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Abstract

Similarity metrics that are learned from labeled train-
ing data can be advantageous in terms of performance
and/or efficiency. These learned metrics can then be used
in conjunction with a nearest neighbor classifier, or can be
plugged in as kernels to an SVM. For the task of categoriza-
tion two scenarios have thus far been explored. The first is
to train a single “monolithic” similarity metric that is then
used for all examples. The other is to train a metric for each
category in a 1-vs-all manner. While the former approach
seems to be at a disadvantage in terms of performance, the
latter is not practical for large numbers of categories. In
this paper we explore the space in between these two ex-
tremes. We present an algorithm that learns a few simi-
larity metrics, while simultaneously grouping categories to-
gether and assigning one of these metrics to each group. We
present promising results and show how the learned metrics
generalize to novel categories.

1. Introduction

Classification methods that are typically used in object
recognition require some notion of similarity over the in-
puts (e.g. a distance metric for nearest neighbor, a kernel for
SVM). Therefore, a major focus in object recognition has
been placed on developing powerful image representations
that capture the necessary similarity information. For exam-
ple, it is well known that combining features of many dif-
ferent cues significantly improves recognition performance
[14, 24]; the problem can therefore be reduced to finding the
proper combination or weighting of these cues. This can
be done by designing good features by hand, or by start-
ing with many simple features (e.g. pixel values, or haar
wavelets) and using training data to learn a good similar-
ity metric (or equivalently an embedding). The latter goes
by many different names and appears in various subareas of
machine learning and computer vision: metric learning, cue
combination/weighting, kernel combination/learning, fea-
ture selection, etc. Though the specifics of each subarea
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Figure 1. Computing similarities: At left, the top and bottom
scenarios correspond to the two common ways of computing sim-
ilarities between a query image and a labeled training set: in the
top row we use a global, or “monolithic”, similarity metric; in the
bottom row we associate a different similarity metric with each
category. The latter is more powerful, but does not scale well to
large numbers of categories and cannot generalize to novel cate-
gories. The middle row shows a compromise between these two
extremes, which we study in this paper.

may differ, the basic idea boils down to finding a powerful
and discriminative image representation.

For the purpose of categorization, two approaches have
thus far been explored: learning a global or “monolithic”
similarity metric, and learning a similarity metric per cate-
gory. The former problem is known as metric learning in
the machine learning community. These methods learn ei-
ther a linear embedding, which is often a much lower di-
mensionality than the input [26, 8, 25], or a non-linear one
[4, 11]. More recently, these types of methods have shown
up in computer vision. In particular, the line of work on
similarity sensitive hashing (or learning an embedding into
a binary space) [20, 22] has produced very promising re-
sults, enabling extremely efficient image retrieval.



There are several advantages to training a monolithic
similarity metric. Such a metric can be used in a nearest
neighbor classifier, which can lend itself to efficient classi-
fication [21]. Furthermore, the representation is the same
for all data. This is convenient because the metric can eas-
ily generalize to novel categories. In other words, we could
train a good similarity metric on C categories, and if we
later receive training data for a few more categories, no re-
training is necessary (assuming the training data from be-
fore was reasonably representative). This form of general-
ization will be an important focus of our work.

The other end of the spectrum is to train a similarity met-
ric per category. This is typically done in a 1-vs-all manner.
A common example of this is training a 1-vs-all classifier
that performs some form of feature/cue weighting or selec-
tion (e.g. SVM with kernel combination). The obvious ad-
vantage of these methods is improved performance. In fact,
these types of methods have recently been shown to per-
form extremely well for object categorization [24]. This is
not surprising since certain cues and features are important
for some categories and not others. Therefore, it is diffi-
cult to capture all the relevant information in a single global
metric. Other work has gone so far as to train a similarity
metric per training example [7, 15].

One downside to training category specific metrics is, of
course, the difficulty in scaling to large datasets. Computer
vision datasets for recognition are growing at exponential
rates. Consider, then, a problem with 10,000 categories.
Training this many separate similarity metrics is impracti-
cal. Furthermore, we speculate that even if we did train this
many metrics, many of them would be redundant. Another
down side is that, unlike a monolithic similarity metric, it
is unclear how this approach could generalize to new cate-
gories without an additional training phase.

