Soylent Grid: it’s Made of People!

Stephan Steinbach*, Vincent Rabaud? and Serge Belongie?
!Calit2 and 2Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093, USA

http://vision.ucsd.edu

Abstract

The ground truth labeling of an image dataset is a task
that often requires a large amount of human time and labor.
We present an infrastructure for distributed human labeling
that can exploit the modularity of common vision problems
involving segmentation and recognition. We present the dif-
ferent elements of this infrastructure in detail, in particu-
lar the different vision Human Computational Tasks (HCTs)
and Machine Computable Tasks (MCTs). We also discuss
the impact of such a system on internet security vs. the cur-
rent state of the art. Finally, we present our prototype im-
plementation of such a system, named SOYLENT GRID, on
typical problems.

1. Introduction

A researcher designing and implementing a computer vi-
sion system will often face an initial hurdle of acquiring a
labeled ground truth dataset. Sometimes, a dataset is avail-
able off the shelf, but often the researcher must painstak-
ingly collect and label the data by hand. Due to the large
number of samples required to create adequate sets for train-
ing and testing, this can be a time consuming task.

For the sake of argument, let us consider the example de-
picted in Figure 1, where a researcher is labeling a dataset
for a street sign recognition engine. In this case, the training
data is made up of raw images from which street signs are
first segmented, then labeled according to the isolated char-
acters. This illustrates a common condition: while segmen-
tation and text reading take a person a very short amount
of time (a text labeling task in a recent project of our group
took about 6 seconds per image and human user), that time
(and hassle) grows prohibitively with the size of the dataset.

In order to reduce the labeling time, one available option
is to employ an automated algorithm such as text detection
or Optical Character Recognition (OCR) with thresholds set

*Present address: San Francisco, CA 94116, USA.

Video
Frame

Video
Frame

Dargopn ... | r¥=====-
----- C Person " | Text |
A/ ""OCR | S erson | |a¥ Detector|
; TPerson et
Labeling by
Researcher PerSwmy person
Correction by \'w_/ Y-t)
Researcher Y, 1 OCR |
v \
Labeled Labeled Labeled
Dataset Dataset Dataset
(@) (b) (c)

Figure 1. Example of Distributed Interactive Computer Vision.
Legend: the boxes in the computational flow are rounded if they
involve humans, and dashed if they require a computer algorithm.
(a) When labeling images containing street signs, a researcher can
crop the sign areas from the original pictures and then label them
by hand. (b) On the other hand, by developing a text detector and
an OCR engine, the researcher can greatly reduce the amount of
data he actually needs to label. (¢) We propose to go even fur-
ther in the process and have the researcher only give directives to
many human users distributed on a network. These users would
perform the task for other reasons (e.g. , security) with labeling as
a byproduct.

to have virtually 100% recall (at the expense of precision)
to reproduce, or simulate, the rough sequence of steps in
the labeling task. The researcher can then fill in the gaps
by checking for errors (which is much faster than doing the
task itself) and correcting mistakes (which costs as much as
the original test).

However, the researcher could also take advantage of the
atomic nature of the labeling subtasks. The problem would
now be ideal for an application of a “Distributed Human
Computation” (DHC, [15]) system. A DHC system dis-
tributes a task that is difficult for machines, but easy for
a pool of human volunteers.

Furthermore, having a human being solve a visual recog-
nition problem is a superset of the CAPTCHA paradigm
[21], the now ubiquitous application of Turing tests. In a

RESEARCHER BACK END

has a deployable
set of experiments

COMMERCIALCLIENT \ 9| oo ¥
SOYLENT CPU L.
- interacts with back end H
- serves tasks to frontend |
1

- schedules jobs

takes advantage of the
CAPTCHA service

PARTICIPANTS
Trusted
Advisers
Unwashed Masses

FRONT END

;: - requests tasks from back end
- | - renders tasks for user
- returns results to back end

Figure 2. Structure of a SOYLENT GRID. The users benefiting from our grid can be of two kinds: researchers (needing some information
analysis) and commercial clients (that simply use the Turing test generation service). These providers impose their constraints to the
back end MySQL server by giving their datasets and describing the tasks to be performed by the end users. Next, when a participant
requests a Turing test, the Java front end interacts with the server to get a Turing test and also tests the validity of the provided answers.
Any information input by the participant (like the answer itself or the time taken to answer) is also sent back to the server for statistical

purposes.

