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Abstract

Differential white blood cell count is the process of counting and classifying
white blood cells in blood smears. It is one of the most common clinical tests
which is performed in order to make diagnoses in conjunction with medical
examinations. These tests indicate deceases such as infections, allergies, and
blood cancer and approximately 200-300 million are done yearly around the
world.

Cellavision AB has developed machines that automate this work and is the
global leader in this market. The method developed in this thesis will replace
and improve the auto focus routine in these machines. It makes it possible to
capture a focused image in only two steps instead of using an iterative multi
step algorithm like those used today in most auto focus systems, including
the one currently used at Cellavision.

In the proposed method a Support Vector Machine, SVM, is trained to
assess quantitatively, from a singel image, the level of defocus as well as the
direction of defocus for that image. The SVM is trained on features that
measure both the image contrast and the image content. High precision is
made possible through extracting features from the different parts of the
image as well as from the image as a whole. This requires the image to be
segmented and a method for doing this is proposed.

Using this method 99.5% of the images in the test data’s distances to focus
were classified less or equal to 5µm wrong while over 85% were classified
completely correctly. A 5µm defocus is borderline to what the human eye
perceives as defocused.

Cellavision AB has applied for a patent to protect the method described in
this thesis.
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Chapter 1

Introduction

This master thesis describes how an absolute focus metric can be created in
images of stained peripheral blood smears using multi variable analysis.

The author is following the Master of Science in Engineering Physics pro-
gram at Lund Institute of Technology, LTH, in Sweden. He has focused his
studies on image analysis and computer vision. The master thesis was done
at a company in Lund, Cellavision AB, in collaboration with the Center of
Mathematical Sciences at LTH.

Cellavision AB, www.cellavision.com, is developing, marketing and selling
equipment for Automated Digital Cell Morphology. This is the process by
which white blood cells, WBCs, are automatically located in a stained pe-
ripheral blood smear, pre-classified, stored and transmitted for confirmation
by a technologist. Cellavision was the first company in this market, and is
still today the market leader.

1.1 Equipment and definitions

Fig. 1.1 shows a schematic image of the equipment used. Let z be the
distance between object and lens, and [x, y] the location in the plane per-
pendicular to z. The microscope is movable in the z direction while the
slideholder moves in the x and y directions. Let f be the distance so that
when z = f the image is focused. If z > f the image is positively defocused
and if z < f the image is negatively defocused. The distance, f , is typically
around 0.1mm = 100µm. If the distance |z − f | is larger than 0.5µm the
images are perceived as defocused for the human eye. The system has been
built from ground up in Matlab 7.1 running on Pentium(R) 4 CPU 3.00GHz
PC with 496 MB RAM. Toolboxes ’Oregon State University Support Vec-
tor Machine Toolbox’ from Oregon State University, and the ’Wavelab 850’
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Figure 1.1: schematic view of the microscope and object

from Stanford University have been downloaded and used. The RGB-color
space has been used throughout the thesis.

1.2 Background and usefulness of an absolute fo-
cus metric

The process of counting and classifying white blood cells in a blood smear is
called ’differential white blood cell count’. It is one of the most common clin-
ical tests which is performed in order to make diagnoses in conjunction with
medical examinations. These tests indicate deceases such as infections, al-
lergies, and blood cancer and approximately 200-300 million are done yearly
around the world.

Cellavision AB has developed two products, the DM8 and the DM96, for
automation of differential white blood cell counts. These machines stan-
dardize the analysis, which gives a more objective assessment of the test. In
addition, this enables training and skills enhancement, digital archiving of
tests together with patient files, and transfer of digital graphics to experts
outside the laboratory. Cellavision is the first and biggest company in this
market and competes mainly with manual microscope analysis. Images from
both machines are used in this thesis.

These machines work in the following way. First, the operator loads the
machine with slides. The slides are thin rectangular pieces of glass on witch a
stained blood sample has been smeared. In the DM96 up to eight magazines
holding 12 slides each can be loaded, hence the ”96” in DM96. These slides
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are then lifted one by one by the machine onto the slideholder, which is
the table that is movable in the horizontal plane. In the DM8, eight slides
are mounted manually onto the slideholder. The slideholder is bigger in
the DM8 than in the DM96 and there are some indications that this causes
trouble for the auto focus method used today due to more vibrations and
lower precision.

Once the slides are mounted the machines work in the same way. First the
area of the smear with the right thickness is found. Then an image with
lower magnification (10X in the DM96 and 50X in the DM8) is taken and the
locations of the WBCs are found. Then the microscope switches to a higher
magnification (100X) and the slide holder places the WBCs one by one under
the camera. A focused image is thus captured and sent to the classifier for
the pre-classification. The focused images and the pre-classifications are
stored in a database and the operator can go through the material, verify
the pre-classification and look at the images.

Now, let’s look closely at how the machines captures a focused image, and
how this procedure can be improved using an absolute focus metric.

Capturing a focused image today involves capturing several images, up to
20, at different distances, z, and comparing the amount of high frequency
components in these images. The image with the highest amount of high
frequency components is selected as focused. Since the blood smear appears
to be a plane object and the slide holder is horizontal one could think that
finding focus is required only once and that the same height of the micro-
scope can be used for the rest of the WBCs. This, in fact, is not the case.
Firstly, the blood smear isn’t horizontal but in fact slopes slightly. In fact
it is not even fully planar. Secondly, plays in the mechanism that moves
the table and vibrations caused by the engines moving the table makes it
hard for the controlling algorithm to estimate the exact distance between
the table and the microscope. Also, the depth of focus is shallow due to
the strong magnification used which complicates matters further. Still, it
is possible to make a prediction of the z value needed for given x and y
values after having captured a number of images. Today, however, there is
no way to know if the prediction is correct and additional images have to
be captured even it in fact was correct. The method used today works but
leaves space for improvement.

An absolute focus metric could speed up the focus routine in several ways.
The most basic is to have a yes/no function that would evaluate if the
predictions are correct, and if they are not, let the auto focus routine work
its way to a focused image the same way it does today. A more advanced
use of the absolute focus metric requires that the metric indicates not only
if the image is defocused but also how defocused it is and in what direction.
With this information the auto focus routine could work in two steps. If
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the first prediction turns out to be defocused, the microscope simply moves
the distance given by the metric and the second captured image is focused.
Also in this case there might be a need for a supporting algorithm to deal
with abnormal situations.

1.3 Problem description

The purpose of this master thesis is to evaluate to which extent it is possible
to create an absolute focus metric in blood smear images using multi variable
analysis. This is to be done in two steps. First determine if the computer
can decide if an image is focused or not without taking into consideration
the level of defocus. Then, if this works, develop a system that determines
quantitatively how defocused an image is. Incorporated in this second step
will be to determine if an image is negatively or positively defocused. I will
refer to the first part of the problem as the ”two class problem” and the
second part as the ”multi class problem”.

1.4 Problem analysis and prerequisites

The basic idea is fairly simple; identify and extract relevant features and
then train a classifier. The features will be divided in three groups. One
group that measures the amount of high level frequencies in the images, one
that indicates if the image is positively or negatively defocused, and one
that characterizes the content of the image. The ambition is that the third
group of features will help the classifier to, in some sense, normalize the
measurements from the first and second group. Fig. 1.2 shows an overview
of the proposed method.

Generally speaking a focused image contains a higher amount of high fre-
quencies than a defocused one. However, when measuring the amount of
high frequencies in an image, several factors will have an impact; the focus
level, the amount of edges in the image, the color intensities, variances, and
more. A focused image of a pale and smooth object can contain less high
frequency than a slightly defocused image of a colorful object with many
details.

A basic prerequisite for this thesis is therefore the similarity of the images
analyzed. They usually contain one or more white blood cells, WBCs,
and always red blood cells, RBCs. However, there are several things that
compromise this statement. The following is an attempt to summarize the
variations that exist in the images used for training and testing.
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Figure 1.2: Overview of the work done in this thesis

• The stain method. The images are usually stained either with a
method called May-Grünwald-Giemsa, MGG, which is the preferred
method in Europe, or with Wright, which is more common in USA.
Different stain methods give different colors in the image.

• The level of stain. A poorly stained image is less colorful than a heavily
stained one.

• The smear method. Some labs use a machine to smear the blood
onto the slides while other do it manually. A manually smeared blood
sample is not as smooth as one smeared by a machine.

• Dirt. The images contain different amounts of dirt.

• Variations in thickness. The layer of RBCs is thicker in some images
and the RBCs are on top of each other. This makes the edges look
blurry.

• Different amount of WBCs. In some cases the image lacks a WBC,
due to failure in the algorithm that locates them, and in some cases
two WBCs are so close that both appear in the same image.

• The number of RBCs.

