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Sharpening Out of Focus Images using High-Frequency Transfer
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Figure 1: Owing to out-of-focus errors, (a) and (b) are focused differently and capture different moments. There is significant
motion between the images (notice the arms), as can also be seen by flipping between them in the HTML. With the assisting
image (a) and our high frequency blending techniques, our result (c) uses the additional information to reduce ringing and add
details. Readers are encouraged to zoom into the PDF, didactic video, and supplementary HTML images and comparisons.

Abstract
Focus misses are common in image capture, such as when the camera or the subject moves rapidly in sports and
macro photography. One option to sharpen focus-missed photographs is through single image deconvolution, but
high-frequency data cannot be fully recovered; therefore, artifacts such as ringing and amplified noise become
apparent. We propose a new method that uses assisting, similar but different, sharp image(s) provided by the user
(such as multiple images of the same subject in different positions captured using a burst of photographs).
Our first contribution is to theoretically analyze the errors in three sources of data—a slightly sharpened origi-
nal input image that we call the target, single image deconvolution with an aggressive inverse filter, and warped
assisting image(s) registered using optical flow. We show that these three sources have different error character-
istics, depending on image location and frequency band (for example, aggressive deconvolution is more accurate
in high-frequency regions like edges). Next, we describe a practical method to compute these errors, given we
have no ground truth and cannot easily work in the Fourier domain. Finally, we select the best source of data
for a given pixel and scale in the Laplacian pyramid. We accurately transfer high-frequency data to the input,
while minimizing artifacts. We demonstrate sharpened results on out-of-focus images in macro, sports, portrait
and wildlife photography.

1. Introduction

It is common in sports or macro-photography for a desired
image to be out-of-focus and blurred, because of camera or

rapid subject movement (Figs. 1(b) and 2(top left)). Profes-
sional photographers often compensate by capturing a num-
ber of images, using the burst mode on a camera. With mov-
ing subjects, some frames may be in focus, while others are
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not.† Photographers rely on luck to obtain a sharp frame that
is suitable. However, none of the sharp frames may capture
the exact moment we seek (Fig. 1(a)). In this paper, we use
these “assisting images” to sharpen the blurred out-of-focus
image, eliminating the compromise between timing or com-
position and sharpness.

Our algorithm combines three sources of data: (1) The
original input image, to which we apply a conservative de-
convolution to obtain a slightly sharper but still artifact-free
baseline (target), (2) an aggressive deconvolution that pre-
serves high frequencies but introduces ringing, and (3) the
warped assisting image(s), registered to the original using
optical flow. The target is accurate at low frequencies, where
blur has minimal impact. High frequencies can be trans-
ferred from the deconvolved image at sharp features like
edges, but this may lead to ringing in smooth or textured
areas. Optical flow is usually accurate in textured areas, and
the warped assisting image can be used in these regions. This
paper formalizes these insights theoretically, and develops a
practical algorithm to combine the three data sources. The
complete pipeline for our method is shown in Fig. 2.

We begin in Sec. 3 with a theoretical analysis of the ex-
pected errors at each frequency band for each data source.
This analysis quantifies the different error characteristics of
each source, and is validated numerically on real examples.
Next, we develop a practical implementation of the error cal-
culation (Sec. 4), given that we do not know ground truth to
estimate error, nor can we consider the global frequency do-
main (since different spatial pixels will be best reconstructed
with different data sources). Instead of the Fourier domain,
we consider a Laplacian pyramid of the image. Instead of
ground truth, we use the warped assisting image as a refer-
ence, to compute errors for the original input and aggres-
sively deconvolved images. Finally, for each pixel in the
Laplacian pyramid, we select the data source with the low-
est error, introducing high-frequencies where possible. Sev-
eral practical details are discussed in Sec. 5, summarized in
Fig. 2.

