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Abstract—Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However,

due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high

resolution imagery have been slow to appear. The contribution of this paper is a method that substantially reduces the computational

requirements of grouping algorithms based on spectral partitioning making it feasible to apply them to very large grouping problems.

Our approach is based on a technique for the numerical solution of eigenfunction problems known as the Nyström method. This

method allows one to extrapolate the complete grouping solution using only a small number of samples. In doing so, we leverage the

fact that there are far fewer coherent groups in a scene than pixels.

Index Terms—Image and video segmentation, normalized cuts, spectral graph theory, clustering, Nyström approximation.
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1 INTRODUCTION

TOhumans, an image is more than a collection of pixels; it

is a meaningful organization of surfaces and objects in a

scene. The Gestalt psychologists were the first to draw

attention to this important phenomenon and listed various

factors that contribute to this process including grouping
cues such as proximity, similarity, and common fate. A

great deal of research in computational vision over the last

few decades has sought principled ways to operationalize

these ideas.

One key component is the development of grouping

“engines” that use these low-level cues to perform image

and video segmentation. A common characteristic among

several recently proposed techniques is the idea of cluster-

ing pixels or other image elements using pairwise affinities.

The pairwise affinity computed between two pixels

captures their degree of similarity as measured by one or

more cues. The pixels can then be grouped based on the set

of pairwise affinities using methods such as spectral graph

partitioning [30], [32], [22], [26], [28], [20], deterministic

annealing [25], or stochastic clustering [15].

As discussed in [9], pairwise grouping methods present

an appealing alternative to central grouping. Central

grouping techniques such as k-means or Gaussian Mixture

Model fitting via EM [6] tend to be computationally efficient

since they only require one to compare the image pixels to a

small set of cluster prototypes. However, they have the

significant drawback of implicitly assuming that the feature

vectors representing the pixels in each group have a

Gaussian distribution, justifying the use of Euclidean or

Mahalanobis distance for comparing feature vectors. By

propagating similarity in a transitive fashion from neighbor

to neighbor, pairwise methods can avoid the restriction that

all points in a cluster must be close to some prototype. This

allows the recovery of clusters that take on more compli-

cated manifold structures in feature space.

Pairwise methods also offer great flexibility in the

definition of the affinities between pixels. For example, if

the feature vectors represent color histograms, then k-means

clustering is inappropriate since L2 distance between

histograms isn’t meaningful. In such a case, pairwise

methods can readily employ a suitable affinity function

such as the �2-distance. Affinities can even be defined

between features with no natural vector space structure

(e.g., string kernels [17]).
The drawback of pairwise methods is the requirement of

comparing all possible pairs of pixels in an image.
Processing short video sequences or the output of inexpen-
sive multimegapixel digital cameras can easily involve 1012

pairwise similarities (a number that will continue to
increase in the near future). Consequently, the number of
pairs considered in practice is often restricted by placing a
threshold on the number of connections per pixel, e.g., by
specifying a cutoff radius in the image plane. While this
allows the use of efficient sparse representations, it
discourages the use of long-range connections, thereby
resulting in the oversegmentation of homogeneous regions.
In this paper, we present an approximation technique
applicable to spectral grouping methods that alleviates this
computational burden.

Our approach is based on a classical method for the

solution of the integral eigenvalue problem known as the

Nyström method. In short, the approximation works by first

solving the grouping problem for a small random subset of

pixels and then extrapolating this solution to the full set of

pixels in the image or image sequence. This provides the

flexibility of pairwise grouping with a computational

complexity comparable to that of central grouping: Rather

than compare all pixels to a set of cluster centers, we
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compare them to a small set of randomly chosen samples.

The approach is simple and has the appealing characteristic

that for a given number of sample points, its complexity

scales linearly with the resolution of the image. In this sense

we exploit the fact that the number of coherent groups in an

image is generally much smaller than the number of pixels.