For a classifier to determine the focus level from only one image it must be
given features that somehow measure the variations above. Fig. 1.3 shows
four examples of how the focused images from the data can look. The WBC
is the dark, big object in the center of the images, and the RBCs are the
smaller brighter round objects. Note the large differences in the amount
of RBCs, the color of the RBCs and the shapes of the WBCs. Fig. 1.4
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A B

C D

Figure 1.3: Four examples of images in the materials used. The WBC is the
dark, big object in the center of the images, and the RBCs are the smaller
brighter round objects. Note the big differences in the amount of RBCs, the
color of the RBCs and the shapes of the WBCs.

shows image D from Fig. 1.3 at six different level of defocus (z − f) =
[45, 15, 10, 5,−5,−45]µm. Note how the WBC in the image with (z − f) =
0.5 micrometer is better focused than the WBC in the image with (z−f) =
−0.5. The reason for this is explained below.

When determining if the image is negatively or positively focused there are
at least two different facts that can be exploited. First is the fact that a
WBC is larger than a RBC. The images taken at a positive defocus can
thus still be focused on the WBC while blurry on the rest of the image.
The images captured at negative defocus will have a blurrier WBC than
positive defocused images captured at the same distance from focus. This
is illustrated in Fig. 1.5 and is also visible to some extent in Fig. 1.4. The
series of images used to create the graphs in Fig. 1.5 and also in Fig. 1.6 is
different from the ones used in the rest of this thesis in that the distance
z is only changed 0.1µm between the images. The image with the highest
global contrast in the green color layer is selected as the best focused image,
and f is set so that z − f = 0 for this image. On the y-axis is the image
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(z − f) = 4.5 mikrometer (z − f) = 1.5 mikrometer (z − f) = 1 mikrometer

(z − f) = 0.5 mikrometer (z − f) = −0.5 mikrometer (z − f) = −4.5 mikrometer

Figure 1.4: Image D from Fig. 1.3 at six different levels of defocus (z− f) =
[45, 15, 10, 5,−5,−45]µm. Note how the WBC in the image with (z − f) =
0.5µm is better focused than the WBC in the image with (z−f) = −0.5µm.
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Figure 1.5: Standard deviation for the green color layer at the WBC (blue
dotted line), the whole image (green dash-dot line), and the image minus the
WBC (red solid line). The size of the WBC makes it focused on a different
distance, z, than the rest of the image.

standard deviation calculated as

STD =
√ ∑

allpixels

(pixel value−mean pixel value)2.

This is a basic way to measure the level of focus. The pixel intensities in a
focused image will vary more than in a defocused one. Only the green color
layer is used in Fig. 1.5. The blue dotted line, with its highest value for
x = 0.3, represents the STD for the WBC. The green dash-dot line, with
its peak at x = 0 the STD for the whole image and the red solid line, with
its highest value for x = −0.2, the STD for the part of the image that does
not contain the WBC. This confirms that the height of the WBC indeed
makes it focused on a different distance than the rest of the image, and it is
something that can be used to determine the direction of defocus.

The second fact that can be used to determine if an image is negatively or
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Figure 1.6: The different color layers of an image are focused at different
distances. Image A illustrates the three color layers for only the WBC and
image B illustrates the three color layers for the whole image minus the
WBC. The red solid line represents the red color layer, the green dash-dot
represents the green color layer and the blue dotted line the blue layer. Note
that the difference between the red peak and the blue peak is quite large,
1.4µm. Also note that the tails in the positive and negative directions of
defocus are different from each other, and also differ between images A and
B.

positively defocused is the following. Different colors captured by the camera
have different wavelengths and will be focused at different distances between
object and lens. This is compensated for in some lens systems but not fully
in the one used at Cellavision. Fig. 1.6 illustrates this phenomenon. The
same images are used as in Fig. 1.5, and the same measurement of focus
level. Here the three graphs illustrate the different color layers. The red
solid line represents the red color layer, the green dash-dot represents the
green color layer and the blue dotted line the blue layer. To avoid influence
from the effects illustrated in Fig. 1.5 this test is done two times. Image A
illustrates the three color layers for only the WBC and image B illustrates
the three color layers for the whole image minus the WBC. Note that the
difference between the red peak and the blue peak is quite large, 1.4µm.
Also note that the tails in the positive and negative directions of defocus
are different from each other, and also differ between images A and B. All
this is information that hopefully can be used by the SVM when separating
the direction of defocus.
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1.5 Literature review

The issue of auto focus has been covered in numerous scientific articles
and publications. Several relative focus metrics are proposed and combined
with different iterative algorithms. Less is done in the field of absolute focus
metrics. During an initial search very little was found. The closest was in
[1] where a wavelet based absolute measurement is proposed. However, tests
revealed that this did not work for the images that are worked on in this
thesis. In section 3.1.1 is an overview and evaluation of different relative
focus metrics.

As the results of this thesis got better a discussion on applying for a patent
began, and a search was conducted to find if there were any existing con-
flicting patents. As it turned out, there was a patent application [13] filed
September 14 2006 in the United States that put forward a similar idea. It
does not, however, aspire to solve the multi class problem but only the two
class problem, and a patent application is now filed by Cellavision AB to
protect the idea presented in this thesis.
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Chapter 2

Image processing
preliminaries

This chapter explains the theory behind some of the methods used in the
thesis. The part on Support Vector Machines, SVM, is thorough as this is
a central part of the thesis. The other methods are more briefly described.

2.1 Support vector machines

Support Vector Machines were introduced in COLT, Conference on Com-
putational Learning Theory, 1992 by Boser Guyon, Vapnik. It is a classifier
that is used in similar applications as Artificial Neural Networks but that,
in addition to giving as satisfactory results as ANN in most applications,
has more appealing theoretical properties. Below follows an introduction to
SVM classifiers. For a more thorough description cf. [5].

2.1.1 Linearly separable datasets

Consider the simplest possible classification problem; one with two linearly
separable classes. Formally, we want to estimate a function f : <N → {±1}
using data

(x1, y1), . . . , (xl, yl) ∈ <N × {±1}.

With xi and yi as above there exists a hyperplane such as

yi(w · xi) + b > 0. (2.1)

Points that lie ”below” the plane i.e. points for which (w · xi+b) < 0 belong
to yi = −1 and are thus multiplied with −1 making the equation (2.1) true
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x1

x2

(w|x)+b = 1
(w|x)+b = −1

(w|x)+b = 0

Figure 2.1: A linearly separable set of data and the separating hyper plane

for all points. Unknown points can now be classified as

f(x) = sgn((w · x) + b). (2.2)

In a set with a finite number of data points there are several (infinite) ways
of choosing w and b. The most intuitive way is to choose the plane that is
furthest away from the convex hull of the two sets of data points. This is
obtained through joining the closest points on the two hulls with a line and
let the hyperplane be perpendicular to this line and cut it midway. Through
rescaling w and b in (2.1) so that the points closest to the hyper plain satisfy
‖(w · x) + b‖ = 1, we obtain a form (w, b) of the hyper plane, so that

yi(w · xi) + b ≥ 1

for all points with equality for the point(s) from both sets that are closest to
the hyper plane. These points are called the support vectors. Fig. 2.1 shows
the situation dealt with in this section; a linearly separable set of data and
its separating hyper plane. The support vectors are the points that lie on
either of the dashed lines. Let x1 be a support vector from class one and x2

one from class two. Then

(w · x1) + b = 1,

(w · x2) + b = −1,

(w · (x1 − x2)) = 2. (2.3)

Now consider the distance from x1 to x2 in the direction of the hyperplane
normal, w/‖w‖,

(w · (x1 − x2))
‖w‖

=
2
‖w‖

,
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where the equality is from equation (2.3). Maximizing the distance from
the hyper plane to the points thus means minimizing ‖w‖, which in turn is
equal to minimizing ‖w‖2 Now we can formulate the problem that needs to
be solved to find the desired hyper plane,

min ‖w‖2 (2.4)
subject to yi(w · xi + b) ≥ 1, i = 1, . . . , l. (2.5)

The following is an outline on how to solve this kind of problem. It is
a standard optimization problem known as quadratic programming, and
can be solved using standard methods. These problems are convex, which
means that there exist no local minima other than the global minima. The
optimization problems generated using ANN does not have this property
and this is the reason behind the ’more appealing theoretical properties’
mentioned in the introduction to this section.

Before solving it we will transform it to its dual counterpart. For the the-
ory behind this transformation and the details on how to solve a quadratic
programming problem please refer to [3].

Introduce Lagrange multipliers αi ≥ 0 and the Lagrangian

L(w, b, α) = ‖w‖ −
l∑
i

αi (yi · ((xi ·w) + b)− 1).