We evaluate our technique both on images where we have
ground truth and apply a synthetic blur to simulate defocus
(the football player example used to illustrate our algorithm
first shown in Fig. 2, and Fig. 8), as well as on actual out-of-
focus images from multiple photographers’ datasets (Figs. 1
and 7). The assisting images are often quite different in com-
position from the target. Our method significantly improves
results from either simple image warping, or blind deconvo-
lution, as well as in comparison to other super-resolution and
de-blurring methods (Figs. 1, 7, 8, and 9). Our supplemen-
tary HTML includes results on a dozen examples, each with

† http://www.robgalbraith.com/bins/multi_page.asp?cid=7-8740-
9068
http://photography-on-the.net/forum/showthread.php?t=491657

several comparison methods. Our algorithm sharpens con-
sistently a range of natural imagery with almost no artifacts.

2. Related Work

Deconvolution: A single image can be sharpened directly.
However, blur due to autofocus or camera shake is typi-
cally non-invertible, and deconvolution therefore involves
trade-offs between ringing artifacts and sharpness [YSQS08,
KF09].The success of these methods also relies heavily on
accurate estimation of the blur kernel.

The majority of recent works on deblurring address mo-
tion blur, but perform poorly on out of focus blur [LWDF11,
HSGL11]. Cho et al. and Li et al. [LKJ∗10,CWL12] propose
sharpening motion-blurred video frames using sharp frames.
Our algorithm works for larger displacement and deforma-
tion of objects between frames as opposed to close video
frames. The motion blur kernel is often sparse; motion de-
blurring assumes sparse kernel distributions, making these
methods ineffective for out-of-focus blur. We address this
point in our comparisons to the motion de-blurring method
of [KF09] in Figs. 1, 7 and 8. [YSQS07] and [AAB09]
propose using blur and no-blur image pairs to find image
alignment and estimate the motion blur kernel. The align-
ment requires subjects to be mostly rigid (e.g., buildings).
In contrast, our approach uses additional information from
assisting frames through optical flow to more robustly trans-
fer high frequencies, relaxing the need for accurate kernel
estimation and the need for rigid objects.

Deconvolution methods addressing out-of-focus blurs
typically introduce ringing artifacts [Ric72]. [TTBL09]
present a natural image statistics prior for deconvolution to
enhance details. Because of the limited image statistical pri-
ors, the method does not work for general natural images,
as stated by the authors. Unsharp mask is commonly used
to sharpen images. However, the overshoot and undershoot
effects can often introduce unfavorable ringing.

A number of recent papers have designed special photo-
graphic methods and blur kernels that are invertible such as
coded apertures [RAT06, LFDF07]; and plenoptic cameras
to recover light fields [NLB∗05], but our method is designed
to work with standard camera and focus mechanisms.

Combining Registered Images: Using multiple images
to de-blur photographs has also been studied, but current
methods require the subject or camera movements to be
static, and the images to already be registered. Agarwala
et al. [ADA∗04] describe a method to use graph cuts for
extended depth-of-field or image stacking. However, using
graph cuts requires the image stack to have minimized sub-
ject or camera movements. Yuan et al. [YSQS07, YSQS08]
use image pairs. Other work such as flash no-flash also en-
hances images with a specified image-pair or multiple im-
ages [PSA∗04, MKR07]. However, in fast action photogra-
phy such as sports, creating such image pairs is impractical.

c© 2013 The Author(s)
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Figure 2: Pipeline for our method. Our algorithm takes two inputs, the blurry image to sharpen and a similar but sharp assisting
image(s). We sharpen the input using a conservative Wiener filter to obtain a baseline target T , and apply an aggressive inverse
deconvolution filter to obtain D. We also use optical flow and warping to get W from the assisting image. With the three
registered data sources, T , D, and W, we compute their errors: ET , ED, and EW . We then blend to produce output O.

Mahajan et al. [MHM∗09] proposed a visually plausi-
ble interpolation method. Using linear interpolation between
two frames has limitations, since the subject and camera
do not always move linearly. Therefore, using the original
blurred image as one of the inputs is essential.

