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Abstract

We address the problem of reconstructing the 3-D shape
of a Lambertian surface from multiple images acquired as
an object rotates under distant and possibly varying il-
lumination. Using camera projection matrices estimated
from point correspondences across views, the algorithm
computes a dense correspondence map by minimizing a
multi-ocular photometric constraint. Once correspondence
across views is established, photometric stereo is applied to
estimate a surface normal field and 3-D surface. Concep-
tually, the algorithm merges multi-view stereo and photo-
metric stereo and uses aspects of both methods to recover
shape. The method is straightforward to implement and re-
lies on established principles from the two stereo methods.
We empirically validate the method on images of a number
of objects and show that it outperforms previous methods.

1. Introduction
Recovering the 3-D shape of objects from images dates

back to the early days of computer vision. Over the years,
researchers have developed systems using stereo, structured
light, and photometric stereo to scan objects from ancient
statues to human faces. These methods have produced some
stunning results; however, they can be cumbersome, requir-
ing unwieldy setups, extensive calibration procedures, and
at times strict control of the environment, leaving 3-D scan-
ning abilities out of the reach of a common person. In this
paper, we explore a lightweight setup that acquires high-
quality, detailed object structure using several images of an
object rotating under distant, unknown, and possibly vary-
ing illumination. With this simple setup, a hand-held cam-
era becomes a powerful high-quality 3-D scanner.

When an object rotates in front of a camera under dis-
tant and varying illumination the appearance of the object
changes both geometrically and photometrically. These
changes provide clues to the shape of an object; however,
due to their simultaneous variation they can not be ex-
ploited by traditional methods. Since the lighting condi-
tions change between images, standard stereo methods will
fail as they assume brightness constancy for finding corre-
spondence . Similarly, due to viewpoint change, standard
photometric stereo cannot be performed since pixel corre-
spondences are unknown across images. While this joint
variation of view and lighting may appear to complicate the

Figure 1. Shape from varying illumination and viewpoint. One of
eight views of a figurine rotating it in front of a camera and light
(top left). The intermediate dense depth map recovered by our
method – red is closer and blue further from the camera or for a
gray-scale printout white is closer and black further (top right) and
renderings of the final surface (bottom row).

matter of shape acquisition, we show that it in fact enables
high-quality shape reconstruction.

This primary contribution of this work is recovering
shape under varying viewpoint and lighting by combining
multi-view and photometric stereo to derive a multi-ocular
photometric matching cost. This cost is minimized us-
ing a graphcut method to find dense correspondence be-
tween images. Once correspondence is found, photomet-
ric stereo recovers normals, and the depth map from cor-
respondence and the normals are fused to recover high-
quality 3-D shape. Relative to previous related work, we
produce higher-quality reconstructions using a non-iterative
method with fewer images. We present several results in-
cluding comparisons on data used by two recent related pa-
pers [12, 6] and show that our results are qualitatively more
accurate.

The rest of this paper proceeds as follows: in the next
section, we will discuss the previous work in this area. In
Section 3, we present our algorithms. We present results in
Section 4 followed by a discussion and our conclusions.

2. Previous Work
Shape recovery using stereo and photometric clues has

received increasing attention in recent years. Several re-
searchers have explored extending stereo matching to han-



dle changes in shading or illumination due to object rota-
tion. Maki et al. [7] use a linear subspace constraint as we
do and require several known correspondences to estimate
light source directions up to an arbitrary invertible 3 × 3
transform, but they do not recover surface normals. Our
method, in contrast, requires a few known correspondences
to recover camera parameters and then implicitly solves for
the unknown lighting directions when recovering normals
relative to a dense depth map. Simakov et al. [10] also
merge multi-view stereo and photometric constraints by as-
suming that the relative motion between the object and the
illumination source is known. While this is recoverable in
certain situations, in the more general case when camera,
object, and illumination can be moving, it is not clear how
to recover the relative motion between the object and the
illumination. Furthermore, their process can only recover
normals up to an ambiguity along a plane. Our method
makes no assumptions about light and camera motion and
recovers albedo and normals unambiguously.