The structure of this paper is as follows: In Section 2, we

discuss the pairwise grouping framework and review the

Normalized Cut [30] grouping algorithm. We discuss the

Nyström method in Section 3 and highlight our application

to the NCut grouping formulation. We consider the

computational costs and approximation error associated

with this scheme in Section 4. Results on static images and

video are presented in Section 5 and we conclude with

Section 6.

2 SPECTRAL METHODS FOR PAIRWISE CLUSTERING

Spectral methods for image segmentation are based on

the eigenvectors and eigenvalues of an N �N matrix

derived from the matrix of pairwise affinities. N denotes

the number of pixels in the image. These eigenvectors

induce an embedding of the pixels in a low-dimensional

subspace wherein a simple central clustering method

(such as k-means) can then be used to do the final

partitioning. The spectral method we will focus on in this

work is Normalized Cut [30], the background for which

is discussed next.1

Let the symmetric matrix W 2 IRN�N denote the
weighted adjacency matrix for a graph G ¼ ðV ;EÞ with
nodes V representing pixels and edges E whose weights
capture the pairwise affinities between pixels. Let A and
B represent a bipartition of V , i.e., A [B ¼ V and
A \B ¼ ;. Let cutðA;BÞ denote the sum of the weights
between A and B: cutðA;BÞ ¼

P
i2A;j2B Wij. The degree

of the ith node is defined as di ¼
P

j Wij and the
volume of a set as the sum of the degrees within that
set: volðAÞ ¼

P
i2A di and volðBÞ ¼

P
i2B di. The Normal-

ized Cut between sets A and B is then given as follows:

NCutðA;BÞ ¼ 2 � cutðA;BÞ
volðAÞkvolðBÞ ;

where k denotes the harmonic mean.2

We wish to find A and B such that NCutðA;BÞ is

minimized. Appealing to spectral graph theory [11], Shi and

Malik [30] showed that an approximate solution may be

obtained by thresholding the eigenvector corresponding to

the second smallest eigenvalue �2 of the normalized

Laplacian L, which is defined as

L ¼ D�1=2ðD�WÞD�1=2 ¼ I �D�1=2WD�1=2;

where D is the diagonal matrix with entries Dii ¼ di. The

matrix L is positive semidefinite, even whenW is indefinite.

Its eigenvalues lie on the interval ½0; 2� so the eigenvalues of

D�1=2WD�1=2 are confined to lie inside ½�1; 1�.

Extensions to multiple groups are possible via recursive
bipartitioning or through the use of multiple eigenvectors.
In this work, we employ multiple eigenvectors to embed
each element into an NE-dimensional Euclidean space, with
NE � N , such that significant differences in the normalized
affinities are preserved while “noise”3 is suppressed. The
k-means algorithm is then used to discover groups of pixels
in this embedding space.

To find such an embedding, we compute the N �NE

matrix of the leading eigenvectors V and the NE �NE

diagonal matrix of eigenvalues � of the system

ðD�1=2WD�1=2ÞV ¼ V�:

The ith embedding coordinate of the jth pixel is then
given by

Eij ¼
Viþ1;jffiffiffiffiffiffiffi
Djj

p ; i ¼ 1; . . . ; NE; j ¼ 1; . . . ; N;

where the eigenvectors have been sorted in ascending order
by eigenvalue. Thus, each pixel is associated with a column
of E and the final partitioning is accomplished by clustering
the columns.

Unfortunately, the need to solve this system presents a
serious computational problem. Since W grows as the
square of the number of elements in the grouping problem,
it quickly becomes infeasible to fit W in memory, let alone
compute its leading eigenvectors. One approach to this
problem has been to use a sparse, approximate version ofW
in which each element is connected only to a few of its
nearby neighbors in the image plane and all other
connections are assumed to be zero [29]. While this makes
it possible to employ efficient, sparse eigensolvers (e.g.,
Lanczos), the effects of this process are not well understood.
Our proposed alternative based on sampling allows all
affinities to be retained at the expense of some numerical
accuracy in their values.