Model-Based Super Resolution: Example-based super-
resolution can be used for de-blurring [FJP02,Fat07,GBI09,
YWHM10,FF11]. The most prominent limitation is that they
require a large number of image priors and handle small
blur sizes. Photographers usually do not have access to large
datasets. With only a few assisting images, artifacts and soft-
ness persist in the final result (see Figs. 1, 7, and 8). While
super resolution techniques typically handle blurs up to one
or two pixels, we deal with larger blur kernels that are on
the order of 8 pixels (see Fig. 9). Generally, out-of-focus
images exhibit larger blur kernels than just smaller resolu-
tions. [GBI09, FF11] propose using similar patches within a
single image or other similar images. Because of the statis-
tical priors that are used in these algorithms, vectorization
artifacts are present. [SJK∗12] uses temporally close video
frames to achieve the super-resolution effect. Our proposed
method alleviates the temporal and super-resolution limita-
tions.

[JMAJ10] proposed personal photo enhancement. They
estimate the blur kernel by using face priors to deblur the
targeted image. However, the system requires a training set
of faces. Because they use patch-based image replacement
from multiple images, the results show changes of facial fea-
tures; we focus on a more generalized approach that main-
tains composition and low frequency features of the out of
focus image.

3. Theory: Error Analysis of Data Sources

The input is the out-of-focus blurred original image, and
one or more sharp assisting images Ai. From this, we create
three data sources as shown in Fig. 2. We apply a conserva-
tive deconvolution to the out-of-focus input to get a slightly
sharper image, that will serve as the target T for the rest of
this paper—we do this to have a realistic baseline, which is

the best we can easily do without introducing artifacts. Our
second source of data is an aggressive single image decon-
volution D. Since we will combine sources, we can afford
to be much more aggressive than previous work, preserving
high frequencies at the risk of introducing artifacts. Finally,
as we will describe later, the assisting images are combined
and warped to the target image, to obtain the warped image
W . Examples of T , D, and W are shown later in the paper
in Figs. 5. In this section, we theoretically analyze the er-
rors of T , D and W , and provide empirical validation. In the
following section, we will describe practical implementation
details of each of these steps. We will use a hat on variables
to represent frequency domain quantities.

3.1. Basic Framework

In general, the target and deconvolved images can be written,

T = H⊗X +V (1)

D = G⊗T = (G⊗H)⊗X +G⊗V. (2)

X is the original signal, that we seek to recover and V is
additive noise, that is assumed to be independent of the sig-
nal. H is the original blur from defocus, that we assume is
constant over the image T (more precisely, it is the original
blur followed by a small sharpening filter for the conserva-
tive deconvolution). G is the deconvolution filter that we ap-
ply to compute D. More complex deconvolution algorithms
and noise models are possible, that involve spatially-varying
kernels. The actual errors ET and ED can then be computed,

ET = (I−H)⊗X +V

ED = (I−G⊗H)⊗X +G⊗V, (3)

where I is the identity operator, and we continue to use
the positive sign on V (since noise is assumed to have zero
mean). In practice, we do not know the ground truth X nor
the filter H or noise V . As described later, we use the warped
image W as a reference instead of the unknown ground truth
X (Sec. 4); we estimate the blur kernel H from the out-of-
focus and assisting images (Sec. 5), and we use a constant
expected value for the noise amplitude. However, the theory

c© 2013 The Author(s)
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in this section is best developed directly from equation 3,
assuming X and H are given, and V is known.

We first study the Fourier domain to develop the key in-
sights; our actual algorithm operates entirely in the spatial
domain using a multiscale Laplacian pyramid [BA83].

Frequency Analysis: We compute errors in the Fourier
domain,

ET̂ = (1− Ĥ)X̂ + V̂ ED̂ = (1− ĜĤ)X̂ + ĜV̂ . (4)

The frequency domain also allows us to compute expected
errors, based on the spectral power density S( f ) of the signal
X , as well as N( f ) for the noise V . In particular,〈

E2
T̂ ( f )

〉
=
∣∣1− Ĥ( f )

∣∣2 S( f )+N( f ) (5)〈
E2

D̂( f )
〉

=
∣∣1− Ĝ( f )Ĥ( f )

∣∣2 S( f )+ | Ĝ( f ) |2 N( f ),

where we have made the dependence on frequency f ex-
plicit.