The Lagrangian L has to be minimized with respect to the primal variables
w and b and maximized with respect to the dual variables αi These are the
Karush-Kuhn-Tucker conditions described in [3]. According to these the
derivatives of L with respect to the primal variables must be zero,

∂

∂b
L(w, b, α) = 0,

∂

∂w
L(w, b, α) = 0,

which leads to

l∑
i=1

αiyi = 0, (2.6)

w =
l∑

i=1

αiyixi. (2.7)

The solution vector w can thus be written as a sum of a subset of the
training vectors, namely the support vectors. By the KKT conditions all
non-active constraints have αi = 0 and do not affect the position of the
separating hyper plane. This fits with the idea that only the vectors closest
to the hyper plane affect it.
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By substituting (2.6) and (2.7) into L, the primary variables are eliminated
and the dual, which is also a quadratic programming problem, becomes

max
l∑

i=1

αi −
l∑

i,j=1

αiαjyiyj(xi · xj), (2.8)

subject to αi ≥ 0, i = 1, . . . , l, and
l∑

i=1

αiyi = 0. (2.9)

Solving it gives αi, i = 1, . . . , l. The vector w is then given by (2.7). For
any example xi with αi nonzero,

yi(w · xi) + b = 1,

which can be used to calculate b. The decision function (2.2) for an unknown
point xu becomes

f(x) = sgn(
l∑

i=1

αiyi(xu · xi) + b). (2.10)

Note how the data points occur only within the scalar product in (2.10) and
(2.8) while it doesn’t in (2.4). This is the reason the transformation was
made and why this is important will become evident in Section 2.1.2.

2.1.2 Non-linearly separable data sets

Building on the same model, we now want to be able to work with non-
linearly separable data sets. The idea is to map the data points with a non-
linear function into a feature space where they will be linearly separable, cf.
Fig. 2.2. This feature space will have a higher dimension. This mapping is
done through a function φ(x) : RN → F . We will see that it is useful to use
another function called the Kernel function which is defined as

k(xi,xj) := (φ(xi) · φ(xj)). (2.11)

Let’s look at an example before we proceed. The polynomial kernel of di-
mension 2

k(x,y) = γ(x · y)2, (2.12)

can be shown to correspond to a map Φ into the space spanned by all
products of exactly 2 dimensions. For x = (x1, x2),y = (y1, y2), γ = 1 this
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Figure 2.2: Use a Kernel to map the training data into a higher dimension
where it will be linearly separable.

becomes

(x · y)2 = (x1y1 + x2y2)2 =
= x2

1y
2
1 + x2

2y
2
2 + 2x1y1x2y2 =

= ((x2
1, x

2
2,
√

2x1x2) · (y2
1, y

2
2,
√

2y1y2)) =
= (φ(x) · φ(y)),

with φ(x) = (x2
1, x

2
2,
√

2x1x2). This works the same way for higher dimen-
sional polynomial kernels. For data with dimension 65 and a polynomial ker-
nel of dimension 3, this would result in a (65+3−1)!/(3!∗(65−1)!) ≈ 48.000
dimensional feature space.

As previously noted the functions that are to be optimized contain only the
scalar products between the data points rather than the points themselves.
This means that the function φ(x) doesn’t have to be explicitly defined or
used. Instead the kernel is used in all calculations. The transformed data
does not have to be stored and the high dimension scalar multiplication does
not have to be performed, as the Kernel function does these steps in one.
As the example above shows this saves computational power and memory
and is in some sense the essence of the SVM theory.
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The decision function (2.10) becomes

f(x) = sgn(
l∑

i=1

αiyi(φ(xu) · φ(xi)) + b)

= sgn(
l∑

i=1

αiyik(xu,xi) + b) (2.13)

and the dual optimization (2.8) becomes

max
l∑

i=1

αi −
l∑

i,j=1

αiαjyiyjk(xi,xj) (2.14)

subject to αi ≥ 0, i = 1, . . . , l, and
l∑

i=1

αiyi = 0, (2.15)

where b can be calculated through selecting a xj with αj 6= 0 using

b = yj − (
l∑

i=1

αiyik(xj,xi)). (2.16)

2.1.3 Non separable data sets

Now we can handle non-linear separable data. Let’s look at the final prob-
lem, how to deal with data sets that are non-separable, even after mapping
the data into a higher dimensional feature space. To do this introduce slack
variables

ξi ≥ 0, i = 1, . . . , l, (2.17)

together with relaxed constraints

yi(w · xi) + b ≥ 1− ξi. (2.18)

By modifying the objective function we can simultaneously minimize the
controller capacity while taking account of the extent of the constraint vio-
lation. The new function becomes

minimize ‖w‖2 + C

N∑
i=1

ξi (2.19)

subject to the constraints (2.17), (2.18) and C > 0. Here C dictates the
penalty for the outliers. Introducing Lagrangian multipliers αi ≥ 0 and
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βi ≥ 0, the Lagrangian becomes.

L(w, b, ξ, α, β) = ‖w‖2 + C
N∑

i=1

ξi −
l∑
i

αi (yi · ((xi ·w) + b)− 1 + ξ)−

N∑
i=1

βiξi.

Differentiating with respect to the primal variable ξ,

∂

∂ξk
L(w, b, ξ, α, β),

reveals in addition to (2.6) and (2.7)

C − αk − βk = 0.

Since all βk ≥ 0, C > 0, all 0 ≤ αk ≤ C. Further, if ξk > 0 then βk = 0
(because the Lagrange function is to be maximized with respect to β). Also
βk = 0 ⇒ αk = C, so for a data point xk with ξk > 0 the corresponding
αk = C. The dual problem again becomes maximizing (2.14), but the
constraints change slightly

0 ≤ αi ≤ C, i = 1, . . . , l, and

l∑
i=1

αiyi = 0.

The upper bound on α limits the influence of individual data points. The
constant b can be calculated through (2.16) but one must choose a data
point with 0 < αj < C i.e a support vector with ξj = 0.

This concludes the section on Support Vector Machines. Using SVM’s thus
includes selecting an appropriate kernel and calibrating the parameter C
together with kernel parameters.

2.2 Basic mathematical tools for image analysis

In this section some basic tools for image analysis is described. For the
complete theory see the respective references.

2.2.1 Image histogram

An image histogram is a graph over how frequent the different intensities
in the image are. A histogram for a gray-scale image is a graph in two
dimensions with the intensity on the x-axis and the frequency (number of
pixels with that intensity) on the y-axis.

17



2.2.2 Thresholding

Thresholding is a basic segmentation technique, where a gray-scale image
is transformed into a binary image. Let g(x, y) be a gray-scale image and
b(x, y) a binary. The thresholding is then defined as

b(x, y) =
{

0 g(x, y) ≤ T,
1 g(x, y) > T,

where T is the threshold value. The Otsu method described below is a way
of choosing the threshold value dynamically.

2.2.3 Otsu’s thresholding method

In [7] Otsu addressed the problem of finding a threshold value in a gray-
level histogram without having any a-priori information about the image.
The method uses a probabilistic approach where it selects the threshold
value that gives the best separation between the two classes under certain
criteria. For a complete theory see [7], or [8] for an excellent overview. The
Otsu method is fast and can be proven optimal under certain normality
assumptions [10]. It only works for problems with two classes but can be
extended to multiple class problems at increased computational cost. In [9]
a simple and fast technique for doing this is described.

2.2.4 Mathematical morphology

Mathematical morphology is a tool for extracting image components that
are useful in the representation and description of region shape, such as
boundaries, skeletons, and the convex hull. Concepts such as set theory,
topology and geometry are used. In this thesis two basic morphological
operations are used; opening and closing. Opening is a way to separate
two objects that are slightly connected, removing thin protruding parts and
smoothing the contour. Closing removes small holes, fills gaps and merges
narrow breaks. For the theory see [11].
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Chapter 3

Feature selection and SVM
calibration

This chapter describes the work that was done when developing the method.
It is divided into four parts; finding and evaluating features, creating a
segmentation function, training/calibrating a support vector machine, and
evaluating which features are more and which are less important.

3.1 Feature selection and evaluation

The features are divided into three parts, features that measure the contrast
in the image, features that characterize the image content and a feature that
determines if the image is negatively or positively defocused. When selecting
the features the basic idea was to rather include too many than too few as
the SVM, given enough data, in theory should be able to disregard those
that do not provide relevant information. A complete list of the features
used is provided in Appendix A.

3.1.1 Contrast features

There is a lot of material written on the subject of auto focus. Different
algorithms work together with different metrics to find the best focused
image. The part about algorithms are not relevant for this thesis but an
evaluation on different focus functions is necessary to find which are best
suited for the problem at hand. First, let’s look at what properties are
desirable for this kind of metrics. The following list is presented in [4].
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C1 Accuracy- the maximum of the function must coincide with the best
focused image.

C2 Unimodality - there should be no other (local) maxima than the global
maxima.

C3 Reproducibility - the maxima should be as sharp as possible.

C4 Speed- the method should be fast enough to be useful in real time
applications.

C5 Object texture- Robustness with respect to object texture.

There are many types of focus functions that satisfy the criteria above to
a greater or lesser extent. In [6] three categories of focus algorithms are
presented.

Focus functions based on differentiations:

F 1
n,m,Θ =

∫
image

E

(
(
∣∣∣∣∂ng(x, y)

∂xn

∣∣∣∣−Θ)
)m

dxdy, (3.1)

in which g(x, y) is the gray level at (x, y), Θ is a threshold and E(z) = z, z ≥
0; E(z) = 0, z < 0. These functions measure the amount of high frequencies
in the image by differentiating the image and adding the differentiated values
together.