3 THE NYSTRöM EXTENSION

3.1 Background

The Nyström method [21], [3], [23] is a technique for finding
numerical approximations to eigenfunction problems of the
form Z b

a

Wðx; yÞ�ðyÞdy ¼ ��ðxÞ:

We can approximate this integral equation by evaluating it
at a set of evenly spaced points �1; �2; . . . �n on the interval
½a; b� and employing a simple quadrature rule,

ðb� aÞ
n

Xn
j¼1

Wðx; �jÞ�̂�ð�jÞ ¼ ��̂�ðxÞ; ð1Þ

where �̂�ðxÞ is an approximation to the true �ðxÞ. To solve
(1), we set x ¼ �i yielding the system of equations

ðb� aÞ
n

Xn
j¼1

Wð�i; �jÞ�̂�ð�jÞ ¼ ��̂�ð�iÞ 8i 2 f1 . . .ng:
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1. For more detail, readers are referred to [30].
2. Recall akb ¼ 2ab=ðaþ bÞ. 3. For a discussion of denoising in the case of kernel-PCA see [19].



Without loss of generality, we let ½a; b� be ½0; 1� and structure
the system as the matrix eigenvalue problem:

A�̂� ¼ n�̂��;

where Aij ¼Wð�i; �jÞ and � ¼ ½��1��2 . . .��n� are the n eigen-
vectors of A with corresponding eigenvalues �1; �2; . . .�n.

Substituting back into (1) yields the Nyström extension for
each �̂�i:

�̂�iðxÞ ¼
1

n�i

Xn
j¼1

Wðx; �jÞ�̂�ið�jÞ: ð2Þ

This expression allows us to extend an eigenvector

computed for a set of sample points to an arbitrary point x
using W ð�; �jÞ as the interpolation weights.

3.2 Matrix Completion

Whereas x in (2) can take on any real value, in the case of
image segmentation, the domain over which we wish to

extend the solution is specifically those pixels that were not
sampled. We can express the evaluation of (2) for those

remaining pixels as follows. Let A again be the n� n matrix
of affinities between the sample points with diagonaliza-

tion A ¼ U�UT , and let B represent the n�m matrix of
affinities between the n sample points and m remaining

points. The matrix form of the Nyström extension is then
BTU��1, wherein BT corresponds to Wð�j; �Þ, the columns

of U correspond to the �̂�ið�jÞs, and ��1 corresponds to the
1=�is in (2). The process is illustrated in schematically in
Fig. 1.

To better understand the nature of the Nyström exten-
sion, it is instructive to examine it from the standpoint of