CAPTCHA, a user has to transcribe a piece of text that has
been deformed so that it is hard to decipher for a machine,
often used as part of an approval process for access to a web
resource.

The labeling problem can be seen as a more complex
kind of CAPTCHA, where the true answer (or label) is
unknown. Therefore, what we propose is a visual recog-
nition test based distributed infrastructure for labeling. At
the beginning of such a grid computation, a researcher sub-
mits a job. On the other end are the visual tasks that
a user solves for other purposes, like passing a security
check, and thereby provides a certain form of labeling as
a byproduct. Furthermore, what represents a difficult ma-
chine learning problem changes over time. If the newly
proposed CAPTCHA is to take advantage of the forefront
of machine intelligence/computer vision research, our sys-
tem, nicknamed SOYLENT GRID, must accept new tasks
that match the current state of the art.

We will first review some previous work in Section 2. We
will then detail the different elements of a SOYLENT GRID
in Section 3, as well as how to use it and characterize its
behavior. We will finally present in Section 4 some real-life
examples on which SOYLENT GRID is being tested.

2. Prior Work

The spirit of our design reaches back to Turing’s original
imitation game [20]. Rather than focusing on the common
interpretation that there are things that only humans or only
machines can do, we examine the ever growing hazy middle
area where both humans and machines can contribute.

Recent work on breaking popular CAPTCHAs [18,
12, 5] suggests that the current avenue of research into
CAPTCHASs may be drawing to a close: in the quest to
stave off automated cracking algorithms, CAPTCHAs are
becoming too difficult for humans to pass. This trend, as
well as the emergence of new kinds of Turing tests like Mi-

crosoft’s Asirra [14] and CAPTCHA “mashups” such as
HotCaptcha [4], suggests a return to more concrete prob-
lems of machine learning for the design of CAPTCHA
problems as suggested by [16].

Online Machine Intelligence, including Interactive Com-
puter Vision, is also a growing field. Algorithms such as
SEVILLE [9] involve human help in a boosting framework
when necessary to improve the performance of a pattern
recognition system. The use of humans in the loop for var-
ious tasks has a very strong literature in internet security
(CAPTCHA, SpamNet), but also has several antecedents
in machine learning ground truth labeling.

To get humans interested in participating, various types
of delivery mechanisms are used, including CAPTCHAs
themselves, ground truth labeling systems [2] hidden under
a game [22, 23], proofreading [6], or even micropayments
[1]. Also, as in the case of our motivating problem domain,
humans can participate as remote sighted guides to assist
blind individuals [11].

Moreover, Distributed Human Computing itself is still
relatively new, with papers [15] focusing on how to gather
meaningful information from massively distributed sys-
tems, with purely-human based processing distributed ac-
cording to a cost (usually factoring in the “cost” of human
interest). Nonetheless, the infrastructures for parallel com-
puting have been in place for a few decades and the Internet
itself provides a rich substrate to solve computationally in-
tensive problems like signal processing [8] or prime number
cracking [3].

3. Soylent Grid

As depicted in Figure 2, the system is expressed as a
relationship between three groups of human users (Partici-
pants, Commercial Clients, Researchers) and several foun-
dation elements (Front end, Back end, Database). Jobs are
processed by the grid, on datasets, and can be represented

Video Frame

i Algorithmic
V. Dependency
| lstherea i Human
| Istherea | |=—>
——————— streetsign i Dependency
present? | > Machine
' Dependency

3
-
<=

Transcribe a

Segment a
] e D Zone of Text

| ZoneofText {

\ 4

Job
Terminates

Figure 3. Example of a job DAG. This figure details the DAG
of a Street Sign Labeling job in the SOYLENT GRID. Each dotted-
bordered block is actually a task and may be proposed to a machine
or a human participant, assuming its specific human/machine de-
pendencies are met. When all the tasks are complete, the job is
considered done (per frame). For this job, the machine process-
ing option requires that OCR follow segmentation, while a human
participant could complete the last two tasks out of order.

as Directed Acyclic Graphs of Tasks (cf. Figure 3).