Our intuition is that a few good similarity metrics could
capture most of the necessary information and attain good
performance without compromising efficiency. We see this
as a happy medium in between the two extremes of generic
and category specific (cf . Fig. 1). The contributions of this
work are twofold: (1) we study how performance changes
across this spectrum, and (2) we propose an algorithm
called MuSL that simultaneously groups categories together
and trains a few similarity metrics, one for each group. We
show how to assign one of the learned metrics to novel cat-
egories, and study how well these metrics generalize.

1.1. Related Work

There are several lines of work that are similar in spirit
and motivation to ours. [23] proposes a procedure for train-
ing several boosted detectors in a multi-task fashion, forc-
ing them to share features; [18] extends this work to train
classifiers incrementally rather than in a single batch. This
work, like ours, aims to exploit the redundancies in repre-

sentation of similar categories. Similarly, in [5] prior infor-
mation is shared between categories enabling the training of
new classifiers with much less training data. An approach
called “dynamic learning” [27] offers an efficient way of
training additional classifiers when new categories are in-
troduced or existing categories are split. All of these ap-
proaches, however, still require the training of C classifiers
for C categories. Instead we take a metric learning view;
this enables us to reap some of the benefits of learning a
monolithic similarity metric such as the ability to general-
ize to new categories without re-training.

Work on object taxonomies has similar themes. For ex-
ample, [10] uses confusion matrices of trained classifiers to
group categories together hierarchically. In our work, cate-
gories get grouped by virtue of sharing a similarity metric.

Perhaps the most similar approach to ours comes from
the machine learning community: in [25] the input space is
partitioned, and a metric is learned for each partition. This
work requires the user to specify the partitions a priori (in
practice, k-means on the input space is used). Our algorithm
integrates grouping into the training procedure.

The rest of this paper is organized as follows. In Section
2 we review boosted similarity metric learning and intro-
duce our algorithm. In Section 3 we go over implementa-
tion details and present object categorization results. We
conclude in Section 4.

2. Boosting Similarity Classifiers
Recently, [20, 22] explored a boosting approach to em-

bedding images into a binary space. Although this repre-
sentation sacrifices some recognition power, it is efficient
both in terms of computing similarities (which can be done
with bit operations) and storage. Furthermore, training a
boosted classifier is typically done in phases, which makes
it well-suited for the type of problem we address. For these
reasons, we choose this paradigm for our study, though the
algorithms we discuss could be extended to other represen-
tations.

In this section we review the gradient boosting approach
to learning similarity metrics, and introduce our proposed
algorithm. We receive a dataset of the feature vectors
{x1, . . . , xn}, x ∈ Rd and category labels {`1, . . . , `n},
where `j ∈ {1, . . . , C}. Using this dataset we can con-
struct pairs (xi1, xi2); for convenience we also define pair
labels yi = 1[`i1 = `i2]. If nc is the number of examples for
each category, then there are O(n2

c) possible positive pairs,
andO(Cn2

c) possible negative pairs. Since the latter can be
quite large, in practice we subsample negative pairs.

The goal is to train a boosted similarity metric, which we
can think of as a binary classifier that takes a pair as input:

H(xi1, xi2) =
T∑

t=1

ht(xi1, xi2) (1)
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Figure 2. The MuSL system consists of a few similarity metrics
(in this example just two: H1, H2) and an assignment vector s that
maps each category to one of the metrics. To compute the distance
from a query image to the ith example in our labeled training set,
we use the similarity metric Hs(`i) where `i is the label of the
training example.

where each ht is a weak similarity classifier. Following
[20, 22], in our model these weak similarity metrics take
the following form:

ht(xi1, xi2) = |ft(xi1)− ft(xi2)| (2)

where ft : Rd → R1. In this case, to compute H
we embed each example/image x into a vector F (x) =
[f1(x), f2(x), . . . fT (x)], and then compute the L1 distance
in this new space: H(xi1, xi2) = ||F (xi1) − F (xi2)||1.
Therefore, training such a strong classifier induces an em-
bedding. We choose the function ft : Rd → {0, 1} so that
our embedding is binary; this enables us to compute these
distances very efficiently. In the simplest case, these func-
tions are computed by thresholding a particular feature of x,
ft(x) = 1[x[t] < θ]. [20] proposes an efficient algorithm to
learn such a threshold given some training data. Note that
for this choice of ft, the overall metric H(xi1, xi2) ranges
from 0 to T .