matrix completion. For simplicity in notation, assume that

the n randomly chosen samples come first and the

remaining N � n samples come next. Now, partition the

affinity matrix W as

W ¼ A B
BT C

� �
ð3Þ

with A 2 IRn�n, B 2 IRðN�nÞ�n, and C 2 IRðN�nÞ�ðN�nÞ. Here,

A represents the subblock of weights among the random

samples, B contains the weights from the random samples

to the rest of the pixels, and C contains the weights between

all of the remaining pixels. In the case of interest, n� N , so

C is huge. Letting �UU denote the approximate eigenvectors of

W , the Nyström extension gives

�UU ¼ U
BTU��1

� �

and the associated approximation of W , which we denote
ŴW , then takes the form

ŴW ¼ �UU� �UU
T

¼
U

BTU��1

� �
�½UT ��1UTB�

¼ U�UT B

BT BTA�1B

� �

¼
A B

BT BTA�1B

� �

¼
A

BT

� �
A�1½A B�:
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Fig. 1. Flowchart of sampling and matrix completion. At left, a synthetic image is shown consisting of three regions and some additive noise. The
dense N �N affinity matrix W , where N is the number of pixels, is shown at top, middle, with entries Wij given by similarity in brightness and
position. The entries are ordered so that the pixels in the occluded dark gray square come first, the pixels in the light gray rectangle come next,
followed by the pixels from the background. From this dense matrix, one can obtain, at great computational expense, the exact three leading
eigenvectors of the normalized Laplacian, denoted V . The eigenvectors are illustrated here via their outer product ðV TV Þ in order to demonstrate
their piecewise constant behavior within the three ranges corresponding to the pixels in each group. Using the embedding given by the leading
eigenvectors, pixels are clustered with k-means to yield a final segmentation. The approximate solution based on the Nyström extension is shown in
the lower pathway. Using only those pixels marked by stars on the input image, a narrow strip of the full W matrix is computed, shown at bottom
middle. Each row contains the affinities from a sample point to the entire image. The Nyström extension allows one to then directly approximate the
leading eigenvectors and segment the image, as shown at bottom right.



Thus, we see that the Nyström extension implicitly
approximates C using BTA�1B. The quality of the
approximation of the full weight matrix can be quantified
as the norm of the Schur complement kC �BTA�1Bk. The
size of this norm is governed by the extent to which C is
spanned by the rows of B.

TheNyström approximation has been used in this formby

[34] for fast approximate Gaussian process classification and

regression. As noted in [34], this approximation method

directly corresponds to the kernel PCA features space

projection technique of [27]. A generalization of these ideas

on low-rank approximation to the SVD is studied in [14], [13].
One remaining detail is that the columns of �UU are not

orthogonal. The process of orthogonalizing the solution can

proceed in two different ways depending on whether A is

positive definite.

3.3 Methods of Solution

If A is positive definite, then we can solve for the

orthogonalized approximate eigenvectors in one step. Let

A1=2 denote the symmetric positive definite square root of

A, define S ¼ AþA�1=2BBTA�1=2, and diagonalize it as

S ¼ US�SU
T
S . If the matrix V is defined as

V ¼ A
BT

� �
A�1=2US�

�1=2
S ; ð4Þ

then one can show (see Appendix A) that ŴW is diagonalized

by V and �S , i.e., ŴW ¼ V�SV
T and V TV ¼ I. We assume

that pseudoinverses are used in place of inverses as

necessary when there is redundancy in the random

samples.
If A is indefinite, then two steps are required to find

the orthogonalized solution. Let �UUS
T ¼ ½UT

S ��1S UT
S B� and

define Z ¼ �UUS�
1=2 so that ŴW ¼ ZZT . Let F�FT denote

the diagonalization of ZTZ. Then, the matrix V ¼
ZF��1=2 contains the leading orthonormalized eigenvec-
tors of ŴW , i.e., ŴW ¼ V�V T with V TV ¼ I. As before, a
pseudoinverse can be used in place of a regular inverse
when A has linearly dependent columns. Thus, the
approximate eigenvectors are produced in two steps:
First, we use the Nyström extension to produce �UUS and
�S and then we orthogonalize �UUS to produce V and �.
Although this approach is applicable in general, the
additional Oðn3Þ step required leads to an increased loss
of significant figures. As noted in [4], it is therefore
expedient to know when the one-shot method can be
applied, i.e., when a given kernel is positive definite.

3.4 Application to Normalized Cut

To apply the Nyström approximation to NCut, it is
necessary to compute the row sums of ŴW . This is possible
without explicitly evaluating the BTA�1B block since

d̂ddd ¼ ŴW1 ¼ A1n þB1m

BT1n þBTA�1B1m

� �
¼ aar þ bbr

bbc þBTA�1bbr

� �
; ð5Þ

where aar; bbr 2 IRm denote the row sums of A and B,
respectively, bbc 2 IRn denotes the column sum of B, and 1
represents a column vector of ones.