Our work is most similar to the work by Zhang et al. [12]
and Lim et al. [6]. Both of these methods perform recon-
struction using a similar setup and recover pixel correspon-
dences and photometric normals. Zhang et al. present an it-
erative method based on an extension of optical flow, which
requires numerous images from a dense video sequence.
Our work, in contrast, extends a multi-view stereo algorithm
and only requires a small number (e.g., eight) sparsely dis-
tributed views of the object. Lim et al. [6] start with very
sparse initial estimate of the shape computed from the 3-D
locations for a sparse set of features. This shape is then re-
fined using iterative reconstruction and re-warping to match
the photometric information. While their iterative proce-
dure generally improves the geometry, it does not always
converge on the correct structure and high-frequency struc-
ture can actually degrade in quality over iterations. In con-
trast with both of the methods, our technique is not iterative;
it computes dense shape and normals in one pass and uses
both together to recover a high-quality surface.

3. Reconstruction Algorithm
The goal of our work is to recover a depth map and set of

corresponding normals for an input set of images acquired
with different views under different illumination directions.
We compute a depth map by minimizing a window-based,
multi-ocular photometric cost using a graphcut method.
The key insight behind the error function is to use a rank-
constrained approximation of the observed pixels. Specif-
ically, for a Lambertian object, a matrix comprised of ob-
servations for corresponding points acquired under different
lighting conditions is rank three. We use this fact to develop
a depth-parameterized error function, such that only when
a depth hypothesis is correct is the error minimal between
the original observations and their rank three approxima-

Figure 2. Multi-ocular photometric constraint for dense correspon-
dence computation. The two rows show an object with the same
camera and light motion, and the black square represents a patch at
a 3D location. When the depth hypothesis is correct (black square,
top row), the observed intensities across n > 3 views are well-
approximated by a rank three approximation as a single normal
and n illumination directions describe the appearance of the sur-
face patch. For an incorrect depth hypothesis (black square, bot-
tom row), the observed intensities are not well modeled by rank
three approximation as the hypothesis leads to incorrect correspon-
dence where there is no single normal and set of n illumination
directions to describe the appearance.

tion. For an incorrect depth, i.e., an incorrect correspon-
dence across views, a rank three approximation should not
suffice as the matrix of observations would contain image
intensities for unrelated points with different normals on the
object surface, as illustrated in Figure 2.

Once we compute the depth map, correspondence is es-
tablished for all points, and the images from different views
are aligned to recover normals using photometric stereo.
Our algorithm then jointly uses the depth map and normals
to recover a final surface. The algorithm is summarized in
Figure 3.

3.1. Motivation

We will now illustrate the motivation for our algorithm.
Let I denote an image of a Lambertian object illuminated
by a distant point light. For a point ρ, the observed intensity
i(ρ) is given by:

i(ρ) = α(ρ)~l · ~nρ, (1)

where ~nρ is the unknown unit surface normal for the point
ρ, α(ρ) is the albedo, and ~l is the unknown scaled vector
representing the illumination direction and intensity.

Given a fixed world-space coordinate system, correspon-
dence between world-space points and image coordinates is
established given depth, z(x, y), corresponding to the ob-
ject’s surface and the camera-projection matrix P . For a
specific point ρ = (x, y, z(x, y)), the observed intensity is:

i(ρ) = I(P (x, y, z(x, y))). (2)



Let {I1, ..., Ij , ..., In} denote a sequence of n images
of an object where each image is acquired from a differ-
ent view illuminated by a distant point light with a poten-
tially different direction and/or intensity. If the depth map is
known, correspondence is established for all points. Obser-
vations across all n views for all points {ρ1...ρk...ρm} can
be assembled in to an observation matrix I:

Ikj = Ij(Pj(xk, yk, z(xk, yk))). (3)

Un-calibrated photometric stereo shows us that we can
then solve for normals and illumination directions up to an
ambiguity by factorizing I using SVD [4]. Due to the Lam-
bertian image formation model I should be a rank three
matrix. Thus if the number of observations is greater than
three, the best rank three approximation is used:

USV T = I, Ñ = Û Ŝ
1
2 , L̃ = Ŝ

1
2 V̂ T , (4)

where Û , Ŝ, V̂ corresponds to taking appropriate columns
and rows of U , S, and V for the three largest singular val-
ues in S. Ñ and L̃ represent a set of pseudo-normals and
pseudo-lights that differ from their true values by an arbi-
trary invertible 3× 3 transform A:

Ñ = NA, L̃ = A−1L. (5)

Thus, the central challenges in our method are to solve
for the unknown depth map, which establishes correspon-
dence, and to solve for the unknown transform A, to recover
normal directions unambiguously. For now we will assume
projection matrices are given, and we will specifically ad-
dress how to compute them in Section 3.5.

3.2. Solving for the Dense Depth Map

We solve for the depth map by minimizing a multi-ocular
photometric cost function. For a particular depth hypothe-
sis, the cost function measures, on a per-pixel basis, how
well a rank three approximation models observations for
corresponding patches across n views, where n > 3. If
the depth hypothesis is correct, the error should be close to
zero, if incorrect, the error should be high as a rank three
approximation should not suffice as the observations would
be for unrelated points on the object surface.

Specifically, let Ωj(p) represent a neighborhood of pix-
els around a pixel coordinate p in an image Ij . For a world-
space point ρ = (x, y, z), the matrix of corresponding ob-
servations Op is:

Oρ = [~Ω1(P1(ρ))...~Ωj(Pj(ρ))...~Ωn(Pn(ρ))], (6)

where ~Ωρ is the column vectorized neighborhood of pixels.
Let Ôρ represent a rank three approximation of Op, then the
approximation error is given by:

Eρ = |Oρ − Ôρ|. (7)

1. Estimate Camera Projection Matrices

• Using the Tomasi-Kanade factorization algo-
rithm, recover (up to some unknown rotation) the
camera projection matrix Pj for each frame Ij .

• Pick one frame Ir to be the reference view and
set the world-space coordinate system coincident
with this view by accordingly transforming all
projection matrices relative to Pr.

2. Compute Dense Depth Map
Find the dense depth map by minimizing the multi-
view photometric constraint using graphcuts.

3. Compute Normal Field
Compute the pseudo-normals by aligning images ac-
cording to the depth map and performing photomet-
ric stereo using SVD. Remove the linear ambiguity by
computing a transform to match the pseudo-normals to
normals estimated by differentiating the depth map.

4. Compute Final Surface
Recover the final surface using the dense depth map
and normal field.

Figure 3. Our shape reconstruction algorithm.

Each row of E contains the error across views for differ-
ent pixels in the neighborhood around the point in question.
Thus let r be the index for the row that contains the errors
for the corresponding pixels for point ρ. The data cost for
point ρ is then ε(ρ) = ||E(r, 1..j..n)||2.

We use a graphcut framework to find a labeling for each
point that minimizes this cost subject to a smoothness con-
straint. Graphcuts minimizes a cost function defined on a
2D grid over a set of fixed labels. We minimize a cost func-
tion C of a depth labeling Z. The cost function is the sum
of a data cost Cd over all 2D grid points σ and a smoothness
penalty Cs over pairs of neighboring points σ and φ:

C(Z) = ΣσCd(σ,Z(σ)) + Σσ,φCs(σ, φ, Z(σ), Z(φ)), (8)

where (σ, φ) ∈ {x[min,max], y[min,max]} and
(Z(σ), Z(φ)) ∈ {z[min,max]}). The data cost is then:

Cd(σ,Z(σ)) = ε((σ,Z(σ))). (9)

The smoothness term is a truncated L1 cost:

Cs(σ, q, Z(σ), Z(φ)) = min(β ∗ |Z(σ)−Z(φ)|, γ). (10)

As shown above, the cost function is defined on a 2D grid
over a range of depths; the 2D grid is simply the pixel grid
of our orthographic camera. We have empirically found 200



or 400 depth values, β = 1, 2, or 4, and γ = 100 or 1000
to work well for our scenes. After minimizing Equation 8,
using the graphcut method of Boykov et al. [2], we obtain a
depth map z.

