contains 60 (respec-
tively 90, 130, 170, 210) images for which both the
longitudinal and latitudinal angles of light source di-
rection are within15� (respectively30�; 45�; 60�; 75�)
of the camera axis.

Mirroring the extrapolation experiment described
in [2], each method was trained on samples from Sub-
set 1 and then tested using samples from Subsets 2, 3,
4 and 5. (Note that when tested on Subset 1, all meth-
ods performed without error). Figure 4 shows the re-
sult from this experiment. Error rates for subset 5 are
not shown since they approached chance (90%) for the
correlation and Eigenfaces methods, and at their best
they were 37% when cones were used.

5. Image-Based Rendering and Recogni-
tion Under Variable Pose

So far, we have considered the issue of recognizing an
object (particularly faces) under a wide range of illu-
mination conditions. Here we consider pose variation
along with illumination variation. Clearly, for every
pose of the object, the set of images under all lighting
conditions is a convex cone. Under a weak perspective
projection imaging model, the effect of pose variation
can be decoupled into that due to image plane transla-
tion, rotation, and scaling (a similarity transformation)
and that due to the viewing direction. Within a face
recognition system, the face detection process gener-
ally provides estimates for the image plane transforma-
tion. Neglecting the effects of occlusion or appearance
of surface points, the variation due to viewpoint can

Figure 5: Synthesized images under variable pose but with
fixed lighting. The representation was constructed from the
images in Figure 2.a.

be seen as a non-linear warp of the image coordinates
with two degrees of freedom.

Three possible approaches to handle viewing direc-
tion variation are: 1) Estimate the viewpoint, perhaps
iteratively, during the recognition process much like in
the alignment approach [13]; 2) Find some attribute
of the image which is invariant to viewpoint variation;
or 3) Model the set of images under viewing direction
variation. Here, we choose the third approach since, as
shall be shown, the recovered surface and albedo pat-
tern provide a suitable generative model.

However, one complication arises because of the
generalized bas-relief (GBR) ambiguity. Without res-
olution of this ambiguity, images synthesized from a
GBR reconstruction will differ from a valid image by
an affine warp of image coordinates since GBR is a
3-D affine transformation and weak perspective is a
linear camera model. Since this is an image transfor-
mation, one could perform recognition over variation
in viewing direction and affine image transformations
rather than similarity transformations. Alternatively,
one can attempt to resolve the GBR ambiguity to ob-
tain a Euclidean reconstruction. For faces, one can use
bilateral symmetry and class information to resolve the
ambiguity. Once resolved, it is a simple matter to use
ray-tracing techniques to determine shadows and ren-
der synthetic images under pose and lighting variation.
See Figure 5.

With the GBR resolved, an object can be represented



Figure 6: A geodesic dome with 64 strobes used to gather
images reported in Table 1.

by first sampling the space of viewing directions and
then constructing a cone for each viewing direction.
Recognition using this raw representation is going to
be costly since computing distance to cone isO(ne2),
wheree is the number of extreme rays; for a convex
object, the cone hasO(n2) extreme rays [3]. From an
empirical study, it was conjectured in [3] that the cone
for a typical object is flat (i.e., all points lie near a low-
dimensional linear subspace), and this was confirmed
for faces in [5]. Hence, an alternative is to model a
face in fixed pose but over all lighting conditions by
a low-dimensional linear subspace. Finally, for a set
of sample viewing directions, we construct subspaces
which approximate the corresponding cones. Recogni-
tion of a test imagex is then performed by finding the
closest linear subspace tox.

For the experimental results reported below, sub-
spaces were constructed by sampling the viewing
sphere at4� intervals over the elevation from�20� to+24� and the azimuth from�4� to+28� about frontal.
We chose to use 11-D linear subspaces for each pose
since eleven dimensions captured over 99% of the vari-
ation in the sample extreme rays. Recognition was per-
formed by computing the distance of a test image to
each 11-D subspace.

5.1. Experimental Results

The experiment described in Section 4.1. was limited
to the available dataset from the Harvard Robotics Lab-
oratory. To perform more extensive experimentation,
we have constructed the geodesic lighting rig with 64
computer controlled xenon strobes shown in Fig. 6.
Using this rig, we can modify the illumination at frame
rates. Here we report on some preliminary results us-

Test Images

Closest image in cone representation

Figure 7: The top row shows three images from the test set,
and the bottom row shows the closest reconstructed image
from the representation. Note that these images are not ex-
plicitly stored, but lie within the closest matching linearsub-
space.

Error Rate (%)

Lighting Variation
Pose 12� 25� 50� 77�
Frontal 0.0 0.0 0.0 0.712� 0.0 0.0 0.8 1.424� 0.0 0.0 0.0 9.2

Table 1: Error rates over variable pose and lighting for a 1350
image subset of the Yale Face Database B.

ing this rig in the following experiment; images of ten
individuals were acquired in three poses (frontal and
rotations of approximately12� and24� degrees about
the vertical) under 64 different lighting conditions. The
method was tested using a subset of 1350 images. As
in the previous experiment, the images were divided
into subsets (12�, 25�, 50� and77�) according to the
angle of the light source with the camera’s axis.

The representation described in Section 5. was con-
structed using images with near frontal lighting from
the frontal pose. For ten individuals, there were 108
11-D subspaces. Given a test image, the point on the
nearest 11-D subspace is computed. Figure 7 shows
the closest match for images of an individual in three
poses. This figure qualitatively shows how well the
union of 11-D subspaces approximates the true cones.
Over the entire dataset of 1350 images, Table 1 sum-



marizes the recognition results for each of the subsets
and poses. Essentially, recognition is perfect for all
poses with lighting directions to25�, and then perfor-
mance begins to degrade. However, when lighting is
within 50�, the cumulative error rates over all three
poses was about 0.1% while over the whole database
including those at77�, the error rate was 1.2%.

6. Conclusions

We have exploited the fact that images of an object in
fixed pose but under variable illumination form a con-
vex cone in the image space, the fact that for Lam-
bertian surfaces this cone can be constructed through
an estimate of the corresponding 3-D linear subspace,
and the empirical observation that most of the cone lies
near a low-dimensional linear subspace. Even though
structure can only be recovered up to a generalized bas-
relief (GBR) transformation when the 3-D subspace is
estimated with unknown light source directions, one
can still construct a valid cone representation. We have
demonstrated the use of this generative model and cone
representation within the context of recognizing faces
under extremes of illumination. When the GBR am-
biguity is resolved, realistic images can be rendered
under pose lighting variation. Furthermore, these syn-
thetic images can be used to construct representations
for recognition under variable pose and lighting.

The algorithm and recognition results reported in
Sec. 5. should be considered preliminary. More exten-
sive experimentation over a larger database is under-
way. Note that this database will be publicly available
upon completion of this study. Though preliminary,
the reported results do support the power of this gen-
erative model for recognition and inspection. There is
much to be done to develop efficient and effective clas-
sifiers that exploit this generative model, yet are less
computationally and memory expensive.

While our experiments have focused on the domain
of face recognition, we believe that the underlying con-
cepts can be applied to many vision and robotics prob-
lems where appearance-based approaches have been
successful such as robot navigation, inspection, and
visual guidance [20]. Some of these concepts have
already been exploited to make visual tracking more
robust to dynamic lighting changes [8], and clearly
visual tracking is a critical element of visual servo-
ing [12, 15].
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