With d̂ddd in hand, the required blocks of D̂D
�1=2

ŴWD̂D
�1=2

are
given by

Aij  
Aijffiffiffiffiffiffiffiffiffi
d̂dddid̂dddj

q ; i; j ¼ 1; . . . ; n

and

Bij  
Bijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂dddid̂dddjþm

q ; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m

to which we can apply one of the two methods from

Section 3.3, depending on whether A is positive definite.

Fig. 2 gives example MATLAB code for carrying out the

computation of the embedding vectors using the “one-shot”

technique.

4 PERFORMANCE CONSIDERATIONS

4.1 Approximation Properties

It is natural to ask how the approximation actually

compares to the solution given by the dense problem or

other sparse approximation schemes. In this section we

attempt to provide an answer by focusing on an empirical

quantitative analysis of performance on a synthetic cluster-

ing problem.

The stimulus used for this study consists of the randomly

generated annulus/clump pointset shown in Fig. 3a. We

increase the difficulty of the grouping task by bringing the

clump closer to the annulus; this distance is denoted R. The

samples are arranged so that the first 50 correspond to the

clump and the following 100 correspond to the annulus.

The affinities are given by the Gaussian weighted Euclidean

distance, i.e., Wij ¼ expð�kxi � xjk2=2�2Þ. We measure the

quality of the NCut bipartition provided by the second

eigenvector in each approximation method using the Fisher

criterion [6] which is defined as

JðX1;X2Þ ¼
ð�1 � �2Þ2

s21 þ s22
;

where �i and s2i represent the mean and variance of the

points in the ith cluster. The parameter � in the affinity

function has been chosen to optimize performance as

documented in Fig. 3c.
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Fig. 2. Example MATLAB code for finding the first nvec embedding
vectors of the normalized affinity matrix given unnormalized submatrices
A of size n x n and B of size n x m. This code uses the “one-shot”
technique and so is only applicable to positive definite affinities.



We compare the Nyström approximation to the dense

solution along with two other possible approximations

based on sparse representations. The first technique is to

sort the entries of the affinity matrix and zero out only

the smallest ones. For matrices that have many zero or

nearly zero entries, this approximation can be quite

accurate and preserve exactly the eigenstructure. How-

ever, unless there is an oracle that allows one to avoid

computing small entries, this still requires OðN2Þ affinity
calculations which can be quite expensive. A more likely

alternative, analyzed in some detail by [1] is to zero out

random entries in the matrix. Both of these options allow

one to employ a sparse matrix representation and

corresponding sparse eigensolver (Lanczos/Arnoldi)

which can improve significantly over the OðN3Þ complex-

ity required of a dense solution.

The remaining frames in Fig. 3 show the relation

between the number of entries used to approximate the

eigenvectors of the matrix and the quality of the resulting

eigenvectors. Here, the number of samples represents the
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Fig. 3. A study of embedding quality versus number of samples for different approximations. The input stimulus is shown in (a) and a typical
embedding given by the second eigenvector of the normalized affinity matrix is shown in (b). The ordering is such that the clump contains points 1-50
and the annulus contains points 51-150. In (c), we show the value of � that optimizes the Fisher separation versus the distance R between the clump
and the annulus. The Fisher separation versus problem difficulty for varying numbers of samples is shown in (d), (e), and (f). (d) gives results for
sorted Lanczos, (e) for random Lanczos, and (f) for Nyström. The corresponding curve for the dense problem is shown by the dashed line on each
plot. Each point on each curve represents the average over 200 random trials. Each solid curve gives the result for a particular number of samples,
ranging from 10 to 150; the Fisher separation increases monotonically with the number of samples.



number of nonzero entries above the diagonal (since the

matrix is symmetric). This means that each algorithm

potentially has access to the same amount of “information”

from the affinity matrix.
Fig. 4 makes an empirical comparison of the running

times associated with the algorithms. The graphs show the

actual running time of a compiled MATLAB implementa-

tion versus number of samples. Multiple curves show the

timings for increasingly difficult problems (smaller R).