3.3. Recovering Normals Unambiguously

After we solve for the depth map, Equation 3 is factored
using SVD to obtain a set of pseudo-normals Ñ and pseudo-
lights L̃ as shown in Equation 4. They are defined up to an
arbitrary linear transform A. We solve for A by finding the
transform that maps the normals so that they best match the
direction of normals estimated by differentiating the depth
map z. Specifically, we minimize this error function over
all m points:

J(A) = Σm
k=1

∣∣∣∣∣
∣∣∣∣∣ND(σk)− Ñ(σk)A

||Ñ(σk)A||

∣∣∣∣∣
∣∣∣∣∣
2

, (11)

where ND(σk) represents the unit normal obtained by dif-
ferentiating the depth map and Ñ(σk) is the pseudo-normal
vector for point σk. We minimize this non-linear func-
tion using Levenberg-Marquardt. The true scaled normals
(albedo multiplied unit-normals) are then N = ÑA.

3.4. Surface Reconstruction

After recovering the depth map z and normal field N ,
the next step is to recover the final surface. Integrating the
normal field alone can create a surface corrupted by low-
frequencies bias due to error accumulation during integra-
tion. Thus it is desirable to use both the depth values and
normals to solve for a final surface. Nehab et al. [8] com-
bine depth from a range scanner and photometric normals
by computing a surface whose low-frequency components
are from the depths and the high-frequencies are from the
normals. Their algorithm finds a surface by minimizing a
position error, which drives the surface towards matching
the dense depth map values, and a normal error that con-
strains the final surface to have tangents orthogonal to the
input normals. Their original algorithm produces nice re-
sults, and we have extended it to provide an additional bene-
fit. Using the original normal constraint of Nehab et al., we
have found that when there is high-frequency noise in the
normal (e.g., due to camera noise, small image misalign-
ments, etc.) the surface will have visible high-frequency
errors. This occurs because the original constraint only re-
stricts the surface’s first derivatives to match the normals,
but it imposes no constraint on surface smoothness. Thus
our extension is a smoothness term that minimizes the mag-
nitude of the second derivatives of the surface; we found
such a constraint very valuable for obtaining convincing and
pleasing final surfaces.

We will now summarize Nehab et al.’s algorithm and our
modifications to solve for the final surface. The algorithm

first corrects normals by computing rotations to transfer the
high-frequency detail from the potentially low-frequency
biased photometric normals. Let NP be unit-normals ob-
tained from normalizing N as recovered using the method
in the previous section, and let ND be normals obtained
from differentiating the recovered depth map. If G(NP )
and G(ND) are low-pass filtered normals, the corrected
normals field is:

NC(σk) = RkG(ND(σk)), (12)

for a point σk, where Rk is a rotation matrix which moves
the normal in G(NP (σk)) to the corresponding normal in
NP (σk) There is an independent rotation matrix for each
normal. For further details on the normal correction, we
refer the reader to Nehab et al.’s work [8].

Once bias is corrected in the normal, the final surface is
recovered by a regularized minimization of a position error,
normal constraint, and smoothness penalty. Specifically, we
minimize an error function:

J(S) = EP + EN + ES . (13)

The position error is the sum of squared distances between
the final depth values and our recovered dense depth map:

EP = λ1Σm
k=1[Sk − zk]2. (14)

λ1 controls the relative weighting of the position constraint
versus the normal constraint. For the sake of readability, we
have used a subscript k to as shorthand for values defined
for a point σk. The normal error constrains the tangents of
the final surface to be orthogonal to the input normals:

EN = (1− λ1)
[
Σm

k=1[T
x
k ·NC

k ]2 + Σm
k=1[T

y
k ·NC

k ]2
]
,

(15)
where NC are the corrected normals as described in the pre-
vious paragraph. Tx and Ty represent the tangent vectors:

T x
k =

[
−1 0

∂Sk

∂x

]
and T y

k =
[
0 − 1

∂Sk

∂y

]
, (16)

for our surface parameterized on 2D grid points using an or-
thographic camera. Given a NC

k = [Nx
k Ny

k Nz
k ], the normal

constraint in Equation 15 is simply:

Nx
k = Nz

k

∂Sk

∂x
and Ny

k = Nz
k

∂Sk

∂y
. (17)

The smoothness constraint penalizes high second-
derivatives by penalizing the Laplacian of the surface:

ES = λ2Σm
k=1

[
(∇2S)(σk)

]
. (18)

λ2 is a regularization parameter to control the amount of
smoothing. We have empirically determined the ranges of
λ1 = [0.01 0.1] and λ2 = [0.5 0.8] to work well.



Figure 4. Frog Figurine. Two of eight views of a figurine rotating in front of a camera and light (first and second image). Each image is
from a different camera viewpoint where the illumination direction and view are unknown and different for each image. The dense depth
map from step 2 of our method (third image) and our final recovered surface (fourth and fifth image).

Figure 5. Cat Figurine. Two of eight views of a figurine rotating in front of a camera and light (first and second images). The dense depth
map from step 2 of our method (third image) and our final recovered surface (fourth and fifth image).

Each constraint is linear in S and there are four con-
straints per point in total; therefore, the minimization can
be formulated as a large, sparse over-constrained system,
solvable by linear least squares:

λ1I
(1− λ1)N · T x

(1− λ1)N · T y

λ2∇2

 [Ŝ] =


λ1ẑ

(1− λ1)N̂x

(1− λ1)N̂y

0

 . (19)

I is an identity matrix and N · T x and N · T y are matrices
that, when multiplied by the unknown vector Ŝ, evaluate
the right sides of the constraints in Equation 17. The “hat”
operator indicates column-wise vectorization of matrices.
We solve this system using a Conjugated Gradient method
for solving sparse linear least squares problems [9].

3.5. Recovering Camera Projection Matrices

From hand-clicked or tracked feature point correspon-
dences across n views, we estimate camera parameters us-
ing standard structure from motion techniques [11]. This
gives orthographic projection matrices Pj for each image
Ij . The projection matrices are recovered up to an unknown
arbitrary rotation. As is commonly done, we simply assume
that the world-space coordinate system is coincident with
that of a chosen reference frame and accordingly transform
the projection matrices.

4. Results
In this section, we present several experimental results

using our proposed algorithm. For each result, we run our

algorithms using only eight images with varying illumina-
tion and view, and in each result figure, we show one or
two frames of the eight frames. While we only use eight
images, we found the most convenient way to record data
was to film a video sequence, so that we could track fea-
ture points automatically and then select eight images from
the sequence. The reader is encouraged to view the original
longer input clips online at http://vision.ucsd.edu/kriegman-
grp/research/shape illum view/. We pick the first image as
the reference view and thus assume the world-space coor-
dinates to be aligned with this view, as described in Sec-
tion 3.5. For the reference view, we draw a mask to segment
the object from the background. For camera calibration, we
automatically track corners from an automatic corner detec-
tor and only track points inside the mask.

In Figure 1, we show a reconstruction for a painted plas-
ter fish figurine. Figure 4 and Figure 5 show results for
two constant albedo objects: a frog and cat figurine, re-
spectively. Our method can recover structure for objects
with and without texture since the multi-view photometric
cost leverages both albedo and shading clues. All three of
the datasets in these first figures were recorded using a con-
sumer hand-held DV camera. We zoomed the camera and
filmed from a distance to simulate an orthographic camera,
and removed gamma correction before processing the im-
ages. Each figure displays a dense depth map and the re-
sulting surface estimated using both the depth map and nor-
mals. The recovered surfaces are convincing.