3.1. Users

There are three main groups we define as having an in-
teraction with the SOYLENT GRID:

1. Researchers: they define jobs on the back end, submit
data and connect on-line input streams.

2. Clients: they would like to take advantage of the
CAPTCHA or spam filtering capabilities of the grid.

3. Participants: they complete the tasks and can either
be “Trusted Advisers” or “Unwashed Masses”.

A Trusted Adviser (TA) is assumed to provide unequiv-
ocally correct answers. If an unambiguous task is run on
a network of only Trusted Advisers, the SOYLENT GRID
effectively reduces to the same system as proposed in Dis-
tributed Human Computation[15]. There is no confidence
checking with Trusted Advisers, but outliers are still re-
jected as in standard statistical models.

On the other hand, Unwashed Masses (UM) users con-
tribute by completing the CAPTCHA tasks presented by
the SOYLENT GRID. By chaining several tasks together,
some having already been solved and others not, the system

creates CAPTCHASs that can be embedded by clients in
web pages. The tasks that have known answers are treated
as Turing tests, and failing them automatically rejects the
answers given for the unsolved tasks. We do not assume
any sort of cookies or other identity tracking techniques.
For our purpose, each instance of a CAPTCHA request for
the grid represents one unique contribution from some UM
participant. If the Turing tests are passed, the labels given
for the unsolved tasks are accepted into the results database.

Because of the UM contribution of our system, we im-
pose a gentle rule of thumb: no task presented to an UM
participant may take longer than a certain amount of time.
In practice, we choose 10 seconds. What that means is not
that any single task takes no longer than 10 seconds, but
rather that the combination of tasks together takes no longer
than 10 seconds. Tests that empirically are deemed to take
too long can be pulled or divided into simpler problems,
for example, by cropping the image or applying some filter
prior to asking the test question.

In the case where the grid is only composed of Unwashed
Masses participants, and where there is only one job, com-
posed of two CAPTCHA tasks (one known, one unknown),
SOYLENT GRID reduces to reCAPTCHA [7].

This division of participants suggests a spectrum: we
never sit in the case were there is only UM or only TA con-
tribution, but rather employ some hybrid of both in order to
process jobs effectively. TA contribution is expensive: these
people must be employed or volunteer in some way; UM
contribution is cheap, but their responses must be filtered
and tested, and therefore UM contribution is less efficient.

3.2. Tasks

A task is a single operation that is applied to an image as
part of a job. To clarify, the street sign labeler described in
Figure 3 would be a job, while the “Is there a street sign in
this image?” step would be a task.

A task is completed by sampling the response of com-
putational and participant responses to the task. The ex-
act number of samples that are collected, and the balance
between computational and participant responses before a
task may be considered “complete” by the grid is governed
by two metrics, MCT-confidence and task ambiguity.

Machine Computable Task confidence, or MCT-
confidence for short, is a value between 0 and 1 that sum-
marizes the success rate of a machine-based approach to a
given task. This is used to grade or weight the response of
a computational contribution. For example, if for the sign
reading task there are no computational solutions that pro-
vide any correct positive result, the MCT-confidence is 0
and the task can only be completed by human input. For a
MCT-confidence greater than 0, some mix of computational
contribution and human contribution will be used, based
on available computational resources. Confidence depends

— Overall
® + byMachine
== byHuman
Task 1
Task2

% done
% done

Time Time

(a) (b)
Figure 4. Labeling and Active Learning. These simplified plots
describe the case where two tasks are submitted to the grid, the
second one depending on the completion of the first one. While
the amount of data labeled by humans grows linearly over time,
the data labeled by machines can grow differently according to the
algorithms on the SOYLENT CPU. (a) In a strict labeling task, the
quality of the labeling by computers will stall after some time be-
cause of the limitations of the algorithms. (b) In an active learning
paradigm, the computers take advantage of the labeling already
done by humans to improve the efficiency of the underlying algo-
rithms and therefore complete the task sooner.

on the algorithms used and their interaction with the users
(cf. Figure 4).