Discussion: The derivation so far is similar to that used
to derive the optimal Wiener filter [Wie64]. However, we
seek to estimate errors for the target and aggressively decon-
volved images, rather than finding an optimal Ĝ. There is no
single ideal filter in our case, given different image content
like textures, edges and low frequency regions. Fortunately,
we also have assisting sharp images, and can be more ag-
gressive in choosing Ĝ.

3.2. Error Analysis for T and D

To preserve edges, we choose Ĝ = Ĥ−1, which produces the
sharpest results. However, applying Ĝ will amplify noise and
lead to ringing; the ringing will eventually be suppressed in
the output by using other data sources in those regions.

Now, consider the errors in equation 5. For the target T ,
the first term (signal or data error) will dominate, if noise
is low. On the other hand, the second term (noise ampli-
fication) is the source of error for the deconvolved image
since Ĝ = Ĥ−1. A key factor is the signal-to-noise ratio
S( f )/N( f ) = µ( f ). If we divide equation 5 by N( f ) to ob-
tain the normalized relative error per unit of noise, we obtain〈

Ē2
T̂ ( f )

〉
=
∣∣1− Ĥ( f )

∣∣2 µ( f )+1 ∈ [1,µ+1]〈
Ē2

D̂( f )
〉

=
1

| Ĥ( f ) |2
∈ [1,∞]. (6)

Discussion: At low frequencies, where Ĥ( f )≈ 1, both er-
rors above are comparable, and are close to 1 (proportional
to noise). Now, consider mid-frequencies, such as where
Ĥ( f ) = 1/2. In this case,

〈
Ē2

T̂ ( f )
〉
∼ (1/4)µ( f )+ 1, while〈

Ē2
D̂( f )

〉
∼ 4. The relative error depends on the signal to

noise ratio µ. If that is large (greater than 12 in this example),
the target image will have higher errors at that frequency—
signal error due to attentuation from blurring will exceed

noise amplification error. For lower signal to noise ratios,
the converse is true. For high frequencies, Ĥ( f ) approaches
0. While the maximum target error is µ+1, the error for the
deconvolved image will be higher.

Spatial Domain Insights and Analysis: Frequency analy-
sis provides insights but practical algorithms are local in the
spatial domain. Fortunately, the above insights carry into the
spatial domain. Most critically, the target input image will
have high errors in sharp edges, when the signal-to-noise
ratio is large in the high frequencies; deconvolved will per-
form better at those pixels. Conversely, the target input will
have lower error in smooth regions. To numerically verify
these observations, we directly compute errors using equa-
tion 3.

It is also advantageous to use a Laplacian pyramid repre-
sentation [BA83] to separate out different frequencies, while
still keeping locality. Since Laplacian construction involves
linear operators, error computation and the construction can
be done in either order. (Specifics of the implementation for
our final algorithm are discussed in Sec. 4.)

Fig. 3 shows the real measured errors (left column), with
respect to ground truth X , align closely with our computa-
tion of ET and ED using equation 3. The predicted error for
data and noise is shown in the right two columns. As ex-
pected, the ED exhibits ringing in some pixels, from sharp
edges near the sides of the image. In contrast, the target error
ET is lower in most areas of the image, that are smooth, but
larger when there are high-frequency edges (and the signal-
to-noise is therefore more in high frequencies). EW is dis-
cussed in the next section.

3.3. Error Analysis for W

The warped image is written as W (x) = A(x+F(x)), where
F(x) is the optical flow field from the input to the assisting
image. (In practice, we compute the flow field from the assist
A to the input image, and then flow all quantities of interest).
For simplicity, we consider a single assisting image and a
single variable x to index the image coordinates. Errors arise
because of errors in the flow field, and are more pronounced
at occlusions and edges in the source image [BBM09]. To
derive an error metric, assume that F(x) is incorrect and
should actually be F + dF , where dF is a small change (so
that we can apply differential methods),

W (x)+dW (x) = A(x+F(x)+dF(x))

dW (x) = dF(x) · dA
dx

(x+F(x)). (7)