Asymptotically, the performance of the Lanczos method,

Oðn �N � niterÞ operations where niter is the number of

iterations to convergence, is quite similar to that of the

Nyström technique which takes Oðn3Þ þOðn �NÞ opera-

tions. However, as the curves in Fig. 4 indicate, while the

random Lanczos technique can achieve accuracy similar to

that of Nyström given the same number of samples, its

running time is highly dependent on the “difficulty” of the

problem (highly diagonal matrices take many Lanczos/

Arnoldi iterations in practice). In particular, the results in

Fig. 4 for N ¼ 600 demonstrate that the sparse eigenvector

approximation can take longer than simply running

MATLAB’s dense solver.

4.2 Sampling

As suggested above, it is often possible to achieve

performance comparable to the dense case using very few

samples. We conducted an empirical study to estimate the

number of samples needed for a diverse set of natural

images. Since it’s not possible to solve the dense problem in

this case, we use a cross-validation approach. By choosing

two different sets of random samples, we can compare the

resulting eigenvectors computed by the approximation in

order to assess how many samples are necessary for a stable

result.
To measure repeatability, we use the Frobenius norm of

the inner product 1
NE
kUTV k2F between sets of leading

eigenvectors U and V generated by different random
samplings. Note that this measure is only dependent on

the subspace spanned by the columns of U and V and hence

invariant to rotations of the eigenvectors since for arbitrary

rotations R1 and R2

1

2NE
kUR1R

T
1U

T � VR2R
T
2 V

Tk2F

¼ 1

2NE
kUUT � V V Tk2F

¼ 1

2NE
kUUTk2F þ

1

2NE
kV V Tk2F �

1

NE
kUTV k2F

¼ 1� 1

NE
kUTV k2F :

For each of 300 images from theCorel data set,we compute 10
different sets of four leading eigenvectors and average the
normbetweenall uniquepairs. Fig. 5 shows the result. Perfect
agreement would yield a norm of 1which the approximation
quickly converges towards with a small number of samples.
The images contain 240� 160 ¼ 38; 400 pixels but it’s only
necessary to sample less than 1 percent of them.

FOWLKES ET AL.: SPECTRAL GROUPING USING THE NYSTRÖM METHOD 219

Fig. 5. A cross-validation study of embedding repeatability versus
samples for the Nyström approximation based on a set of 300 Corel
images of natural scenes, each of size 240� 160. The curve illustrates
the agreement in the leading 4 eigenvectors between different random
samples of size n ranging from 20 to 400. A norm of 1 indicates perfect
agreement. Error bars show the standard deviation over 190 compar-
isons made between 20 random samplings. These results show that
very good agreement in the approximate leading eigenvectors is
attained across different random subsets of samples whose size is less
than 1 percent of total image pixels.

Fig. 4. Running times for approximations versus number of samples at different levels of problem difficulty. (a) shows the sparse sorted Lanczos,

(b) shows the randomly sparsified Lanczos method, and (c) shows the Nyström method. The timing for the dense solver is shown by the dotted lines.

The timing results are for svd and svds as implemented by MATLAB. The key thing to notice is that sparse solver performance varies widely with

the difficulty (eigenstructure) of the matrix in question. Data here is shown for annulus/clump stimuli consisting of 600 points with timings averaged

over 200 trials.



5 SEGMENTATION RESULTS

In this section, we demonstrate the use of the Nyström
extension on both static image and video segmentation
problems. In each experiment, we used k-means with
random initialization to cluster the leading k eigenvectors.
Choosing k is a difficult model-selection problem which lies
outside the scope of this paper. Here, the number of clusters
k was chosen manually.