The task ambiguity refers to the spread of the possible
label distribution. The larger the ambiguity, the more trials
it will take to capture the accurate distribution of correct
labels for this task. For example, when asking to identify the
digit “5” in a blurry picture, a bimodal distribution peaked
on “5” and “S” would reflect the ambiguity of the task.

3.3. Categories of Tasks

We have identified several classes of computer vision re-
lated tasks; we will detail each of them and demonstrate
some security statements. For this purpose we will consider
that the images used in the tasks are 800 x 600, which ap-
proximately translates to A = 5 x 10° pixels. Our goal is to
show how the soylent tasks can compete with CAPTCHAs
[21], for which a random guess of the answer has a probabil-
ity z¢5 ~ 107® (assuming a typical five letter/digit guess)
while an engineered (computational) solution [5] allegedly
succeeds in 5% of the images in the worst case (up to 100%
for certain CAPTCHAs). Some illustrations are provided
in Figure 5.

“Name that Thing”

The first task is related to object recognition. When pre-
sented with a picture, the user needs to identify the compo-
nents in the scene and then answer a question about the con-
tent: “what is this object?”, “what is on the table?”, “what
is the color of the apple?” efc. A toy example could be
to identify a letter displayed on the screen while a more
practical example could be an OCR task or even simply a
CAPTCHA.

In most languages, an average speaker uses a 1000-word
daily vocabulary. When asked for a word describing the
scene, a random guess would succeed with a high probabil-
ity of 1073, An easy way to decrease this success rate, is to
propose an identification task ¢ times consecutively. A ran-
dom guess would then succeed with a probability of only
10~3¢, which competes with CAPTCHAs after three trials.

“Generalized Where’s Waldo”

The next set of tasks concerns object detection and uses a
simpler interface where only clicking is needed. The hu-
man participant is presented with a picture of a scene and
different types of questions are asked using the ability of
the user to locate objects: “click on the car,” “click on the

round object,” “click on two similar objects,” efc.

In order to make this test more secure, and less prone to
successful random guess, the user is actually asked to click
several times on an object or to draw inside it. Once enough
pixels have been selected, the task is passed. This method
bears some resemblance to [23].

Consider as an example problems of the following form:
“which pictures depict the same object?” This example is
used in [14]. For such a test, let us assume 16 images are
displayed in a square grid, with £ of them depicting the
same kind of object. Given the ZZ;S C¥s possible k-tuples
(we keep k between 2 and 8 to make it easier for the user),
we have a random probability of success given by:

1
PPl
k=2 “'16

It is also important to notice that an unlabeled picture can be
included among the 16, hence providing a soft labeling of
it (but doubling the probability above, as the right answer
with or without this extra picture has to be considered as
valid).

For a question of the type “How many ... ?7”, we decide
to ask the question in a way that does not require the user to
count and use the keyboard: “click once and only once on
each instance of the object.” For the sake of argument, let us
assume there are usually between 1 and 10 instances of the
object and that the average area of an object is the generous
value of A = 10* pixels. Now, when presented with a scene
where there are k instances of this object, there are AF valid
combinations of clicks, while there are 21121 Cj\/ possible
combinations of clicks. Consequently, a random guess has
the following average probability of success:

~3x107° (1)

DPsimilar =

10

Powm = 15D e X107 @)
count — T~ 10 P
10 k=1 Zi*l CN

eee® MoslliaFire fox o eoe
B . &8
LI

[azr2213 ' r
Transcribe the License Plate (s)

o
Click once and only once on each Apple

\\\\\\\\\\\\ o eo0e Mozl Fsfox

Draw a rectangle around each Snickers Box

| am done ! p——— | am done !
(a) (b) (©

Figure 5. Examples of SOYLENT TASKs. The illustrated tasks each contain two instances displayed in the browser: one has already been
answered and is used as a Turing test, the other one has to be answered for labeling. (a) The first type of task is a simple OCR. (b) The
second task is a counting task: in order to simplify the task and actually increase tremendously its security, the user is asked to click once
and only once on each instance of an object. A byproduct of this task is a distribution of where an object is clicked on and therefore of
what is most important to a human labeler. (¢) The third task is related to segmentation: by using a thick pencil (allowing a certain margin

of error), the user has to segment objects.