The image error is the product of two components: in the op-
tical flow itself and the image derivative. If the flow is exact,
there is no error. Equivalently, in a smooth region, the flow
may not be accurate but the image gradient is very small and
the pixel error is low. We approximate dF as the standard
deviation σF of F in a 3× 3 neighborhood (i.e., how much

c© 2013 The Author(s)
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Figure 3: Error Validation and Overview. In the left column, we compute the actual measured error, which is the normalized
difference for each pixel against ground truth. Our theoretical errors are aligned closely with the empirical errors. Predicted
error is computed using equation 3 for ET and ED, and equation 8 for EW . The predicted error is composed of the two terms
in the right columns, that are computed separately and combined. All images are 5 level Laplacian pyramids, and use the same
normalized scale, shown in the color chart; this scale is used throughout the paper for errors. White regions are hole errors,
since there is no data at those pixels.

nearby flows differ, which will be large near edges and oc-
clusions). Finally, since images are 2D, we use the magni-
tude of the relevant gradients,

EW (x)≈| σF (x) | · | 5A(x+F(x)) | . (8)

Note that this error is undefined (infinite) when there are
holes in the flow; Sec. 5 describes how we identify such re-
gions. Holes are shown in white in Fig. 3 and elsewhere in
the paper. The error estimate is good for high frequencies,
but low frequencies will have systematic errors like lighting
changes; we address this in Sec. 5 by using target or decon-
volved images at coarser levels of the Laplacian pyramid.

The bottom row of Fig. 3 shows the warped error EW on
the same scale as ET and ED. The assisting images have
much lower error when flow is accurate. However, there are
holes, and the flow can be inaccurate near edges and oc-
clusions. These observations motivate the use of assisting
images to transfer high frequencies where flow is accurate,
while using other data sources near edges, occlusions and
holes. This example confirms that target T has high errors
near edges, deconvolve D has uniform errors, and warp W
lower errors when flow is accurate.

Combining Sources: We seek to combine T ,D and W ef-
fectively. We use the source with the lowest error for each
pixel in the Laplacian pyramid. In pixels that are holes for W ,
the error metrics above cannot be computed, and we default

to using the target image T . This simple scheme is shown in
Fig. 4 and gives a substantially sharper result than the origi-
nal T but some artifacts remain. Section 5 describes a more
sophisticated blending algorithm that transfers high frequen-
cies while minimizing artifacts.

4. Practical Error Computation

The previous section has developed a theoretical error model
for the three sources of data, T , D, and W . Pratically com-
puting these errors poses two challenges: first, some of our
analysis is in the frequency domain and, second, equation 3
assumes we know the ground truth X and blur kernel H. In
practice, we replace the use of X with W . The kernel H is
estimated from the inputs as discussed in Sec. 5.

Finally, the noise term is inherently random, but the prac-
tical error computation should use the expected value (since
we have no way of knowing which pixels have more noise
than others). In practice, we use a small constant value for
<V 2 >. Since noise error is independent of signal error, we
combine their magnitudes.

Our final computed error for the target is,

〈| L [ET ] |〉=
√

L [(I−H)⊗W ]2 +
(
L2
)
[1]
〈
V 2
〉
, (9)

where L[·] is the operator that creates the Laplacian pyra-
mid, and < · > denotes the expected value, since noise is a

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



M. W. Tao et al. / High-Frequency Transfer

Figure 4: Error Insight and Blending. The deconvolved image D exhibits low errors ED in edge regions. The warped image
W exhibits low errors EW , in textured regions such as grass, while D contains ringing artifacts. However, the warped image
also has holes (shown in white). The target image T is used when there are high error regions in both D and W. The blending
masks shown are color coded with red being from target T , green from deconvolved D and blue from warp W. Blending using
the minimum error of each pixel preserves both edges and textured regions while reducing ringing artifacts. Since these results
were generated by using the ground truth as X, we describe how to replace X with the warped image in Sec. 4. We reduce sharp
transition artifacts and hole residuals in Sec. 5. Our final result after these two stages is also shown.

random process. Squaring involves squaring each pixel sep-
arately. The right hand side includes two orthogonal terms
for the signal or data error, and noise amplitude. Since the
Laplacian construction is a linear operator, it can be applied
directly to the signal error. For the noise error, we have to
consider the mean square error of the noise < V 2 >. The
Laplacian combines noise from different pixels, so the co-
efficient in the variance involves summing the square of the
Laplacian weights at each pixel (scale). This can be accom-
plished by using the squared Laplacian operator (L2) applied
to a unit image (L2)[1].