2.1. Monolithic Similarity Classifier

We begin with a review of how to train a single similarity
metric for all data. For a given classifier H we can define
the probability that a particular pair is positive as

pi = σ
(
α
(
T/2−H(xi1, xi2)

))
(3)

where σ(a) = 1
1−exp(−a) is the sigmoid function, and α is a

global scalar parameter. Using the above definition we can
define the log likelihood over a set of training pairs:

L(H) =
∑

i|`i1=`i2

log(pi) +
∑

i|`i1 6=`i2

log(1− pi) (4)

To derive a boosting algorithm that optimizes the above
objective function we apply Friedman’s gradient boosting
framework [6]. We interpret boosting as gradient ascent in
function space. Each step of the ascent equates to adding
a new weak classifier to H . The gradient ∂L(H)

∂H gives us
the direction in function space in which we should move;

Algorithm 1 Multiple Similarity Learning (MuSL)
INPUT: Training data (xi1, xi2) and labels
(`i1, `i2)

1: for t = 1 to T do
2: for k = 1 to K do
3: Compute weights

wk
i = exp(rLk

c )∑
j exp(rLj

c)

∣∣pk
i − yi

∣∣
4: Train weak classifier hk

t using weights wk
i

hk
t = argminh

∑
i w

k
i 1[h(xi1, xi2) 6= yi]

5: Update strong classifier Hk ← Hk + hk
t .

6: end for
7: end for
8: Assign s(c) = argmaxk Lc(Hk) for c = 1 . . . C

OUTPUT: Classifiers H1 . . . HK , assignment vector s

however, we are limited by our choice of weak classifier,
and cannot move in arbitrary directions. We therefore seek
a weak classifier that is as close as possible to this gradient.
When the weak classifiers have binary output (as is the case
for us), this is equivalent to minimizing weighted error on
the training data [1], where the weights are defined as:

wi =
∣∣∣∣∂L(H)
∂H

∣∣∣∣ (5)

In each phase of training we compute these weights and
train a weak classifier.

Note that the algorithm presented in [20, 22] is slightly
different because an exponential objective function is used
instead of log likelihood; we have found that empirical dif-
ferences are insignificant between these two choices.

2.2. Per-Category Similarity Classifiers

In this scenario we train a similarity classifier for each
category: H1, . . . ,HC . We can then use these in a kNN
framework as follows: upon receiving a novel example xwe
will compute similarities to all the examples in the training
set. To compute the similarity of x and a training example
xi we will use the classifier H`i .

For each class c, we construct a set of training pairs
(xi1, xi2). A pair is positive if `i1 = `i2 = c and nega-
tive if `i1 6= `i2 and `i2 = c. All other training pairs are not
relevant to training Hc. Hence, we optimize the following
objective:

Lc(H) =
∑

i|`i1=c,`i2=c

log(pi) +
∑

i|`i1 6=c,`i2=c

log(1− pi) (6)

We can train each of the C classifiers separately, using the
same training procedure as before – the only change is that
we train only on relevant pairs rather than all pairs.

Recall that due to our choice of binary weak classifiers,
all of the similarity metrics have the same range of output (0
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Figure 3. Evolution of likelihoods: as training proceeds the values of the matrix Lk
c converge, and clear category groupings become

apparent. Above is a snapshot of the matrix (red indicates high likelihood, blue indicates low likelihood) for 3 different stages of training
for the MERGED 20 dataset, where we combine 7 Caltech 256 categories, 7 Oxford Flowers categories, and 6 UIUC Texture categories
(cf . Section 3.3.1 for details). Above we see that by the end of the training procedure, the matrix Lk

c reflects the discovered grouping.

to T ). An advantage of this choice is that there are no issues
about calibration that sometimes arise in 1-vs-all classifica-
tion [19]. For other choices of weak classifiers, this issue
would need to be addressed.