In Figure 6, we show a result for a figurine from the pa-
per by Zhang et al. [12]. Figure 7 shows a result for the
box sequence from the same paper. The input sequences



Figure 6. Results for the figurine dataset. One of eight views used
from a sequence of a figurine rotating it in front of a camera and
light (top left). The intermediate dense depth map (top right), final
surface (bottom left), and recovered albedo map (bottom right).

are publicly available on the authors’ website. Figures 7,
8, and 9 show comparisons between our results for these
two datasets to results from Zhang et al. [12] and Lim et
al. [6]. For the Zhang et al. results, we used images avail-
able on the authors’ website, while the Lim et al. results
are renderings of the meshes provided by the authors for
comparison in this paper. The results from Zhang et al. are
quite low-frequency and do not show the detail of our re-
sults or those of Lim et al., e.g, they are missing the diago-
nal crease below the chin for the figurine (Figure 8). Lim
et al.’s result for the figurine has inverted eyebrows where
they are sunken into the surface. There is also a sharp pro-
truding corner of the belly of the object when viewed from
the side. In our result, the eyebrows are improved and the
belly has a shape more consistent with the input data. As
shown in Figure 7, Lim et al.’s result for the box shows
relatively large low-frequency errors, while our result has
a shape that appears more consistent with the input data.
Our results do contain some remaining artifacts due slight
image misalignment, as we discuss in the next section.
The reader is encouraged to view videos of renderings of
the final surfaces online at http://vision.ucsd.edu/kriegman-
grp/research/shape illum view/.

5. Discussion and Future Work
While the results of our algorithm are better than prior

methods on comparative image sequences, the method does
suffer from some limitations. One limitation is an inherent
fronto-parallel assumption in our dense depth map compu-
tation. We use small square patches of support for comput-

Figure 7. Results for the box dataset. One of eight views of a box
acquired by rotating it in front of a camera and light (top left). The
intermediate depth map (top right), our final surface (middle row),
and the result from Lim et al. [6] (bottom row).

ing the rank three approximation cost per-pixel. This as-
sumes that the surface is locally smooth and planar within
the patch surrounding a pixel. In practice, as the final sur-
face only partly uses the depth map data, the fronto-parallel
assumption does not introduce significant errors in the final
result. Nevertheless, this assumption can cause errors when
finding depth for points in significantly slanted parts of the
surface. In some of our results, there are changes in the sur-
face induced by errant normals generated from misaligned
of the input images at high-contrast edges – the breakdown
of the front-parallel assumption could be partly responsi-
ble. This assumption is common in the stereo literature, and
some methods for avoiding it have been addressed, such as
by computing cost using slanted planes [5]. Additionally,
we could perform our method iteratively where the method
is performed a second time using the final surface from the
first pass to deform and adapt windows during matching in
a second pass to account for non-frontal tangents. We are
interested in using such methods to correct the minor errors
in our results.

Another limitation in our work is that we do not account
for self-occlusions, shadowing, or inter-reflections. These
effects can cause errors in photometric stereo as they break
the simple Lambertian shading assumption that we use in
this work. Researchers have investigated methods for per-
forming photometric stereo in the presence of some of these
effects [1, 3]; a good potential direction for future work is to
use these methods to derive a multi-view photometric cost
function that is robust to shadows and occlusions.



Figure 8. Comparison with previous work for the figurine dataset. Result from Zhang et al. [12] (first image), Lim et al. [6] (second
and third image), our result (fourth and fifth image), and a side view from the input data (sixth image). The result from Zhang et al. is
low-frequency and has less detail, such as the diagonal crease below the chin. The results from Lim et al. show two inaccuracies: the
sunken eyebrows in the second image and the sharp protruding corner of the belly in the third image (areas indicated on the images with
red boxes). In our result, the eyebrows are improved and the belly has a shape that appears more consistent with the input data.

6. Conclusions

We showed how to reconstruct the shape of an object
from multiple images acquired as an object rotates under
distant and possibly varying illumination. Our method con-
ceptually merges multi-view stereo and photometric stereo
and is straightforward to implement. By solving for a final
surface using both the recovered dense depth map and nor-
mal field, the recovered surface does not have error due to
low-frequency bias that can occur when integrating normals
alone, and the unknown constant of integration is removed.
We empirically validated the proposed method on a number
of objects and showed that it is a considerable improvement
over previous methods.
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