For the deconvolved image D, the expected signal error
can be neglected, since we use the inverse of the blurring
filter. In that case, the noise amplification error is,

〈| L [ED] |〉=
√

(L ·G)2[1]
〈
V 2
〉
, (10)

where L ·G is a composition of the Laplacian, and the decon-
volution filter G. Note that the result is essentially a constant
expected error, since it comes solely from noise, not the sig-
nal.

Finally, for the warped image W ,

〈| L [EW ] |〉= L [| σF | · | 5A |] . (11)

Note that taking the absolute values does not strictly com-
mute with applying the Laplacian in this case, but in prac-
tice, it still gives a good representation of the error.

Figure 5: T and D compared to the input image (a). T uses a
conservative Wiener filter, which shows minor improvements
in high frequencies and minimal ringing (b). D uses a direct
inverse of the blur kernel H, and exhibits significant ringing
but large improvements in high frequencies (c).

5. Implementation

As summarized in Fig. 2, we first estimate the blur kernel,
and extract the data sources T , D and W (Sec. 5.1). Next,
we compute the errors ET , ED and EW as described above
(Sec. 5.2). Finally, we blend the data sources based on these
errors to compute the output (Sec. 5.3).

5.1. Extracting and Registering Data Sources

Estimating Blur Kernel: We use a similar approach
as [KPCW11]. We find patch correspondences between the
input and Ai. We use each patch pair to construct a non-
negative least squares system, Ck = b. C encodes the con-
volution of the sharp patch from the assisting image, with

c© 2013 The Author(s)
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Figure 6: With the three data sources, T , D, and W, we first
blend D and T . We then use the bilateral filter to reduce
ringing artifacts. Finally, we blend with the warped image
to obtain the final output.

the arbitrary kernel k, and b is the blurry patch from the in-
put. Finally, the blur kernel H is obtained by combining k
with a conservative Wiener filter to create T .

Creating Data Sources T , D and W: To obtain T , we
sharpen the input using a conservative Wiener filter with
noise-to-signal power ratio of the additive noise set to a value
of 0.1. D is created using an idealized inverse filter with
Ĝ = Ĥ−1 in the frequency domain. T and D can be seen
in Fig. 5. To create the warped image W , we use [BBM09]
to “flow” the assisted image A to the reference frame of the
target. We compute the flow from A to the input image. We
compute our Laplacian pyramids using five layers.

Holes in W: Holes are caused by forward warping from A.
We start with an initial binary mask Mh which is 1 for pixels
with no correspondence and 0 otherwise. We also compute
the L2 YCbCr distance between D and W . If this distance is
greater than a threshold (we use 0.05), mask Mc = 1. A pixel
is confident (M = 0) only if both Mh and Mc are 0.

5.2. Error Metric

If M = 0, or confident regions, we compute the errors for ET ,
ED and EW using equations 9, 10 and 11. We set the estimate
of the squared noise amplitude <V 2 > to 0.105.

If M = 1, or regions considered as holes, we make the
conservative decision to use the target T , essentially setting
ET to a low value or 0, while setting EW and ED to large or
infinite values.

5.3. Blending

The three sources, T , D, and W provide useful information
in different regions. Using the lowest error at each pixel, as
seen in Fig. 4, discontinuities and jitter appear. Instead, we
develop a two-stage blend (Fig. 6), where we first combine
the target and deconvolved then blend in the warped image.