“Trace This”

Tasks of the form “Trace This” deal with image segmenta-
tion. As in the previous tasks, the user is presented with
an image of a scene and is then asked to draw the (possibly
partial) contour of an object as in [19]. Applicable metrics
for segmentation agreement are presented in [17].

Of course the answer is accepted with a a certain toler-
ance. Estimating the robustness to a random attack is unfor-
tunately not as trivial in this kind of task.

“Hot or Not”

We use the “Hot or Not” designation to describe the
category of task involving human preferences rep-
resented by partial orderings or numerical scales.
Several websites, like http://hotornot.com or
http://thefunniest.info, have already harvested
a rich database of such ratings. A SOYLENT TASK could
then simply ask the user to choose the k& pictures that are the
most pleasing to the eye, for example, leveraging samples
from the extreme ends of the label distributions. Such an
approach is in fact used by [4].

3.4. Jobs

The Street Sign Recognition pipeline was discussed pre-
viously, where a frame of video is processed through three
stages. Translated to SOYLENT GRID, the logic is shown in
Figure 3.

Internally, this is implemented as a Directed Acyclic
Graph attached to each item of data submitted to the job
needing some labeling/processing. The researcher submit-
ting the job defines this DAG by specifying the different
tasks that need to be processed (segmentation, recognition,
...) as well as their order relationship (“first segment the
street sign”) and logic (“if there is no street sign in the im-
age, break™)

When an item of data is randomly selected for process-
ing, the SOYLENT CPU selects a node in its DAG as the
next test to be completed. The node is selected with respect
to the distribution of answers it has already received: if the
distribution is very peaked on one answer, then this task is
probably solved or too easy: it can be marked as “labeled”
and pushed to the “done” stack. On the other hand, if the
distribution has a large standard deviation or multiple max-
ima, the researcher is warned for a possible ambiguity in
this item.

Note that dependencies in the job/DAG can be
computational-path specific: if the street sign labeler is pro-
cessed entirely by Participant contribution, then the Seg-
mentation and Object Recognition phase can happen at the
same time; for the computational solution, the Object must
be segmented before the Optical Character Recognition can
occur.

3.5. Throughput and Processing Time

The grid, as a computational system, can be modelled in
very general terms using standard mathematical tools.

Consider a job with only one task that is used to label n
items. The task is only performed by m Trusted Advisers
and it takes at most ¢y, to complete. The job will trivially
take at most n2 to achieve.

On the other hand, if the job is processed by only Un-
washed Masses, several tasks need to be asked per job: k
to label images (usually, ¥ = 1 for simplify) and the rest
as a Turing test. If the type of task has a MCT-confidence
of C, and we want a chance of false-positive (right an-
swer but by a machine) of less than 10~ (typical value
required for a CAPTCHA), the task has to be asked at
least [log(107°)] times. As seen previously, this does
not necessarily mean that the task has to be asked sev-
eral times in a row, it can be asked several times at once
by combination. In both cases, it will take a time of:

(k + Noge (107°)7) tusk and these combinations of tasks
have to be asked 7 to have all the data labeled once.

To obtain a distribution of answers, the tasks also need to
be labeled several times, s times. Therefore, the total time
required to label the n items by m’ UMs s times is:

-5
SE (k + ﬂOgC (];0)—I) ttask (3)

k m

By looking at the above equation and comparing it with
the TA case, it appears that using UMs is profitable as long
as the overal time competes with the TA case. This is equiv-
alent to have £ (k + [log (107°)]) 22 is close or inferior
to 1, i.e. if (a) there are enough UMs (m’ big) (b) the MCT-
confidence of the task is low enough (C small) (c) the task is
not too ambiguous for humans (s small). This tradeoff sim-
ply states that the better the machines are at solving a task
(and therefore at fooling the grid), the more human contri-
bution is needed. It also defines a boundary for how good
the level of security is for a Turing test.