5.1 Color and Texture Segmentation

The �2 test is a simple and effective means of comparing
two histograms. It has been shown to be a very robust
measure for color and texture discrimination [25]. Given
normalized histograms hiðkÞ and hjðkÞ define

�2
ij ¼

1

2

XK
k¼1

ðhiðkÞ � hjðkÞÞ2

hiðkÞ þ hjðkÞ
;

where it is understood that a small quantity � is added to
any empty bin so that hiðkÞ > 0 8j; k.

We can then define the similarity between the pair of

histograms as Wij ¼ e��
2
ij=�. Since this kernel is positive

definite (see Appendix B) one can employ the one-shot

Nyström method to find groups of similar histograms.

An example of Nyström-NCut on a color image of a tiger

using 100 samples is shown in Fig. 6. In this example, we

computed a local color histogram inside a 5� 5 box around

each pixel using the color quantization scheme of [24].

Fig. 7 shows the results of applying Nyström-NCut to

texture based segmentation, again using 100 samples. In

this case, each pixel in the image is associated with the

nearest element in a small alphabet of prototypical linear

filter responses using vector-quantitization (see Malik et

al. [18]). Histograms of these “texton labels” are com-

puted over an 9� 9 pixel window and again compared

with the �2-distance.

5.2 Spatio-Temporal Segmentation

One method for combining both static image cues and
motion information present in a video sequence is to
consider the set of images as a space-time volume and
attempt to partition this volume into regions that are
coherent with respect to the various grouping cues. The
insight of considering a video signal as three dimensional
for purposes of analysis goes back to Adelson and Bergen
[2] and Baker et al. [7] and is supported by evidence from
psychophysics [16]. Unified treatment of the spatial and
temporal domains is also appealing as it could solve some
of the well known problems in grouping schemes based on
motion alone (e.g., layered motion models [33], [31]). For
example, color or brightness cues can help to segment
untextured regions for which the motion cues are ambig-
uous and contour cues can impose sharp boundaries where
optical flow algorithms tend to drag along bits of back-
ground regions.

The successes of pairwise grouping have been slow to

carry over to the case of spatiotemporal data.4 Indeed, the

conclusions of a recent panel discussion on spatiotemporal

grouping [8] are that approaches in which the image

sequence is treated as a multidimensional volume in x; y; t
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Fig. 6. Segmentation of tiger image based on Gaussian weighted �2-distance between local color histograms. The image size is 128� 192 and the

histogram window size is 5� 5. Color quantization was performed as in [24] with eight bins. Since the e��
2
ij kernel is positive definite, we can use the

one-shot method of [12]. (a) Original image. (b) Nyström-NCut leading eigenvectors using 100 random samples. Eigenvector images are sorted by

eigenvalue. (c) Segment-label image obtained via k-means clustering on the eigenvectors as described in [12].

4. Some preliminary steps in this direction were made by [29].



hold the greatest promise, but that efforts along these lines

have been hampered largely by computational demands.

The Nyström approximation has the potential to ameliorate

this computational burden, thus making it feasible to

extend the ideas of powerful pairwise grouping methods

to the domain of video.

We provide two examples of video segmentation using

our algorithm. Each of the results shown make use of

100 samples drawn at random from the first, middle and

last frame in the sequence. Fig. 8 shows the performance of

our algorithm on the flower garden sequence. A proper

treatment would require dealing with the texture in the

flowerbed and the illusory contours that define the tree

trunk. However, the discontinuities in local color and

motion alone are enough to yield a fairly satisfying

segmentation. Fig. 9 demonstrates segmentation of a

relatively uncluttered scene. Processing the entire sequence

as a volume automatically provides correspondences

between segments in each frame. We note that using

motion alone would tend to track the shadows and

specularities present on the background and fail to find

the sharp boundaries around the body. On a 800MHz

Pentium III processor, segmenting a 120� 120� 5 voxel

sequence takes less than one minute in MATLAB.