2.3. Multiple Similarity Learning (MuSL)

Finally, we are interested in training a small number of
similarity metrics H1, . . . ,HK where K < C. To do this,
our algorithm groups categories together into K “super-
categories”. In other words, we will need to recover a vector
s of lengthC, each entry of which is s(c) ∈ {1, . . . ,K}. To
compute the similarity between a novel example x and an
example from our training set xi we use the similarity clas-
sifier Hs(`i) (cf . Fig. 2 for an example). If this assignment
vector were known a priori, our problem would reduce to
standard training. We can therefore think of this vector as a
latent variable. It is plausible to think of heuristic methods
of finding this assignment vector as a pre-processing step.
However, by separating this step from the training, the two
cannot be jointly optimized.

We would like to solve the following optimization prob-
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Figure 4. Evolution of pair weights: the plots above show the
weight of two training pairs from the MERGED 20 dataset (cf .
Section 3.3.1 for details) with K = 3. As training proceeds, the
leftmost term in Eqn. 9 softly assigns each category, and hence
each training pair, to one of the K metrics; the weights corre-
sponding to the other metrics quickly drop down to 0. In later
stages of training the rightmost term in Eqn. 9 begins to take ef-
fect, and the weights of the “difficult” pairs (left plot) stay high,
while the weights of the “easy” pairs (right plot) begin to decline;
this is similar to traditional boosting.

lem:

max
s,H1...HK

∑
c

Ls(c)
c

where Lk
c = Lc(Hk) is the log likelihood of category c

when evaluated with classifier Hk. We can split the max
over metrics H and entries of the assignment vector s, and
the move the latter into the sum:

max
H1,...,HK

∑
c

max
s(c)∈{1...K}

Ls(c)
c

Therefore, to solve for the best similarity metrics we use the
following objective function1:

L(H1, . . . ,HK) =
∑

c

max
k∈{1...K}

Lk
c (7)

When K = 1 this objection function reduces to the one
in Eqn. 6. As before we will derive a boosting algorithm
to optimize this objective by performing gradient ascent in
function space. However, when we try to take the derivative
of the above objective function we run into trouble since the
max operator is not differentiable. We therefore replace the
max with a differentiable approximation [3]:

G(a1, . . . , aK) =
1
r

log
(∑

k

exp(rak)
)

(8)

≈ max
k
{a1, . . . , aK}

where r is a parameter controls the accuracy of the approx-
imation (we discuss how to deal with possible numerical
instability issues of the above equation in Section 3.1.2).

We will optimize the objective L(H1, . . . ,HK) by co-
ordinate ascent, updating each of the K classifiers one at
a time. In each step we will add a new weak classifier hk

t

to the strong classifier Hk. We train the weak classifier hk
t

with weights derived as follows:

1Note that this objective is only concave for K = 1; in all other cases
it is possible to get stuck in local maxima, though in our experiments we
have not found this to be too problematic.



wk
i =

∣∣∣∣∂L(H1, . . . ,HK)
∂Hk

∣∣∣∣
=

∣∣∣∣∂G(L1
c , . . . ,LK

c )
∂Lk

c

∂Lk
c

∂pk
i

∂pk
i

∂Hk

∣∣∣∣
=

exp(rLk
c )∑

j exp(rLj
c)

∣∣pk
i − yi

∣∣ (9)

where pk
i is the probability of a pair (computed using Eqn.

3) according to classifierHk. The overall algorithm is sum-
marized in Algorithm 1. The above formula has an intuitive
interpretation. It is composed of two terms; the rightmost
term gives higher weights to pairs that are currently misclas-
sified (e.g. “difficult” pairs), similar to traditional boosting.
The leftmost term is the familiar softmax equation [2], ap-
plied to the category specific likelihood Lk

c . We can think
of this as a soft approximation of 1[k = argmaxj Lj

c]. This
term will give higher weight to pairs where `i2 = c if the
similarity metric Hk is the “best” for category c. To gain
further intuition for how these two terms interact we plot
the evolution of weights for two training pairs in Fig. 4.