The throughput of UM contribution is also reduced by
the possibility of a lurking adversary or human error. We
must, however, rely on statistical outlier rejection in order
to handle those cases. By providing a margin of MCT-
confidence against machine intelligence attack of 10>, we
have provided a fairly sizeable probabilistic buffer against
an outright malicious attack.

Furthermore, there are two kinds of attacks. In the one
case, where an attacker wishes to access what is hiding be-
hind the grid, the previous probability holds. If, however, an
attacker wishes to damage the SOYLENT GRID itself, there
is in fact more protection: in order to do this, the attacker
must correctly lie on each task that is not a test, yet tell the
truth on each test. Assuming there are two tasks per ses-
sion (as in reCAPTCHA), the attacker has a 50% chance
of guessing the position of the labeling task: damaging the
grid is in this case twice as hard as passing through it.

Returning to the issue of throughput, however, our labels
per contribution figure needs to be combined with the size
of our grid, in terms of “hits per unit time”, as we are not
dealing with dedicated users. If u is the number of users
per second, the throughput of the grid (in tasks/second) is
therefore:

k
k+ Noge (10-5)] "
Asking simpler tasks (hence increasing C), or putting
the system under attack and lowering the “acceptance”
thresholds (both cases result in higher amounts of double-
checking), would effectively lower the fraction and result in
a less efficient, slower grid.

“)

4. Proposed Applications

Some of the soylent tasks have been implemented and
are currently part of two larger scope projects meant to help

blind people perceive their environment.

4.1. Soylent Texty

In the Soylent Texty, the soylent tasks are used to la-
bel images to train an outdoor sign reader. The processing
outline involves a sign detector (based on color histograms)
followed by a text detection algorithm (from [24, 13]) and
an OCR (HP’s Tesseract). The first two steps require some
training and therefore some labeling. We simply added a
tight threshold of success to these algorithms and every im-
age not passing it was simply added to the pool of images
needed to be solved.

This tight threshold of success represents a low MCT-
confidence, and using the completely non-specialized off
the shelf OCR Tesseract represents a medium level of con-
fidence (C' = 0.3 for each letter). It takes a human approx-
imately ¢, = 0.8 seconds per letter (for an overall task
chosen to be of ¢ty = 10 seconds), so we set the number
of unlabeled letters to ask (k) as the biggest integer verify-
ing:

(k + ﬂOgC (1075)]) ttask S ttolal

ie.

t
= | logo(1079y] | =2
task
Our version of SOYLENT GRID was implemented to pro-
tect a wiki from spammer edits by proposing a SOYLENT
TASK.

4.2. GroZi

The aim of the GroZi project (http://grozi.
calit2.net)is todevelop a grocery shopping aid for the
visually impaired. The application of SOYLENT GRID to
this project is thus far a prototype. The goal is to develop
a wearable computer with a camera that can lead a blind
user to a desired product in a grocery store by analyzing the
video stream.

The degree to which human beings could participate in
the system (as remote sighted guides) ranges from none at
all to virtually unlimited. If no human user is involved in the
loop, only computer vision algorithms solve the identifica-
tion problem. But in principle, if there were an unlimited
number of humans in the loop, all the video frames could
be submitted to a SOYLENT GRID, be solved immediately
and sent back to the device to guide the user.

We decided to adopt an approach similar to Soylent
Texty to train an algorithm to perform recognition on cer-
tain grocery products. The challenge in building such a
database is that it is very specific: the database needs to
contain images of grocery products in a real environment.
To our knowledge, there is no such a database, hence the
demand for SOYLENT GRID.

5. Conclusion

In this paper we established the infrastructure of a novel
human- and machine-based computing grid for labeling
large amounts of image data while offering robust Turing
tests as a byproduct. We have also demonstrated the flex-
ibility of the grid with respect to the users and the tasks,
as well as its robustness in producing results and in facing
possible hacker attacks.