Target and Deconvolved: We first create a mask image
MD(l), where l is the Laplacian level. We use pixels from
deconvolved D when MD(l) = 1, and target T when MD(l) =
0. MD(l) = ED < ET . To reduce artifacts, we smooth the
mask with a Gaussian filter (σ = 0.5 pixels) to obtain M̄D.

Finally, to blend T and D into an intermediate output O′,
we simply use a linear combination,

O′(l) = M̄D(l)D(l)+(1− M̄D(l))T (l)

EO′(l) = M̄D(l)ED(l)+(1− M̄D(l))ET (l), (12)

where the multiplications are pixel-wise. We then recon-
struct the image from the Laplacian pyramid to obtain the
intermediate output image O′ and error EO′ .

Some ringing artifacts can remain, so we clean up the im-
age by using a bilateral filter to obtain Ō′. The parameters are
σcolor = 0.1 and σspatial = 10 pixels. Textures with low color
differentiation (such as fur and grass) may also be blurred,
which will be compensated by blending high frequency de-
tails from W .

Blending Warped Image W: W provides high frequency
in textures. To avoid color shifts from the target, we use
coarser Laplacian pyramid levels of Ō′(l) because W may
exibit different color balance or exposure. We first compute
MW , which characterizes which pixels we are going to take
from the warped image,

MW (0) = EW (0)< EO′(0), (13)

where we only consider the finest Laplacian level 0.

We then apply the same smoothing method as described to
obtain M̄D to obtain M̄W . Finally, analogous to equation 12,

O(0) = M̄W (0)O(0)+(1− M̄W (0))Ō′(0)

O(l > 0) = Ō′(l), (14)

and we obtain the final output image O by inverting the
Laplacian pyramid from O(l). Figure 6 shows the various
steps.

6. Results

We show examples from photographers’ actual datasets; a
range of real-world examples are in Figs. 1 and 7. Readers
are encouraged to look into our results in the electronic doc-
ument, our didactic video, and supplementary HTML, which
also contain a number of additional results.

Images were taken with multiple cameras settings to em-
phasize the generality of our algorithm. We typically use

c© 2013 The Author(s)
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Figure 7: Challenging real out-of-focus image comparisons. Using natural images, we compare our results against super-
resolution, motion deblur, and iterative blind deconvolution [Ric72, KF09, YWHM10]. On top, our algorithm recovers fine
details of the wrinkles and skin pores. The bottom example shows how our algorithm reduces the circle of confusion instead of
emphasizing the edges. Our supplementary HTML contains comprehensive comparisons with more real examples, and including
algorithms from Glasner et al. [GBI09], Freedman and Fattal [FF11], and unsharp mask.

400×400 sized target. We tested our method on images up
to 2 mega-pixels; a water polo example is shown in the sup-
plementary HTML. As seen in our supplementary video and
HTML, the assisting sharp images often have significant mo-
tion and deformation compared to the target out of focus im-
age. Portrait Photography: In Fig. 7 (top), we show prob-
lems in portrait photography where timing and expression
are crucial. With an assisting image, we can recover skin
tones and wrinkle details in the out-of-focus image.

Low Light Photography: We show a high ISO example in
Fig. 7 (bottom). Notice the sharpening in the branches and
the fur of the deer.

Sports or Action Photography: The examples in Figs. 1, 2
and other examples in the supplementary HTML, show a
problem with fast moving subjects. In Fig. 1, the steeple-
chaser moves rapidly, and the auto-focus may miss for some
frames in a burst while producing a sharp image in other
frames. Capturing the right position and moment is hard due
to the fast movement. In these cases, assisting images can
help greatly in sharpening the out-of-focus captured photo-
graph. Note that the assisting image in this case is fairly dif-
ferent due to the rapid motion, as seen in our supplementary
video.

The supplementary HTML shows additional real exam-
ples from wildlife photography of birds, where the motion is
rapid and unpredictable. Our method considerably sharpens
out of focus photographs, and reveals details on the eyes and
feathers.

7. Evaluation and Comparisons

In our supplementary HTML, we present a detailed evalua-
tion with more examples, each with comparison to deconvo-
lution [Ric72], motion de-blurring [KF09], super-resolution
( [YWHM10], [GBI09], and [FF11]), and unsharp masking.