Focus functions based on Depth of Peaks and Valleys:

F 2
f,Θ =

∫
image

f [g(x, y)−Θ]dxdy, (3.2)

where f(x) is chosen either as the threshold function or a similar function.
This method works on the assumption that the gray levels in a focused image
vary more than they do in a defocused. Note that no spatial information is
used.

Focus functions based on the variance in the image

F 3
m,c =

1
c

∫
image

|g(x, y)− g|m dxdy, (3.3)

where g is the average gray level in the image. This method doesn’t require
any spatial information either but has the advantage that is doesn’t use
a threshold, which is hard to find automatically, so it is more robust to
different image contents than (3.2).

From these three categories a multitude of functions can be constructed.
Some of these are selected and tested, and those that work best are chosen
as features.
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From (3.1) two functions are implemented and evaluated. With parameters
Θ = 0,m = 2, n = 1 it’s called the square gradient function. With Θ =
0,m = 1, n = 1 it’s called the absolute gradient function. These both have
the advantage of not requiring a threshold value. By squaring the derivatives
a sharper peak appears for the best focused image, catering to item C1 in
the list above. Therefore the square gradient function works better and is
selected as a feature. The absolute gradient function is faster to calculate
but this is considered less important.

From (3.2) two functions are also implemented and tested. One with f(x) =
E(x),Θ = 0, called Threshold video-signal content, and one with f(x) =
1, x > 0, f(x) = 0, x ≤ 0,Θ = 0, called Threshold video-signal pixel count.
Additionally a method, called Entropy in [4], which has similar characteris-
tics is implemented and tested

Fentropy = −
∑

k

pklog2pk,

where pk is the relative frequency of gray level k. These methods give
unsatisfactory results with regards to the criteria listed above, and none of
them are selected as features.

From (3.3) three different settings are tested. With m = 2 and c = A =
image area (3.3) becomes the standard variance. By setting c = A · g2 a
compensation for the average image brightness is achieved. It’s then called
the normalized variance. With m = 1 and c = A = image area, (3.3)
becomes the absolute variance. Variance and normalized variance work sim-
ilarly while absolute variance is outperformed by the two others. These work
well with regards to C2 but not so well with regards to C1 and C3. These
are thus not included as features in this section, but the standard variance
is included as feature in section 3.1.3 as part of characterizing the image
content.

Apart from the above mentioned methods, three other focus metrics are
evaluated. The first two are the Vollath’s F4 [4]

Fvoll4 =
M−1∑
i=1

N∑
j=1

g(i, j) · g(i + 1, j)−
M−2∑
i=1

N∑
j=1

g(i, j) · g(i + 2, j),

and Vollath’s F5 [4]

Fvoll5 =
M−1∑
i=1

N∑
j=1

g(i, j) · g(i + 1, j)− g2
M∑
i=1

N∑
j=1

1.

Vollath’s F4 is based on the autocorrelation function and Vollath’s F5 is
based on the standard deviation function. The first function lives up to
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Figure 3.1: The result of a two dimensional two-level wavelet transform

criteria C1 quite nicely but have some problems with C2. The second works
the opposite way. Because criteria C1 is regarded as the most important
one Vollat’s F4 is selected as a feature. Also, a self composed mix of the F4

and F5 that combines the advantages of both models, is used.

Fmix =
M−1∑
i=1

N∑
j=1

g(i, j)·g(i+1, j)−19
20

M−2∑
i=1

N∑
j=1

g(i, j)·g(i+2, j)− 1
20

g2
M∑
i=1

N∑
j=1

1.

The third metric is based on wavelets. This focus function is based on
ideas described in [1] and [2]. The theory behind wavelets is not provided
here, see chapter 7 in [11] for an introduction. The wavelet based focus
metric developed in this thesis works as follows. First the size of the image
is changed from original 480 by 640 pixels to 512 by 512 through cutting
away columns and adding empty rows. The value in each pixel is set to
the mean of the r,b and g color layer, creating a gray level image. Then
a two dimensional two-level wavelet transform with a Daubechies 8 mother
wavelet is performed through using the Wavelab 850 toolbox for Matlab
developed by the WaveLab Development Team at Stanford University. The
result from running this file is presented in Fig. 3.1.
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What has happened is basically this; first the images is subsampled to a
quarter of its original size. HL1, LH2 and HH1 contain the differences
between this first subsample and the original image. Then the subsampled
image is subsampled again to a 1/16 of the original size. HL2, LH2, and
HH2 contain the differences between the double subsampled image (shown
in LL2) and the first subsampled image. Only parts HL2 and LL2 will be
used in the rest of the method. The idea is that the sharpness of the edges in
HL2 is a measure of how sharp the original image is. Hence; the 280 pixels
with the highest intensity in HL2 are found, and the twenty with the highest
are thrown away to reduce noise impact. The intensities of the remaining
260 pixels are added together and divided by the mean of the image LL2.
The division is done for normalizing purposes. As explained earlier a bright
image with many details will have sharper edges than an equally sharp paler
image with few details.

The method works very well with respect to C1 and C3 but it has problems
determining which is the more defocused between two heavily defocused
images.

Also, two focus functions developed earlier at Cellavision, Focusvalue and
Blurvalue were used. Focusvalue gives reliable and sharp peaks while blur-
value has the characteristics of an absolute focus metric giving roughly the
same value for focused images with different image content. In Fig. 3.2 the
six chosen focus functions are applied to the images series that contain the
images presented in Fig. 1.3 on page 6. The red lines with + signs contain
image A, the blue with dots contain image B, the green lines with rings con-
tain image C, and the black lines with crosses contain image D. The peaks
are generally correctly positioned on the best focused image (with z−f = 0).
All functions except the wavelet based function have some difficulties with
the series containing image A due to the low level of details in these images.
The green color layer is used in all cases except the wavelet based where a
mean of all color layers is used.

Because the WBC is higher and bigger as was shown in section 1.4, the
image (in a series of images taken at different distances z) with the highest
global contrast doesn’t necessarily have the highest contrast at the WBC.
While the difference is rather small, it is still important as the WBC is the
important part of the image. Also, given both the contrast in the WBC and
the global contrast, one can draw conclusions on the direction of defocus
according to Section 1.4. To address this, four of the features selected in
this section are also applied to an rectangle around the largest WBC in
the image. The Wavelet based measure and the Blurvalue are not used as
they need a larger area to work properly. The area of this rectangle is also
included as a feature for the purpose of normalizing the measurements.
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Figure 3.2: The six focus functions chosen to measure contrast level. All
applied to the green layer of the images in Fig. 1.3. The red lines with +
signs contain image A, the blue with dots is contain image B, the green lines
with rings contain image C, and the black line with x’es contain image D.
The images are shown in Fig. 1.3 on page 6
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3.1.2 Directional features

As was described in section 1.4 the different color layers in the image are
focused at different distances z. This can be used to determine the direction
of defocus. As noted in section 3.1.3 the variance is already calculated for
the different color layers as part of the content features. This could very well
give the SVM enough input to tell direction of defocus. However, a method,
DirValue, already developed at Cellavision and used in the current system
as a hint to the direction of defocus, is included as a feature, even though it
doesn’t work reliably by itself. This is because it may work more robustly
when combined with information from the other features.

3.1.3 Content features

The following features try to characterize the content of the image, giving
the SVM a chance to normalize the measurements in the previous sections.
These can be divided into two groups, those that depend on a segmentation
of the image, and those that work on the whole image. Together with a
team from Cellavision, a list of possible features was created.

• Mean intensity for the whole image

• Mean intensity for the background

• Mean intensity for the RBCs

• Mean intensity for the WBCs

• Images standard deviation, STD, for the whole image, calculated as

STD =
√ ∑

allpixels

(pixelvalue−meanpixelvalue)2.

• STD for the background

• STD for the RBCs

• STD for the WBCs

• Number of pixels occupied by RBCs

• Number of pixels occupied by WBCs

All brightness and variation measures are calculated for all three color layers.
Initially the number of RBCs and the number of WBCs were also included in
the list, but these features proved to be too difficult to implement robustly
so they were taken out. The problem was quite simply that with a great
level of defocus two adjacent RBCs, or WBCs, melt together and form one.
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Separating these in a robust way is quite a hard problem to solve and was
neglected due to time limitations, and due to the fact that satisfactory results
were reached without using these features. The image standard deviations
could very well be regarded as contrast features, but they are inferior as
such to the ones selected in that section. However, they are important when
characterizing the image content and that is why they are included in this
section.

3.2 Image segmentation

Several of the items in section 3.1.3 depend on that the computer knows
which pixels represent RBCs, WBCs and background. Before they can be
calculated an image segmentation has to be done. The ambition is to create
three binary masks for pixels containing the background, the RBCs and the
WBCs respectively. The cytoplasm, which is the part of the WBC that is
not the core, is not to be included in these masks and neither is dirt nor color
stains. The method has to be robust enough to handle heavily defocused
images. In the rest of this section, WBC will refer to the core of the WBC.