In future work we will explore deeper connections to
several of the cited relevant works, e.g. by packaging the
tasks as a game, as in ESP GAME. Finally, the main focus
of the development is now centered on the incorporation of
active learning in the processing loop so as to diminish the
number of items that require human processing.

Acknowledgment

This work was funded in part by NSF Career Grant
#0448615, the Alfred P. Sloan Research Fellowship and the
UCSD Division of the California Institute for Telecommu-
nications and Information Technology, Calit2. The authors
would also like to thank S. Agarwal, B. Ochoa and P. Dollar
for helpful discussions. The paper title is inspired by the
film Soylent Green (Metro-Goldwyn-Mayer, 1973).

References

[1] Amazon Mechanical Turk. http://www.mturk.com.

[2] Google Image Labeler.
com/imagelabeler/.

http://images.google.

[3] Great Internet Mersenne Prime Search. http://www.
mersenne.org.

[4] HotCaptcha. http://hotcaptcha.com.

[5] OCR Research Team, Automated Protection From Auto-
mated Systems. http://ocr-research.org.ua.

[6] Project Gutenberg Distribute Proofreader. http://www.
pgdp.net.

[7] reCAPTCHA. http://recaptcha.net.

[8] SETI@Home, Search for Extra-Terrestrial Intelligence.
http://setiathome.berkeley.edu.

[9] Y. Abramson and Y. Freund. Active learning for visual object
recognition. UCSD Technical Report, 2005.

[10] H. S. Baird and D. P. Lopresti, editors. Human Interac-
tive Proofs, Second International Workshop, volume 3517 of
Lecture Notes in Computer Science. Springer, 2005.

[11] J. Brabyn, Membec, W. Crandall, and W. Gerrey. Remote
reading systems for the blind: A potential application of vir-
tual presence. In Engineering in Medicine and Biology So-
ciety, 1992. Vol.14. Proceedings of the Annual International
Conference of the IEEE, volume 4, pages 1538-1539, 1992.

[12] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwin-
ski. Building Segmentation Based Human-Friendly Human
Interaction Proofs (HIPs). In Baird and Lopresti [10], pages
1-26.

[13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

X. Chen and A. L. Yuille. Detecting and reading text in natu-
ral scenes. IEEE Computer Vision and Pattern Recognition,
02:366-373, 2004.

J. Douceur, J. Elson, and J. Howell. Asirra.
research.microsoft.com/asirra.

C. Gentry, Z. Ramzan, and S. Stubblebine. Secure distributed
human computation. In Proceedings of the 6th ACM confer-
ence on Electronic commerce, pages 155-164, New York,
NY, USA, 2005. ACM Press.

D. P. Lopresti. Leveraging the CAPTCHA problem. In Baird
and Lopresti [10], pages 97-110.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416423, July 2001.

G. Mori and J. Malik. Recognizing objects in adversarial
clutter: breaking a visual CAPTCHA. In IEEE Computer
Vision and Pattern Recognition, pages [-134—1-141, 2003.
B. Russell, A. Torralba, and W. T. Freeman. LabelMe, the
image annotation tool. MIT lab memo AIM-2005-025, Sep
2005. http://labelme.csail.mit.edu.

A. M. Turing. Computing machinery and intelligence. Mind,
59(236):433-460, October 1950.

L. von Ahn, M. Blum, N. Hopper, and J. Langford.
CAPTCHA: Using hard Al problems for security. In Pro-
ceedings of Eurocrypt, pages 294-311, 2003.

http://

L. von Ahn and L. Dabbish. Labeling images with a com-
puter game. In Proceedings of the ACM CHI, 2004. http:

//espgame.org.

L. von Ahn, R. Liu, and M. Blum. Peekaboom: a game
for locating objects in images. In CHI '06: Proceedings of
the SIGCHI conference on Human Factors in computing sys-
tems, pages 55-64, New York, NY, USA, 2006. ACM Press.
http://www.peekaboom.org.

A. Yuille, D. Snow, and M. Nitzberg. Signfinder: using color
to detect, localize and identify informational signs. In In-
ternational Conference on Computer Vision, pages 628—633,
1998.