Evaluation with Ground Truth: We tested our algorithm
on several synthetic examples, where the defocused image
was generated using a known blur kernel. In Fig. 8, our re-
sults show good agreement with ground truth.

Comparison to other De-Blurring Algorithms: We com-
pare in Fig. 8 to iterative blind deconvolution ( [Ric72];
the recent method of [LFDF07] is shown in Fig. 9 since
it requires a known kernel), and state of the art techniques
for motion de-blurring [KF09], and example-based super-
resolution [YWHM10, FF11] (their code with default pa-
rameters given by the authors). We include comparisons
against [GBI09] in our supplementary material.

In Fig 8, blind deconvolution algorithms produce results
that vary by the kernel size and type, with ringing and arti-
facts often present. Motion-deblurring algorithms use kernel
sparsity priors but out-of-focus kernels are dense. Even with
large dictionaries, super-resolution methods perform inade-
quately, since down-scaling usually implies very small blur
kernels. Our algorithm levarages the sharp assisting image
both for blur kernel estimation and for introducing high fre-
quencies, and therefore performs better.

In Figs. 1 and 7 (and accompanying didactic video),

c© 2013 The Author(s)
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Figure 8: We compare our results with iterative blind deconvolution, motion de-blurring, and super-resolution [Ric72, KF09,
YWHM10]. Our results consistently contain higher frequencies with less artifacts.

we show similar comparisons for real images. Many addi-
tional examples are shown in our supplementary HTML.
Our technique consistently performs better than each com-
peting method across all of the examples.

Robustness with blur kernel size: As with all sharpen-
ing methods, the technique degrades with large blur kernel
sizes. However, we preserve sharpness over a much larger
operating range than most previous work. In Fig. 9, we eval-
uate the robustness of our algorithm against commonly used
de-blurring methods. The graph emphasizes significant vi-
sual errors and ringing by considering the RMS of the largest
pixel errors (while there is no perfect quantitative metric, we
found this to be the most meaningful numerical value). We
produce stable results even for relatively large blurs.

8. Limitations and Future Work

While the results are much sharper than the original, there is
still a slight blur relative to the assisting images (or ground
truth where available). Some minor color shifts may also oc-
cur from the assisting image, because we blend in different
layers of the Laplacian.

When there is a lack of useful assisting images, more
holes appear and, in those regions, we default to the target
(Wiener filter, which can be subtituted with a state-of-the-
art deconvolution algorithm for better default performance).
Very large occlusions and deformations will result in higher

errors and holes. The results could further be improved by
hole-filling and texture synthesis techniques to sharpen even
those areas. Holes from warping can also lead to a loss in vi-
sual quality where the image appears patchy, with increased
sharpness where the assisting image provides information
and blurred regions where there are holes. However, this ef-
fect is minimal in actual examples.

The HTML shows a portrait example with a large blur. All
methods fail, but our method still performs best, consistent
with Fig. 9.

9. Conclusion

We have presented a simple and flexible method for enhanc-
ing out of focus images. We first use optical flow and decon-
volution to generate sources that will be useful for transfer-
ring high frequency data to the target image. We then com-
bine these sources by analyzing different frequencies in the
Laplacian pyramid. Our method improves the sharpness of
images while preserving the low frequency information in
the original photograph and minimizing artifacts. The algo-
rithm is based on a principled analysis of error in multiple
data sources, practical ways to compute the expected error,
and effective techniques to combine multiple sources based
on the errors. We have evaluated our method on several ex-
amples, demonstrating its benefit both numerically and visu-
ally. These ideas may have applications in many other image
processing problems.

c© 2013 The Author(s)
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Figure 9: Large blur kernel sizes lead to degraded performance. However, our method remains relatively stable for a range of
blurs, as seen in the graph on the left. In the visual comparisons on the right for a larger Gaussian blur kernel, our result is
sharper than alternative algorithms, and does not have the ringing artifacts of some previous methods in this range.
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