We initialize all weights to be uniform. As a result, the
first few weak classifiers chosen by the procedure are not
“tuned” to particular categories. However, as the training
proceeds, the leftmost term in the weight equation starts to
converge and effectively assign categories to each classifier
(cf . Fig. 3 to see how the values of Lk

c evolve during train-
ing).

2.3.1 Assignments and Out of Sample Extensions

At the end of the training procedure we recover the assign-
ment vector s as follows:

s(c) = argmax
k

Lk
c (10)

This may be obvious for the categories that were included in
the training data. The more interesting aspect of the above
equation is that it can also be used for out of sample exten-
sion to novel categories. That is, suppose we trainedK met-
rics on a few categories, and now we receive training data
for one more category; we would like to assign one of the
existing metrics to this new category. The above equation is
appropriate for this scenario as well: we generate positive
and negative training pairs for this category as before, com-
pute log likelihood of each similarity classifier, and pick the
best one.

Note that we do not enforce any sort of balance on the
assignments; it is possible that all categories get assigned to
the same similarity metric. In practice, however, this does
not seem to be an issue because assigning metrics to cate-
gories more evenly is advantageous in terms of optimizing
the objective function.
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Figure 5. Categorization performance for two datasets, showing
the two extremes, monolithic and per-category similarity metrics,
as well as the algorithms discussed for a range of K values. For
low values of K we are able to get significant improvement in
performance. See Section 3.2 for details.

2.3.2 Re-training
Recall that because the weights are initialized uniformly, the
first weak classifiers are not tuned to specific categories. If
the total number of weak classifiers is large, this would not
have a significant effect. However, in our implementation
we use a small number of weak classifiers (for efficiency
reasons). Once the training phase is complete and we have
recovered the category assignments, we re-train the similar-
ity metrics in a standard way using the known assignments.
This step tends to improve performance.

3. Experiments
In this section we present our results on object catego-

rization. We begin with an overview of implementation de-
tails, which are not required to follow the rest of this Sec-
tion.

3.1. Implementation Details
3.1.1 Image Representation
We use a bag of words framework for constructing our
weak classifiers for boosting, where each decision stump is
a threshold on the count of some visual word. To construct
our visual codebook, we use an algorithm similar to [16],
where the vocabulary is constructed from a forest of random
trees, and each node in a tree corresponds to a visual word.
Tree nodes are split by randomly sampling a small num-
ber of decision stumps (we used thresholded haar-like filters
computed on some image channel), and choosing the split
that minimizes the total class entropy on a labeled training
set. We constructed two random forests, one using CIE-
LUV color images, and another using histogram of gradi-
ents images with 8 orientation bins. The main advantage of
this style of features is speed: assigning an interest point to
a codeword involves evaluating a small number of haar-like
features, and thus an image can be processed in a fraction
of a second. It also allows for easy integration of multiple
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Figure 6. Discovered category groupings for the Merged 20 dataset for various values of K using MuSL. See Section 3.3.1 for details.

cues by using different types of image channels. We em-
phasize that our metric learning algorithm is not in any way
tied to this style of features, and we expect that absolute per-
formance could be improved by using other more advanced
features.

3.1.2 Algorithm Parameters
Here we briefly discuss the parameters and caveats of our
algorithm. When constructing training pairs given labeled
data we randomly sample 1,000 negative pairs for each ex-
ample and take every possible positive pair.

One potential problem with the expression in Eqn. 9 is
that the exponent can blow up for large values of Lk

c . Re-
call the parameter r in Eqn. 8; we can set this parameter
to a small value to avoid numerical instability. The value
of the likelihood Lk

c depends on the number of examples
n. We found that setting r = 500/n is a good compromise
between avoid numerical problems and having reasonable
accuracy in the max approximation. We set the number of
weak classifiers T = 32. Finally, as suggested in [22], we
set α = 0.1.