First, let’s look at some basic characteristics of a typical image. In Fig. 3.3
the histograms for the images in Fig. 1.3 are shown. On the x-axis is the
intensity of the green color layer and on the y-axis the number of pixels with
intensity x. The big peak to the right represents the background, which is
the lightest object. The smaller peak next to it is from the RBCs. In sub
image B this peak has two peaks due to the intensity difference between the
center and the perimeter of the RBCs. The small lump around x = 40 is the
WBC. The pixels that lie between the RBC peak and the WBC peak is either
the cytoplasm, dirt, or color stains (as in sub image C). The cytoplasm has
very similar colors to the RBC and it is sometimes hard, or even impossible
using no spatial information (e.g. closeness to the core), to segment the two
from each other.

Next, let’s make an analysis of how the colors vary in the different parts of
the image. In Fig. 3.4 B is a plot of how the different color layers vary along
the line in Fig. 3.4 A. The red solid line represents the red color layer, the
green dash-dot the green color layer and the blur dotted line the blue color
layer. Notice how the blue color layer varies less than the others and also
that the green color layer has a lower intensity than the blue only for pixels
in the WBC. Sub image C shows how the intensity of the green color layer
minus the intensity of the blue color layer varies along the line in sub image
A.

This opens up for segmenting the WBC in a fast and simple way; through
subtracting the blue color layer from the green and then threshold at zero.
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Figure 3.3: Histogram for the images in Fig. 1.3
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Figure 3.4: Analysis of how the color components vary in different parts
of the image. The red solid line represents the red color layer, the green
dash-dot the green color layer and the blue dotted line the blue color layer.
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Figure 3.5: Plot of the intensity of the blue color layer versus the green.

As it turns out, this doesn’t work for all types of WBC and a more advanced
approach has to be used.

After analyzing plots of the RBC color space the following approach was
used. If one plots the intensity of the blue color layer against the green one
will get the result illustrated in Fig. 3.5. Maximum separation of the WBC
from the rest of the image is achieved if the pixels are projected from the
blue green color space onto a vector perpendicular to the direction from the
RBCs center of mass to the background’s center of mass.

With these three findings a segmentation algorithm was composed that
works robustly, but not perfectly, for all images in the data. This algorithm
works in the following steps.

First a rough estimate of the WBC is made by thresholding the difference
between the green and blue color layer at zero. This result is then smoothed
and isolated pixels removed.

Next the WBC-pixels are removed from the image and the background is
separated from what remains through thresholding the green color layer at
a threshold value found using Otsu’s method. Now remains only to separate
the RBCs from trash and other oddities. This is done by finding the most
frequent intensity (this will be in the middle of the RBC peak), and then
using all pixels that have intensities that are higher or slightly lower. This
way trash that has a lower intensity is filtered away. The cytoplasm, how-
ever, will in many cases still be included as it often has the same intensity
as the RBCs.

After these initial estimates the more thorough approach described above
is used to pinpoint better which pixels describe the WBC. At this stage
the WBC estimate is reasonably accurate, but in some cases part of the
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cytoplasm is still included. The pixels describing the WBC are therefore
separated again using a threshold again found with Otsu’s method. The
result is then smoothed and noise is removed. At this stage the WBC
estimate is quite accurate and to reduce cytoplasm influence on the RBC
mask all pixels in a surrounding of the WBC are said to be non RBC pixels.
Some pixels that describe RBCs are thus wrongfully removed but, more
importantly, large parts of the RBC mask that actually was cytoplasm is
removed. Finally, also the RBC mask is smoothed and isolated pixels are
removed.

3.3 Calibrating and training the Support Vector
Machine

After selecting and extracting features the work on calibrating and training
the SVM began. A complete system was constructed that loaded the images,
made the segmentation, extracted features, and then trained a SVM on one
part of the material and tested it on the other part. This way an improve-
ment in one part of the algorithm could be easily evaluated. Initially, for
example, there were several problems with creating a robust segmentation
algorithm and this was instantly reflected in the success rate of the SVM to
classify the unknown images correctly.

The database that initially was trained and tested on, Database1, consists
of 4902 images in 248 series. Each series consist of 19 images of the same
object, with distances to focus

(z − f) = [4.5, 4, . . . , 0.5, 0,−0.5, . . . ,−4,−4.5]µm.

Series were selected that contain as many of the variations as possible ac-
cording to the list in section 1.4. The only restriction is that the series used
all contain one or more WBC. This was done to make it easier to create a
robust segmentation algorithm, see section 3.2 on page 26, and is something
that has to be addressed should the method be used in real applications.
The images were captured in the following way: Several images of the same
object were captured at various distances, z. Then the contrast was mea-
sured using ”focusvalue”, see Section 3.1.1. Doing this the outer perimeter
of the image was disregarded to emphasize the part of the image that con-
tains the WBC. The image with the highest contrast was selected as focused
and images at distances (z − f) = [4.5, 4, . . . , 0.5, 0,−0.5, . . . ,−4,−4.5]µm
were saved with a label showing how defocused they were. All images have
480 by 640 pixels.

When training and calibrating a SVM one always needs to keep in mind if
a misclassification in one direction is worse than one in the other direction.
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In this case it is considered worse if the auto focus algorithm classifies a
defocused image as focused than the other way around. This is because the
next step in the system, the WBC-classifier, will not function correctly if it
receives a poorly focused image. If the focus metric, on the other hand, does
not recognize a focused image as focused, the process is still in the hands of
the auto focus routine and can be dealt with.

After having gone through all images and extracted the features, the next
step was to normalize the data. This is done to increase the numerical
stability of the method, and to prevent features with large numerical values
to dominate over those with small. The data used for training was linearly
scaled between 0 and 1. The data used for testing is then scaled using the
same method. For example, let’s say that one feature in the training data
was scaled from [10, 20] to [0, 1]. If the same feature in the test data lies
between [11, 19] it will be scaled to [0.1 , 0.9]. After this the calibration of
the SVM could begin. Two different kernels types were evaluated, the radial
basis function kernel, KRBF

KRBF (xi,xj) = e−γ|xi−xj|2 (3.4)

and polynomial kernels, Kpoly

Kpoly(xi,xj) = γ(xi · xj)d (3.5)

of dimension d = 1 . . . 7. For each kernel there are two variables that can be
adjusted, the C variable from equation (2.19), and γ from equations (3.4)
and (3.5). Also, it is possible to put weights on C to penalize outliers from
one class higher than outliers from another. The testing was done so that
for a certain kernel and certain choice of weights, different combinations of
C and γ were tried in a logarithmical gridsearch. Thus all combinations
of C = 2a,a+1,...,a+n and γ = 2b,b+1,...,b+m were tried where, a, b, n and m
were chosen to well cover the values that generated the best results. For
all these tests a cross validation method was used. The data was divided
into five parts where four were used to train on and the fifth to test on.
This was repeated five times and the mean result was used to get a measure
on how good a certain choice of parameters and kernel was. Also, before
the data was divided into these five parts, it was rearranged randomly so
that data from all slides was in each of these five parts. The reason for
this is illustrated with an example: If there were a total of 20 series with
exceptionally low contrast in the whole database, and these all went into
the same fifth, the SVM would have a hard time classifying these correctly
as there would be no training examples in the other four fifths.

Carrying out these tests a way to compare results was needed. It was decided
that for the two class problem a defocused image being classified as focused
is ten times worse than the other way around. For the multi class problem
the following was decided:
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• Being one step wrong is penalized with one point. Being two or more
with two points.

• If a defocused image is classified as focused the penalty is multiplied
by ten.

• If a focused image is classified as defocused the penalty is multiplied
by five.

For example: a image with (z−f) = 0.1µm that is classified as focused gets
twenty point penalty while a image with (z − f) = 0.2µm that is classified
as (z − f) = 0.15µm only gets one point penalty.

The construction of these rules was based on the idea that a focused image
should be captured on the second try. Therefore it doesn’t matter if the
image is classified two or four steps wrong. It is better, though, if it classifies
only one step wrong as the next image might be focused anyway due to
vibrations and uncertainties in the system. The second item is already
explained and violation is heavily penalized. The third item was added
because if a focused image is falsely classified, the system will make a detour
and can earliest find focus in three steps.

After testing a number of images each misclassified image is penalized as
described above, the penalties are added together and then divided with the
number of images in that test run. This way a scalar measurement, which
will be referred to as the error value, is created that indicates how good the
method works. An error value of 1 means that, in average, all images were
misclassified one step.

3.4 Reducing the number of features

After finding out which kernel and which choice of parameters works best a
reduction of the number of features began. The reason for doing this is that
some features probably don’t provide any useful information and removing
these can improve the results. Also, the speed of the process is improved
if fewer features have to be extracted and put into the SVM. In particular,
if all segmentation depending features could be removed, the speed and
robustness of the method could be improved significantly. When doing the
features reduction Database1 was used.

Preferably, one would like to try all combinations of all 65 features. This
would mean testing

265 =
65∑

k=0

65!
k! (65− k)!