6 CONCLUSION

In this paper, we have presented a technique for the

approximate solution of spectral partitioning for image and

video segmentation based on the Nyström extension. The

technique is simple to implement, computationally efficient,

numerically stable, and leverages the intuition that the

number of groups in an image is generally much smaller

than the number of pixels. Our experimental studies on

grouping using the cues of texture, color, and optical flow

demonstrate that roughly 100 randomly chosen samples are

sufficient to capture the salient groups in typical natural

images.

APPENDIX A

PROOF OF ONE-SHOT METHOD

Suppose that we have

W ¼ A
BT

� �
A�1½A B�

and we want to show that W can be diagonalized so that

W ¼ V�V T ;
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Fig. 7. Segmentation of texture using the Gaussian weighted �2-distance between local texton histograms. Images in the left column are given as

input. Eigenvectors are computed using 100 random samples and the leading vectors clustered using k-means.



where

V ¼ A
BT

� �
A�1=2U��1=2:

To see this, we consider

W ¼
A

BT

� �
A�1½A B�

¼
A

BT

� �
A�1=2U��1=2

� �
� ��1=2UTA�1=2½A B�
n o

¼V�V T :

The above holds for any diagonal � and unitary U . We wish

to determine what they are.

Now, we require

I ¼ V TV

¼ ��1=2UTA�1=2½A B�
n o A

BT

� �
A�1=2U��1=2

� �
:

Multiplying from the left by U�1=2 and from the right by

�1=2UT , we have

U�UT ¼ A�1=2½A B�
A

BT

� �
A�1=2 ¼ AþA�1=2BBTA�1=2:

ut
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Fig. 8. The flower garden sequence: Each column represents our segmentation of a frame from the sequence of four images shown in the top row.

Each row shows slices through a space-time segment. It’s important to note that the algorithm provides segment correspondence between frames

automatically. The image dimensions are 120� 80 pixels.



APPENDIX B

PROOF OF POSITIVE DEFINITENESS OF e��
2
ij

We now prove that e��
2
ij is positive definite (as conjectured

by [10]). We assume throughout that hiðkÞ > 0 8i; k. We

begin by considering the �2
ij term by itself. Noting that

ðhiðkÞ � hjðkÞÞ2 ¼ ðhiðkÞ þ hjðkÞÞ2 � 4hiðkÞhiðkÞ, we can re-

write �2
ij as

�2
ij ¼ 1� 2

XK
k¼1

hiðkÞhjðkÞ
hiðkÞ þ hjðkÞ

:

We wish to show that the matrix Q with entries given by

Qij ¼ 2
XK
k¼1

hiðkÞhjðkÞ
hiðkÞ þ hjðkÞ

is positive definite. Consider the quadratic form cTQc for an

arbitrary finite nonzero vector c:

cTQc ¼
Xn
i;j¼1

cicjQij

¼ 2
XK
k¼1

Xn
i;j¼1

cicj
hiðkÞhjðkÞ

hiðkÞ þ hjðkÞ

¼ 2
XK
k¼1

Xn
i;j¼1

cicjhiðkÞhjðkÞ
Z 1

0

xhiðkÞþhjðkÞ�1dx

¼ 2
XK
k¼1

Xn
i;j¼1

Z 1

0

cihiðkÞxhiðkÞ�1
2cjhjðkÞxhjðkÞ�1

2dx

¼ 2
XK
k¼1

Z 1

0

Xn
i¼1

cihiðkÞxhiðkÞ�1
2

 ! Xn
j¼1

cjhjðkÞxhjðkÞ�1
2

 !
dx

¼ 2
XK
k¼1

Z 1

0

Xn
i¼1

cihiðkÞxhiðkÞ�1
2

 !2

dx

> 0:

Thus, Q is positive definite.
Returning now to e��

2
ij , we note that it can be written as a

positive constant times eQij . Since the exponential of a
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Fig. 9. The leap: The original frames (120� 80 pixels) are shown in the left column. Each column shows slices through a space-time segment.



positive definite function is also positive definite [5], we

have established that e��
2
ij is positive definite. tu
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