3.2. Categorization

Our first task is to measure categorization performance
as a function of K. We plug our learned similarity metrics
into a nearest neighbor classifier, as described in Section 2.
Recall that we are using embeddings into binary spaces, as

ns
k‐
m
ea
n

Figure 7. Discovered category groupings for the Merged 20
dataset for various values of K using the k-means heuristic. See
Section 3.3.1 for details.

was done in [22, 20] (e.g. ft : Rd → {0, 1}). There are a
few advantages to this choice. First, computing distances in
binary space is extremely efficient. Furthermore, since each
weak classifier relies on only one feature, boosting essen-
tially performs feature selection. This can further speed up
run time as we need to compute fewer features for an incom-
ing image. Nevertheless, as mentioned before, this choice
also limits the power of our learned metrics to some degree.
Therefore, our results are not state of the art in terms of ab-
solute performance – we are mainly interested in studying
the relative performance of these algorithms as we change
the value of K.

We compare the MuSL algorithm to two baselines, both
of which perform grouping of categories as a pre-processing
step, and train similarity metrics in a standard way. The first
baseline is to group the categories randomly. The second
is to use the k-means clustering algorithm [2] to group the
categories. To do this, we first need a way of representing
each category in some feature space. While it is not clear
what the “correct” way of doing this is, we use the following
heuristic: we take a mean of all the data points correspond-
ing to that category xc = 1/nc

∑
`i=c xi; this results in C

vectors, one for each category. We experimented with other
k-means based heuristics, but found this to be the only one
that gives reasonable performance.

We perform experiments with two different datasets de-
scribed below. For all experiments we use 30 training im-
ages per category for training, and 10 to 20 images per cate-
gory for testing. The results shown are averages of 20 trials
with different train/test splits. In all experiments we report
the average recognition accuracy (mean of the diagonal of
the confusion matrix).

3.3. Caltech

Our first experiment uses the Caltech 256 (CT) dataset
[9]. We took the 30 easiest categories2 and randomly chose
a subset of 20 out of these (the other 10 will be used in later
experiments); we call this dataset “Caltech 20”. Catego-

2Difficulty is measured by performance of a standard classification
method; see [9] for details.



rization accuracy for various values of K are shown in Fig.
5(A). As we slide the value of K from 1 to 20 the recog-
nition performance gradually increases; the difference be-
tween the two extremes is 14%. Randomly grouping cate-
gories together performs worse than the “smarter” ways of
discovering super-categories, suggesting that certain group-
ings are better than others. Finally, MuSL tends to perform
the best out of all the methods, though in this application the
k-means heuristic performs fairly well. We will see some
disadvantages to the k-means heuristic in the next two sec-
tions.

3.3.1 Merged

One strength of our algorithm is its ability to handle datasets
that consist of a wide variety of heterogenous categories.
We constructed a dataset we called “Merged 20”; it con-
sists of 7 categories from CT [9], 6 categories from Ox-
ford Flowers-17 (FL) [17], and 6 categories from UIUC
Textures (UT) [13]. The CT categories were chosen ran-
domly from the 20 categories in the previous section; the
FL and UT categories were chosen randomly from their re-
spective datasets. Fig. 5(B) shows a plot of recognition ac-
curacy versus K. We see that for low values of K there is a
dramatic increase in performance – for K = 5 recognition
accuracy is 10% higher than for a single metric. MuSL out-
performs both the random and the k-means heuristic meth-
ods of grouping; for K = 5 MuSL achieves an accuracy
almost 5% higher than the others. Finally, we see that the
re-trained MuSL metrics increase performance by a couple
percent.

It is interesting to qualitatively inspect the super-
categories that MuSL discovers; one of the advantages of
this dataset is that we have some expectation for what these
super-categories could be. Fig. 6 shows the discovered
groupings forK = 3, 5, 7 for a particular train/test fold. For
K = 3 the groupings correspond to the 3 source datasets
that we merged; MuSL recovers these super-categories au-
tomatically. The k-means method of grouping, on the other
hand, does not recover these super-categories. For K = 5
MuSL breaks the 3 source datasets down further, in a seem-
ingly intuitive manner. For example, the ‘mars’, ‘saturn’
and ‘guitar-pick’ categories get grouped together; these ob-
jects are roughly circular and have strong gradients on their
boundaries due to constant backgrounds. Again, the super-
categories discovered by k-means are semantically arbitrary
(cf . Fig. 7 for an example).