≈ 4 ∗ 1019
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combinations. Testing one combination requires 3 seconds on the PC de-
scribed in Section 1.1, and needs to be done for the five divisions of data
and for at least 5 by 5 choices of C and γ around those values that are op-
timal when using all features (the last is done because the optimal choice of
parameters shifts when using fewer features). Doing this would take 5∗1014

years and instead an iterative approach has to be used.

First, three tests were done. A reduction analysis, an addition analysis and
a sensitivity analysis.

The reduction analysis was done as follows. Beginning with all features,
one by one was temporarily removed and the error value was calculated
using the other 64 features. The feature that, when it was removed, allowed
the remaining features to generate the smallest error value, was regarded
as the least valuable feature and was permanently removed. The remaining
64 features were then processed in the same way removing one feature at a
time until only one remained. This process required evaluation of roughly
65 ∗ (65 + 1)/2 = 2145 combinations and was done in ≈ 9 days.

The addition analysis worked in the opposite way. Beginning with only one
feature, the one that generated the smallest error value when used by itself
was kept. Then the feature that, together with the ones that were already
chosen, generated the smallest error value, was added. This was repeated
until all 65 features had been added one by one. This process requires the
same number of combination as the reduction.

The sensitivity analysis evaluated the features by measuring how sensitive
the error value is to variations in that feature. First, the training was done
as usual using all features. Then, one at a time, the features in the test
data were increased with one standard deviation of that respective feature.
The error value was then calculated with the modified features, and this was
repeated for all 65 features. If, for example, the error value isn’t affected
when a feature is changed, this feature is probably not very important to the
performance of the system. It might, however, be the case that two features
provide similar but crucial information and while changing one doesn’t have
a great impact changing both would have. These kinds of connections be-
tween features are not found with any of the methods used and no account
could be taken of them.

In Fig. 3.6 are plots of the addition and reduction analyses. It is obvious that
all 65 features do not seem to be necessary. The minimum error value for
the reduction analysis is 0.1703 when using 38 features, and the minimum
error value for the addition analysis is 0.1779 when using 46 features. In
Fig. 3.7 is a plot of the sensitivity analysis. Drawing conclusions from this
material is quite difficult. One thing is that the optimal number of features
seems to be be between 38 and 46. Also, if one compares the features sets
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Figure 3.6: Plots of how the error value varies with the number of features
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Figure 3.7: Plot of a how great impact a feature variation has on the result
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from the reduction and addition analyses that generated the best results
two things become evident.

First, the number of features from each color layer is almost the same in
both cases, and also evenly distributed between the different color layers.
There are approximately 11 features from the red, green, and blue color
layers and around 10 features that are based on the mean color layer or
binary information.

Secondly, the kind of features used is not the same. The addition scheme
prefers more content features, especially mean intensities while the reduc-
tion prefers contrast features. There is a particular big difference in the
WBC contrast section with 3 features in the addition scheme and 11 in the
reduction. Se appendix C a for a complete table of which category and
color layer the selected features belong to for the respective analyses. Also,
a list of 38 features that was generated with a random approach, which is
described below, is presented.

These differences indicate that the content features can be used in small
numbers to get a rough result, while contrast features are needed to reach
the top performance. Also, given enough contrast features, they contain in
them much of the information given by the content features.

Next, I try to use the results from the sensitivity analysis to further un-
derstand which features are important. Let’s call the y-values in Fig. 3.7
sensitivity numbers, SN’s. Two sets of 20 features are selected.

Set A is selected in the following way: Most features can be put into groups
where the same calculation is applied to the three color layers, or even four,
including the mean of all color layers. There are 17 such groups containing a
total of 60 features. The other 5 features do not fall into one of these groups
as they are applied either only to a mix of color layers or to a binary image.
The features from each of these groups with the highest SN is selected for
set A. Also features ”Wavelet”, ”mangefokus” and ”area RBC” are selected
from the remaining five features as they have significantly higher SN’s than
the other two. Set B contains the twenty features that have the highest
global SN.

These sets will now be compared with two other sets. Set C that contain
the 20 best features from the reduction analysis and set D that contain the
twenty best features from the addition analysis. Now let three new sets, sets
E, F and G be defined as

E = A ∩ C ∩D,

F = B ∩ C ∩D,

G = (A ∪B) ∩ (C ∪D).
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Feature set Mean error value STD
Random 0.24 0.026
Set E 0.22 0.016
Set F 0.22 0.018
Set G 0.20 0.014

Figure 3.8: Results from the random feature analysis approach

E thus contains 5, F contains 7, and G contains 20 features. The features
selected this way are assumed to be more important than the others, and
to verify this a fourth test is done. The features in sets A to G are listed in
appendix D.

It is assumed that 38 is a good number of features as this is the number for
which the best result is achieved so far (in the reduction analysis). The idea
is to randomly select 38 features from the original 65, calculate the error
value from this selection and then repeated 1500 times. This test will then
be run three more times, each time fixating the features from set E,F, and
G and then adding randomly selected features (from the remaining) to get
a total of 38 each time. If the sets contain well chosen features, the mean
error value for these runs will be lower than when randomly selecting all
features. To speed things up the cross validation method was not used but
the SVM was only once trained on four fifths of the data and tested on the
last one fifth.

The results of this test are presented in Fig. 3.8. In the first row all 38
features are randomly selected and in the following the features included in
the mentioned sets are fixated. Using the features in Set G together with 18
randomly selected is thus in average 17 % better than randomly selecting all
features. Considering that only 1500 combinations have been tried, and that
the number of possible combinations are in the vicinity of 1012 to 1018 it is
quite remarkable that the standard deviation is so low. This indicates that
many features are heavily correlated and thus provide similar information.

To generate a final list of features the same kind of test was run again 500
times for Set G using the more thorough cross validation method. The list
generated this way that gave the best result had an error value of 0.1826
which is good, but not better than the best results from the reduction and
addition analyses. This list is also put into the same kind of table as the
best feature sets from the addition and reduction analysis in appendix C.
Notice how also in this case the features are evenly spread out among the
three color layers.

The best results from the tests done in this section was thus achieved when
using the 38 features that generated the lowest error value in the reduction

35



analysis. This set will be used in the next chapter and will be referred to as
the ”reduced feature set”.

This concludes the features selection section. Not enough has been done
to be able to say exactly which nor how many features are needed for an
optimal solution, or even with certainty which kind of features or feature
groups are important. The items in the list below are therefore not facts
but rather assumptions based on what I have observed.

• An even distribution from the different color layers seems to be pre-
ferred.

• The optimal number of features is less than 65 and larger than 20.

• The features in Sets E, F and G contain important information.

There is a lot more that can be done here but was neglected due to time
restrictions. One thing is to make a correlation analysis between the features
and thus reducing them more methodically than what has been done here.
Another thing is to redo the reduction and addition analysis while fixating
the features in sets E,F and G.
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Chapter 4

Validation and Results

In this chapter the method developed in the previous chapter will be tested
on different databases. The results are presented in Fig. 4.1 and more de-
tailed in Figures 4.2 to 4.10. The specifications of the databases used are
provided in the text but also repeated in appendix B.

4.1 Test preliminaries

The two problems formulated in the problem description were initially treated
separately, but as the work proceeded two things became evident: The multi
class problem is possible to solve with such satisfactory results that this
method will be implemented in the system used at Cellavision AB. Also,
when solving the multi class problem one effectively solves the two class
problem as well, and calibrating parameters for best performance of the
multi class problem gives satisfactory results (however not optimal) also for
the other. Therefore, the focus when testing was on solving the multi class
problem.

After testing the different kernels, weights, and parameters according to
Section 3.3 it was concluded that a RBF kernel with C ≈ 28 and γ ≈ 2−2

gave the best results (closely followed by a 2 dimensional polynomial kernel).
The outliers in the different classes were penalized equally, i.e. no weights
were used. Depending on the choice of features, normalization method and
which database was used the optimal values for C and γ varied. These
parameters were calibrated for each test so that C = 2n, γ = 2m gave the
best results for n ∈ N,m ∈ N , but not for n ∈ <,m ∈ < which most likely
would improve the results further.
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4.2 Method validation

Up to here, only Database1 has been used. After achieving satisfactory
results working only with this material additional testing was done. If this
system is to be useful in real applications a common training data has to
work for test data from different laboratories. The training data will have
to vary according to the list in Section 1.4 while the test data will vary to a
smaller extent. This is because a certain lab always uses the same smear and
stain methods. The variations in a certain test data will thus be a subset of
the variations in the training data.

To properly evaluate the method testing data was collected from a single
laboratory. This data will be referred to as Database2. Database2 consists
of 12825 images in 513 series collected with the DM96. Each series consists
of 25 images, with distances to focus

(z − f) = [6, 5.5, . . . , 0.5, 0,−0.5, . . . ,−5.5,−6]µm.

Data with greater level of defocus than in Database1 was included to see
how the classifier reacts to this. The best case is that the heavily positively
defocused images all classifies in the category (z − f) = 4.5µm, and the
heavily negatively in the (z − f) = −4.5µm. The second best is that they
are all classified as |z − f | = 4.5µm which then could be used in a control
algorithm as ”do not trust the classifier if images fall into this group”. The
worst case is if the heavily defocused images classifies in all groups, in which
case the method basically will be useless.

