
Strong Supervision From Weak Annotation: Interactive Training of Deformable
Part Models

Steve Branson1, Pietro Perona2, Serge Belongie1

1 University of California, San Diego 2 California Institute of Technology
La Jolla, CA, 92093, USA Pasadena, CA, 91125, USA

{sbranson,sjb}@cs.ucsd.edu perona@caltech.edu

Abstract

We propose a framework for large scale learning and
annotation of structured models. The system interleaves in-
teractive labeling (where the current model is used to semi-
automate the labeling of a new example) and online learn-
ing (where a newly labeled example is used to update the
current model parameters). This framework is scalable to
large datasets and complex image models and is shown to
have excellent theoretical and practical properties in terms
of train time, optimality guarantees, and bounds on the
amount of annotation effort per image. We apply this frame-
work to part-based detection, and introduce a novel algo-
rithm for interactive labeling of deformable part models.
The labeling tool updates and displays in real-time the max-
imum likelihood location of all parts as the user clicks and
drags the location of one or more parts. We demonstrate
that the system can be used to efficiently and robustly train
part and pose detectors on the CUB Birds-200–a challeng-
ing dataset of birds in unconstrained pose and environment.

1. Introduction

Over the last few years, there has been growing inter-
est in structured learning methods for problems such as
part-based detection, scene understanding, and segmenta-
tion. Part-based methods [10, 3, 7] have achieved state-of-
the-art results on datasets such as VOC detection and have
demonstrated increasingly practical computational proper-
ties. There is growing awareness in the field that more
strongly localized models are a necessary ingredient toward
solving object detection, and, ultimately, scene understand-
ing. This line of research has been held back by the size of
available training sets and by the fact that most datasets do
not go beyond image-level and bounding-box-level anno-
tations. Unfortunately, more detailed annotation of things

Head Crown
B kBack

Training Example #43
Online Learning

Training Example #43

O li
Tail

Online 
Learning

Training ExampleTraining Example 
#2013 Training Example #558

Figure 1. Interactive Labeling and Online Learning of Part
Models: A part model is trained in online fashion, where annota-
tion becomes increasingly automated as more images are labeled.
The diagram shows how the interactive labeling interface changes
on a particular test image as the size of the training set increases,
with green lines representing parts that were dragged by the user.

such as part locations and object poses can be expensive or
logistically complicated to obtain.

Weakly supervised methods, where the level of annota-
tion is less detailed than the underlying model, have shown
great promise toward addressing this problem. Success-
ful algorithms or applications include multiple instance
learning [6], latent parts [10], latent structural SVMs [30],
and expectation maximization on constellation models [25].
The solution found by these types of methods will usually
be a local minimum of some non-convex objective function.
Parameter learning of MRF/CRFs with latent/unobserved
variables is in general an NP-hard problem. As a result,
training can be slow and pinpointing the source of classifi-
cation error–whether it’s due to optimization error, inappro-
priate model or feature space, or insufficient training data–is
more of an art than a science.

Strongly supervised methods, where the level of anno-
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tation is the same as the underlying model, are typically
easier learning problems. A wide variety of strongly super-
vised learning algorithms and applications, such as binary
classification, learning of sliding window detectors, param-
eter learning for CRFs, and structured prediction, can be
formulated as convex optimization problems with polyno-
mial time solutions. These algorithms have well understood
theoretical properties with respect to computation time and
generalization guarantees. The theoretical differences be-
tween strongly and weakly supervised algorithms means
that the style and quality of annotation has a significant
effect on the computational properties of training and the
quality of the models learnt. Along this line of thought,
Bourdev and Malik [3] have advocated ”hyper-supervised”
methods, arguing that researchers exaggerate the extent to
which human annotation is the bottleneck to solving com-
puter vision. They introduced a poselet model which re-
quires more detailed labelings of parts and poses. The Lotus
Hill dataset [29] of Zhu et al. echoes this sentiment.

In this paper, we ask the question is it possible to
maintain the benefits of strongly supervised methods–
computational tractability, performance guarantees, and
scalability to models of greater complexity–and the benefits
of weakly supervised methods–reduced human annotation
time–at the same time? We argue that the answer is yes,
using a combination of online learning and interactive la-
beling, which is depicted in Fig. 1. The basic idea is that a
well functioning computer vision system should be able to
predict all image labels with no human interaction, whereas
an imperfect computer vision system (e.g., one trained on
insufficient training data) is still capable of accelerating the
more mundane or obvious labeling tasks. Thus as we in-
crementally train a vision system, we should be able to in-
creasingly reduce the amount of annotation per image.

General Framework: We propose the following frame-
work for large scale training of computer vision systems:

1. Model the relationships between different variables us-
ing some structured model, such that runtime inference
is computationally efficient

2. Ask a human to label a new image, using the current
model to predict and display the maximum likelihood
values of all variables as the user adjusts incorrect la-
bels.

3. Update the learned model parameters using the newly
labeled image

4. Repeat steps 2-3

We focus the discussion and experiments on annotation of
deformable part models; however, the same basic method-
ologies should apply to a wide variety of other problems
such as tracking, segmentation, and scene understanding.