Finally, we note that the groupings produced by MuSL
are much more consistent, or “stable”, over the different
train/test folds: using the stability measure defined in [12],
for K = 3 MuSL groupings are 96% stable, while k-means
groupings are only 50% stable. This means that super-
categories discovered by MuSL are almost always the same,
whereas those discovered by k-means are fairly random.
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Figure 8. Generalizing to novel categories: using a few similar-
ity metrics achieves much better performance than using just one;
however, using too many can overfit to the original categories. See
Section 3.4 for details.

3.4. Generalizing to New Categories

We would like to study the ability of the learned similar-
ity metrics to generalize to new categories. It is important
to highlight the difference of this generalization as opposed
to the traditional definition. Here we are interested in gener-
alizing to novel categories (both train and test data), rather
than generalizing to test data that consists of the same cat-
egories as the training data. To this end, we create a new
dataset we call “Merged 10”; it consists of 10 new cate-
gories (4 from CT, 3 from FL, and 3 from UT) that were not
included in Merged 20. We train similarity metrics only on
the original categories from the previous section (Merged
20), and test on these new categories, as well as a combina-
tion of all 30 categories, which we call “Merged 20+10”. To
do this for K > 1 we use the procedure described in Sec-
tion 2.3.1 to assign one of the learned similarity metrics to
each of the new categories. For the Merged 10 data, when
K = 3 we observe that the assignments are as expected –
each of the source datasets get grouped together as before.
This suggests that the assignment procedure is reasonable.

We plot the performance of MuSL (the re-trained ver-
sion) and the k-means heuristic method as we sweep
through values of K in Fig. 8. The left plot shows perfor-
mance only on the new categories, and the right plot shows
performance on all 30 categories. The resulting plots are
surprising. Unlike before, performance does not strictly im-
prove as K gets larger. Instead, performance actually starts
to degrade for higher values of K. This suggests that train-
ing with a lower value of K results in more general similar-
ity metrics. Therefore, having too many similarity metrics
is not only computationally wasteful (in terms of training
time and storage), the performance is actually worse when
adding new categories to the data. At the same time, train-
ing just one similarity metric performs much worse (almost
25% worse than when K = 3 on the Merged 10 dataset).
Furthermore, we see that MuSL performs better than the k-



means heuristic method for both datasets – for the Merged
20+10 dataset the difference is about 5%.

4. Conclusions & Future Work
In this paper we presented a method for learning a few

similarity metrics from labeled data. We studied how per-
formance changes in between the two extremes of a single
metric and a metric per object category, and showed that
the performance of the latter can be matched fairly closely
with a small number of metrics. We also studied how these
learned metrics generalize to novel categories; such gener-
alization is strongly desirable if we wish to scale to large
datasets. Here we saw that training too many metrics is
actually detrimental to this type of generalization. The al-
gorithm we proposed, MuSL, simultaneously trains a few
similarity metrics and groups categories together. Though
a number of heuristic methods for grouping categories as
a pre-processing step are possible, our method is principled
and tends to perform better because the optimization of met-
rics and grouping is done jointly. In particular, our method
is well suited to scenarios where the categories exhibit a
super-categorical structure.

There are several paths we would like to explore in the
future. First, we are currently working on experiments with
larger datasets to see how these methods scale, and inves-
tigating more powerful features. Though our focus in this
work is categorization, the ideas we presented could prove
to also be useful in the domain of image retrieval. For ex-
ample, given an image query and a large unlabeled dataset
of images, the task of retrieving images similar to the query
is ambiguous when we acknowledge the fact that there is
no single “correct” similarity metric. Perhaps it is best to
return several sets of results to the user, one for each of the
similarity metrics. We intend to explore these ideas in the
future.
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