As it turned out, the results got significantly worse when the SVM was
trained on the Database1 and tested on Database2. This was believed to
be because the Database1 is too small and because it was collected with
the DM8 (as oppose to Database2 which was collected with the DM96).
Therefore a third database, Database3 was collected. This database is col-
lected with the DM96 and consists of 13129 images in 691 series. Each series
consists of 19 images, with distance to focus

(z − f) = [4.5, 4, . . . , 0.5, 0,−0.5, . . . ,−4,−4.5]µm.

The images in Database3 also vary, just like Database1, according to the
list in Section 1.4 on page 4.

4.3 Results

In the table below the error values for 12 different tests are presented. In the
first row Database1 has been used both for training and testing according to
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Database Train/Test All fea-
tures

Reduced
features

Seg. indepen-
dent features

Database1/Database1 0.197 0.170 0.261
Database1/Database2 1.163 1.094 1.327
Database3/Database2 0.276 0.275 0.597
Database3/Database3 0.193 0.198 0.226

Figure 4.1: Error values for the multi class problem using different Databases
and different choices of features

the crossvalidation principle described in Section 3.3. In the second row the
SVM was trained on Database1 and tested on Database2. In the third row
it was trained on Database3 and tested on Database2. In the fourth, it was
trained on three fourths of Database3 and tested on the last fourth. In the
first column all features are used. In the second column the reduced feature
set from Section 3.4 is used and in the third only segmentation independent
features are used. For a complete analysis of which method to use a similar
table should also be made with the execution times. This has not been done
in this thesis, but is something that needs to be done to be able to match
method accuracy versus method speed properly. Here is only noted that the
results in column two are a little bit faster to calculate than those in column
one, and that those in column three are much faster to calculate than the
two others. This is because when calculating the results in column three the
image does not have to be segmented.

The following are important observations from Fig. 4.1.

• When using the reduced feature set the results improved by 14% in
relation to row1.

• However, the reduced feature set (that was extracted using Database1)
does not improve results when used on Database3.

• When testing on Database2, training the SVM on Database3 gives
much better results than when training it on Database1.

• Using only segmentation independent features causes a 20 − 30% de-
crease in method performance.

These observations will be discussed in the following sections where the
results are looked at more closely, one row at a time, beginning from the
top.
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Figure 4.2: Results from Training/Testing on Database1 using the reduced
feature set

4.3.1 Database1/Database1

The most important conclusion from this test is that there is a potential
for improvement of the method by selecting which features to use. The
error value decreased with 14% from column one to two, and like stated in
Section 3.4, there is more to be done with regards to selecting which and
how many features to use. This might lead to an even lower error value.
When using features that do not depend on the segmentation, the result
got 32% percent worse compared to column one. This appears like a severe
performance decrease, but the results might be considered good enough to
use anyway. The best result in row 1 was thus received when using the
reduced feature set. To understand this result better, a more detailed result
is illustrated in Fig. 4.2. The results are satisfying in many ways. First of
all, only 0.15% of the defocused images are classified as focused, and these
are only from the smallest level of defocus. Second, a much as 95.3% of the
focused images are classified as focused. All together, 99, 4% of the images
are classified less or equal to 0.5µm wrong.

What might not be obvious in Fig. 4.2 is that the precision is much better for
the less defocused images. To illustrate this, the plots in Fig. 4.3 were made
from a subset of the data used in Fig. 4.2. Only images with |z−f | ≤ 2.5µm
were used. Note how almost 95% of the images are classified correctly and
how virtually no images are misclassified more than 0.5µm.

Finally, for the results from the third column in row 1 cf. Fig. 4.4. The
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Figure 4.3: Results from Training/Testing on images with |z − f | ≤ 2.5µm
from Database1 using the reduced feature set. Note how over 90% of the
images are classified correctly and how virtually no images are misclassified
more than 0.5µm.

accuracy is not as good as in Fig. 4.2 but the decrease could perhaps be
accepted due to the increase in speed this allows for.

4.3.2 Database1/Database2

When training on Database1 and testing on Database2 two things were to
be evaluated. How does the classifier react when it is given more defocused
images than it has been trained on, and how well can it classify the images
that have the same degrees of defocus as the images in the training set.

The testing showed that the heavily defocused images with (z − f) =
[6, 5.5, 5,−5,−5.5,−6]µm were all classified as (z−f) = 4.5µm. The heavily
negative defocused images were thus classified as positively defocused. This
was not the best case scenario, but not the worst either, according to the
criteria put forward in Section 4.2.

Looking only at images with

(z − f) = [4.5, 4, . . . , 0.5, 0,−0.5, . . . ,−4,−4.5]µm

the error value using all features was 1.163, which is a significant decrease
from the results in the previous subsection. Also here using the reduced
feature improves the results somewhat, but not as much as in the previous
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Figure 4.4: Results from Training/Testing on Database1 using only the seg-
mentation independent features. The accuracy is not as good as in Fig. 4.2
but the decrease could perhaps be accepted due to the increase in speed this
allows for.

section. Using only the segmentation independent features, the results got
14% worse. In Fig. 4.5 are the result details provided when using the reduced
feature set. Note the significant decrease in overall performance compared
to Fig. 4.2

4.3.3 Database3/Database2

When training on Database3 and testing on Database2 the results improved
significantly compared to the previous section. This time the majority of
the heavily defocused images with (z − f) = [6, 5.5, 5]µm were classified
as (z − f) = 4.5µm, and the ones with (z − f) = [−5,−5.5,−6]µm as
(z− f) = −4.5µm. This opens up for the possibility to train the method to
distinguish between even more defocused images.

Looking only at images with

(z − f) = [4.5, 4, . . . , 0.5, 0,−0.5, . . . ,−4,−4.5]µm

the error value was 0.275 which is a vast improvement from Section 4.3.2.
Also this time the best performance was achieved using the reduced feature
set, but the difference is neglectable. Using the segmentation independent
features resulted in a 62% performance decrease. In Fig. 4.6 are the re-
sult details provided when using the reduced feature set. Note the overall
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Figure 4.5: Results from Training/Testing on Database1/Database2 using
the reduced feature set. Note the significant decrease in overall performance
compared to Fig. 4.2

performance improvement compared to Fig. 4.5. Also note how ≈ 7% of
the positively defocused images with (z − f) = 0.5µm are classified as fo-
cused. The overall performance increase can most likely be explained by
two things; that Database3 is bigger than Database1, and that Database2
and Database3 are collected using the DM96 while Database1 is collected
with the DM8.

The misclassified images (with (z − f) = 0.5µm) should be investigated
manually as images from this category sometimes are quite well focused on
the WBC, and then good enough to use. Surprisingly many of the focused
images (99%) are correctly classified.

Finally, for the results from the third column in row 3 cf. Fig. 4.7. There
is a significant decrease in accuracy compared to Fig. 4.6, but again, this
could perhaps be accepted due to the increase in speed.

4.3.4 Database3/Database3

This is the results of the final series of tests that was done in this thesis.
It was done so that the SVM was trained on 3/4 of the data in Database3
and tested on the final fourth. The results from these tests, when using
all features, are very similar to those in Section 4.3.1 and this is not so
strange due to the similarity of the data used. Still, it was good to see that
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Figure 4.6: Results from Training/Testing on Database3/Database2 using
the reduced feature set. Note the overall performance improvement com-
pared to Fig. 4.5. Also note how ≈ 7% of the positively defocused images
with (z − f) = 0.5µm are classified as focused.

Figure 4.7: Results from Training/Testing on Database3/Database2 using
only the segmentation independent features. There is a significant decrease
in accuracy compared to Fig. 4.6, but again, this could perhaps be accepted
due to the increase in speed.
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Figure 4.8: Results from Training/Testing on Database3 using the all fea-
tures.

the same method worked well on both databases. There was a difference,
though, when using the reduced feature set. The features in this set were
selected when testing and training on Database1. The ambition was that
this selection would improve the SVM performance on any data but it is
easy to conclude from Fig. 4.1 that this is not the case. The results from
the features selection section (Section 3.4) are hence not good to use on
an arbitrary database. Also, when using the segmentation independent fea-
tures, there is a difference from when Database1 was used. This time the
performance only decreased with 17%, and these results border on being
good enough to use. Detailed results when using all features are in Fig. 4.8,
and when using segmentation independent features in Fig. 4.9

If the gain in computational time is big enough when using only segmenta-
tion independent features, one could adopt a two step approach, where, if
the first step was not quite right, another one is taken. Looking at Fig. 4.9
there is over 99% chance of being within 1.5µm from focus. From there the
accuracy is very good, even if only the segmentation independent features
were used. This is illustrated in Fig. 4.10.
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Figure 4.9: Results from Training/Testing on Database3 using segmentation
independent features. The performance is not as good as when using all
features but the difference is small. Note that no images are falsely classified
as focused.