Contributions: There are two main contributions of this
paper: (1) We propose a framework for scalable annotation
of structured models that interleaves online learning and in-
teractive labeling, and show that it has excellent practical
and theoretical properties in terms of optimality guaran-
tees, bounds on the amount of annotation effort per train-
ing image, and computational scalability. (2) We introduce
an algorithm and UI for realtime interactive labeling of de-
formable part models. While this UI is particularly suited
to be used in conjunction with an online structured learning
algorithm, it is also useful as a standalone application. For
example, it could be used for semi-automated annotation
of biomedical images or as an object-specific smart plugin
for photo-editing software. In these applications, achieving
a high-degree of accuracy is more important than having a
fully automated system, and a motivated human-in-the-loop
can help correct imperfect computer vision systems.

Interactive Labeling of Deformable Part Models: Our
interactive labeling interface applies to a variant of the pop-
ular deformable part model of Felzenszwalb et al. [10].
Our model employs semantically meaningful, strongly su-
pervised parts and uses mixture models to handle multiple
poses or aspects of an object, as in [28, 15, 25]. We intro-
duce efficient algorithms which update and display in re-
altime the maximum likelihood location of all parts as the
user drags one or more parts with the mouse. We encourage
the reader to watch videos of the annotation system in the
supplementary material before reading this paper.

Online Structured Learning: We employ online algo-
rithms which optimize a structured SVM objective func-
tion [20], a convex optimization problem that has been ap-
plied to a wide variety of different problems in computer vi-
sion [2, 28, 15, 5, 19]. While the SVMstruct solver is most
commonly used, online optimization algorithms have been
observed to be faster in practice [5, 28]. This result is sup-
ported theoretically by results relating to online learning al-
gorithms for strongly convex loss functions [12, 11, 18, 16].

Theoretical Properties: Online algorithms have a few
somewhat surprising theoretical properties that are useful in
practice when applied to structured learning. First, asymp-
totic bounds for training time do not directly depend on the
number of training images available. In practice this means
that if one’s goal is to reach a solution within ε of the mini-
mal achievable training error, the amount of processing per
training image shrinks as the training set size increases.

Second, in the setting in which one keeps labeling new
examples until one achieves ε-level test error, increasing the
structural complexity of the model (e.g., number of parts or
alignment parameters) does not increase theoretical bounds
on total annotation effort (if the feature space remains fixed
and annotation effort is measured in terms of total labels



corrected–the product of the number of training images re-
quired and correction operations per image).

Active Labeling: Interactive labeling–also called active
labeling–has been applied to interactive image segmenta-
tion or matting [17, 27, 13], semi-automated video annota-
tion [31, 23, 1], and active classification for class-attribute
models [4, 14]. Active labeling interfaces use known re-
lationships between variables in some structured model to
reduce annotation time: the labels of neighboring pixels are
correlated for segmentation methods, the position of an ob-
ject in consecutive time frames are correlated for video an-
notation methods, and class and attribute variables are cor-
related for active classification methods. For our interface,
the primary source of information for reducing annotation
time is the spatial relationships between different parts.

Active Learning: Our work also has some similarities to
the work of Vijayanarasimhan et al. [21, 22] relating to large
scale annotation and active learning for structured objects.
In active learning, computers intelligently decide which im-
ages and labels they want humans to annotate. In contrast,
for interactive labeling methods, human annotators are the
intelligent entity and decide which labels they want to cor-
rect. Active learning is a more ambitious learning prob-
lem with larger potential savings; however, in comparison
to standard strongly supervised methods, it has higher com-
putational complexityand fewer theoretical guarantees. In
contrast, interactive labeling and online learning maintain
the computational properties and theoretical guarantees of
strongly supervised methods and may be applied to arbi-
trary structured prediction models.

Organization: The paper is organized as follows: In Sec-
tion 2, we describe our basic model and algorithms for part-
based recognition and show how user input can be incorpo-
rated in a realtime interface. In Section 3, we show how our
interactive interface can be integrated with a scalable online
learning algorithm for training deformable part models and
discuss computational properties and bounds on annotation
effort. In Section 4, we perform experiments to analyze how
the level of automation evolves as more training examples
are added.

2. Interactive Part Localization
In this section, we present an algorithm that computes

and displays in realtime the maximum likelihood location
of a deformable part model as the user drags different parts
with the mouse.

2.1. Model and Notation

Given an image x, let Θ = θ1...θP encode the posi-
tion of each of P parts in the image. The location θp
of a particular part p can be parameterized by an image

location (xp, yp), scale sp, orientation rp, and aspect vp:
θp = {xp, yp, sp, rp, vp}.

We assume a part tree model T = (V,E) (see Figure
2(a)), such that the score s(Θ;x) of a particular part con-
figuration Θ can be expressed as a sum over unary terms
ψp(θp;x) for each part and pairwise terms λpq(θp, θq) for
each edge in the tree:

s(Θ;x) =
∑
p∈V

ψp(θp;x) +
∑

(p,q)∈E

λpq(θp, θq) (1)

Here, ψp(θp;x) is a learned appearance score for part p
(the response of a sliding window detector for part p) and
λpq(θp, θq) is a learned spatial score between pairs of parts.
The maximum likelihood solution Θ∗ = maxΘ s(Θ;x) can
be found efficiently using dynamic programming.