Figure 4.10: Results from Training/Testing on images with |z− f | ≤ 1.5µm
from Database3 using segmentation independent features. Note how 94% of
the images are classified correctly and how virtually no images are misclas-
sified more than 0.5µm.
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Chapter 5

Conclusions and future work

This thesis has showed that it is possible to create an absolute focus metric
in blood smear images. A defocused image’s distance to focus, as well as
direction of defocus, can be calculated with good accuracy. Using test data
with distances to focus between −4.5µm and 4.5µm, 99.5% of the images’s
distances to focus were estimated less or equal to 0.5µm wrong while over
85% were estimated completely correctly. A 0.5µm defocus is borderline to
what the human eye perceives as defocused. Also, vibrations and plays in
the machine cause noise of almost this level. A 0.5µm misclassification does
therefore not necessarily result in that the next image is defocused. Using
test data with distances to focus between −2.5µm and 2.5µm, 99.9% of the
images’s distances to focus were estimated less or equal to 0.5µm wrong and
94% were estimated completely correctly. The accuracy of the method thus
increases when the images are only slightly defocused.

This method opens up for new ways of capturing a focus image in an auto
focus system. After capturing a test image, the computer can tell the mi-
croscope how far to move in order to make sure that the next image is well
focused. If the distance is slightly misjudged an additional step with better
precision can be taken.

In order to get the best accuracy from this method the images have to
be segmented and features calculated for the different parts of the image.
However, a good accuracy can be achieved without using these segmentation
depending features. Doing this would speed up the image evaluation process
significantly. The exact time gain remains however to be investigated.

Concerning the data used for training, the larger Database3 worked better
than the smaller Database1 when classifying images from Database2. This
can be explained by the fact that it is larger, but also because Database1
was collected with another machine that the two others. Therefore to train
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the SVM with data from the DM8 and then classify images from the DM96
does not seem to work, but the opposite remains to be tested.

When it comes to future work, there is room for improvements. The follow-
ing are suggestions on further work.

Investigate method computational time for different selections of features,
and decide if it is worth the extra time is takes to make the segmentation and
extract the segmentation depending features. If the segmentation depending
features are to be used a robust segmentation that deals with images with-
out a WBC needs to be made. Then continue the feature reduction analysis
and conclude which groups of features are necessary and vital for good per-
formance. These features should give good results on different databases,
not only on the one used when selecting them. Also, make sure that a SVM
trained on data from one machine can classify data from another machine
of the same kind successfully. Further, fine tune features, in particular the
Wavelet based contrast feature, calibrate C and γ more carefully and inves-
tigate how many level of defocus should be included in the data used for
training.
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Appendix A

List of features

Content features

Nr: Feature Layer Impact
1 Mean intensity, whole image r
2 Mean intensity, whole image g
3 Mean intensity, whole image b
4 Mean intensity, whole image mean
5 Mean intensity, background r
6 Mean intensity, background g
7 Mean intensity, background b
8 Mean intensity, background mean
9 Mean intensity, RBCs r
10 Mean intensity, RBCs g
11 Mean intensity, RBCs b
12 Mean intensity, RBCs mean
13 Mean intensity, WBCs r
14 Mean intensity, WBCs g
15 Mean intensity, WBCs b
16 Mean intensity, WBCs mean
17 Standard deviation, whole image r
18 Standard deviation, whole image g
19 Standard deviation, whole image b
20 Standard deviation, background r
21 Standard deviation, background g
22 Standard deviation, background b
23 Standard deviation, RBCs r
24 Standard deviation, RBCs g
25 Standard deviation, RBCs b
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26 Standard deviation, WBCs r
27 Standard deviation, WBCs g
28 Standard deviation, WBCs b
29 Number of pixels occupied by RBCs binary
30 Number of pixels occupied by WBCs binary

Global contrast features

Nr: Feature Layer Impact
31 Waveletbased measure mean
32 Blurvalue r
33 Blurvalue g
34 Focusvalue r
35 Focusvalue g
36 Focusvalue b
37 Derivation based measure r
38 Derivation based measure g
39 Derivation based measure b
40 Derivation based measure mean
41 Vollath’s F4 r
42 Mix of Vollath’s F4 and Vollath’s F5 r
43 Vollath’s F4 g
44 Mix of Vollath’s F4 and Vollath’s F5 g
45 Vollath’s F4 b
46 Mix of Vollath’s F4 and Vollath’s F5 b
47 Vollath’s F4 mean
48 Mix of Vollath’s F4 and Vollath’s F5 mean

WBC contrast features

Nr: Feature Layer Impact
49 Focusvalue r
50 Focusvalue g
51 Focusvalue b
52 Derivation based measure r
53 Derivation based measure g
54 Derivation based measure b
55 Derivation based measure mean
56 Vollath’s F4 r
57 Mix of Vollath’s F4 and Vollath’s F5 r
58 Vollath’s F4 g
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59 Mix of Vollath’s F4 and Vollath’s F5 g
60 Vollath’s F4 b
61 Mix of Vollath’s F4 and Vollath’s F5 b
62 Vollath’s F4 mean
63 Mix of Vollath’s F4 and Vollath’s F5 mean
64 Size of the box around the WCB in which

the WBC contrast features are calculated
binary

Directional feature

Nr: Feature Layer Impact
65 Dirvalue b and g
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Appendix B

Databases

Database1

4902 images in 248 series collected with the DM8. Each series consist of 19
images of the same object, with distances to focus

(z − f) = [4.5, 4, . . . , 0.5, 0,−0.5, . . . ,−4,−4.5]µm.

Series selected from different laboratories.

Database2

12825 images in 513 series collected with the DM96. Each series consist of
25 images, with distances to focus

(z − f) = [6, 5.5, . . . , 0.5, 0,−0.5, . . . ,−5.5,−6]µm.

Series selected from the same laboratory.

Database3

13129 images in 619 series collected with the DM96. Each series consist of
19 images, with distances to focus

(z − f) = [4.5, 4, . . . , 0.5, 0,−0.5, . . . ,−4,−4.5]µm.

Series selected from different laboratories.
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Appendix C

Feature tables
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Reduce  (error v. 0.170) Add  (error v. 0.178) Random  (error v. 0.183)

r g b o r g b o r g b o

brightness tot 1 brightness tot 1 1 1 1 brightness tot 1 1

brightness bk 1 brightness bk 1 1 1 1 brightness bk 1 1

brightness rbc 1 1 1 brightness rbc 1 1 1 1 brightness rbc 1 1 1

brightness wbc 1 1 brightness wbc 1 1 1 1 brightness wbc 1 1 1

variance total 1 1 1 variance total 1 1 variance total 1 1

variance bk 1 1 variance bk 1 1 1 variance bk 1 1 1

variance rbc 1 variance rbc 1 variance rbc 1

variance wbc 1 variance wbc 1 variance wbc 1

area rbc 1 area rbc 1 area rbc 1

area wbc area wbc area wbc 1

wavelet 1 wavelet 1 wavelet 1

blurvalue 1 blurvalue 1 1 blurvalue 1 1

focusvalue 1 focusvalue 1 1 1 focusvalue 1 1 1

derivation 1 1 1 1 derivation 1 1 1 1 derivation 1 1 1 1

vollath F4 1 1 vollath F4 1 1 1 vollath F4

mix F4 and F5 1 mix F4 and F5 1 1 1 1 mix F4 and F5 1

focusvalue wbc 1 1 1 focusvalue wbc 1 1 focusvalue wbc 1 1

derivation wbc 1 1 1 1 derivation wbc 1 derivation wbc 1

vollath4 wbc 1 1 1 vollath4 wbc vollath4 wbc 1

oscar wbc 1 oscar wbc oscar wbc 1 1

size of wbc 1 size of wbc 1 size of wbc 1

dirvalue 1 dirvalue 1 dirvalue 1
Sum: 9 10 11 8 Sum: 10 13 12 11 Sum: 8 11 10 9

 = 38 = 46 = 38

"=segmentation independent" r=red, g=green, b=blue, o=other

"=n/a"

11

Figure C.1: The best features from the reduction and addition analysis
as well as the best 38 from the random analysis approach. Note that the
features in all tables are divided evenly across the three color layers.
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Appendix D

Feature sets

Set A = [2, 5, 10, 14, 19, 20, 24, 27, 29, 31, 32, 36, 40, 46, 47, 51, 54, 61, 62, 65]

Set B = [14, 15, 18, 19, 20, 22, 24, 29, 31, 32, 33, 34, 35, 36, 38, 40, 50, 51, 54, 65]

Set C = [10, 14, 15, 17, 18, 19, 20, 22, 29, 32, 36, 37, 38, 49, 51, 55, 59, 62, 64, 65]

Set D = [5, 13, 14, 16, 20, 21, 22, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 65]

Set E = [14, 20, 29, 36, 65]

Set F = [14, 20, 22, 29, 36, 38, 65]

Set G = [5, 10, 14, 15, 18, 19, 20, 22, 29, 31, 32, 33, 34, 35, 36, 38, 40, 51, 62, 65]
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