Our part detectors are based on sliding window HOG
templates, and our spatial model is implemented as a
quadratic function on the relative displacement between
parts. The index vp encodes the view/aspect of a part and is
implemented using a mixture model, with different appear-
ance templates and spatial parameters for each vp [28].

2.2. Incorporating User Input

LetUt = {θ̃j(1)...θ̃j(t)} be a sequence of user input oper-
ations up to time step t. In this notation, j(t) is the index of
the part annotated by the user in time step t, and θ̃j(t) is the
user’s label of the part location θj(t). If the user re-annotates
the same part, it is assumed that the most recent annotation
overrides all previous ones. The maximum likelihood solu-
tion Θ∗t that is consistent with Ut can be obtained by max-
imizing a modified score function st(Θ;x, Ut) which maps
each user response θ̃p into a unary potential up(θp; θ̃p):

st(Θ;x, Ut) = s(Θ;x) +
∑
θ̃p∈Ut

up(θp; θ̃p) (2)

up(θp; θ̃p) =

{
−∞ if θp 6= θ̃p

0 otherwise
(3)

Simple extensions include allowing imperfect user re-
sponses up(θp; θ̃p) ∝ log p(θp|θ̃p), and partial annotations
to a given part (e.g. the user labels xp, yp but not sp, rp, vp).

2.3. Creating an Interactive User Interface

Dynamic programming is commonly used for maximum
likelihood (ML) inference on pictorial structures with hier-
archical structure. It computes cache tables which are in-
dexable by pixel location and are accessed during a back-
tracking stage to extract the ML solution. In our case,
interactively displaying the ML solution as the user drags
the mouse simply involves indexing into a different starting
pixel location during the backtracking stage, and therefore
it is easily computable in realtime.
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Figure 2. Visualization of Model and Algorithms: a) Object part location variables are assumed to have a hierarchical relationship.
Dynamic programming is run in both directions up and down the tree. b-d) Visualization of the main algorithms used for the interactive
interface. In each algorithm, part nodes are traversed in the order indicated by the arrows. When processing each node, solutions over the
sub-graphs highlighted in blue are combined to form the solution highlighted in red. b) Using a standard dynamic programming algorithm,
information is propagated from the child nodes up to the root using Eq 6-7, c) In a second top-down algorithm, information is passed from
the root back down to the children using Eq 8-10, d) When a user response updates the variable θp, information is propagated using a
breadth first traversal of the tree beginning at p using Eq 12-15.

Algorithm 1 INTERACTIVEPARTLABELER

Input: An image x and model weights w
Output: Verified labels Θ∗t

1: Compute part detection responses Ψp

2: Precompute solution for any possible user response:
3: Bottom-up traversal, evaluating Eq 6-7
4: Top-down traversal, evaluating Eq 8-10
5: while User unsatisfied with Θ∗t = maxθr M

t
r [θr] do

6: As user drags j(t), interactively show M t
j(t)[θ̃j(t)]

7: On mouse release, finalize solution θ̃j(t):
8: Update unary score M t+1

j(t) (Eq 11)
9: Breadth first traversal from j(t), evaluate Eq 12-15

10: t← t+ 1
11: end while

To make this work for our GUI, we require two changes
to standard dynamic programming algorithms: 1) we run
dynamic programming in both directions up and down the
tree (this allows us to lookup the ML solution as the user
drags any part as opposed to just the root of the part tree),
and 2) we must update our cache tables over time as we
obtain additional user input (such that we can display the
ML solution conditioned on all user annotations received
so far). In the remainder of this section, we describe algo-
rithms for implementing these two things efficiently. Due
to space restrictions, discussion of the algorithm in this sec-
tion is brief. We include more detailed derivation and proof
of correctness in the supplementary material. The entire al-
gorithm is summarized in Algorithm 1.

Let M t
q denote an array storing the maximum likelihood

solutions for part q at time step t after having received user
annotations Ut. In our notation, M t

q [θq] stores the score of

the optimal solution conditioned on placing q at position θq:

M t
p[θ̃p] = maxΘ s

t(Θ;x, Ut)

s.t. θp = θ̃p
(4)

Our goal is to efficiently compute cache tables M t
q for all

parts q. We use the notation M t
qp, where p ∈ neighbor(q),

to denote the table of sub-solutions over the subgraph which
includes part q but deletes all parts and edges connected to
q though p. For example, when p = parent(q), M t

qp stores
the optimal solution over the sub-tree rooted at q. Let N t

pq

denote a similar concept which also factors in the spatial
score between p and q:

N t
pq[θ̃p] = max

θq

(
M t
qp[θq] + λpq(θp, θq)

)
(5)

In other words,N t
pq[θ̃p] allows one to lookup the optimal

location of θq when conditioned on a particular value θ̃p.
Here, to avoid making the notation more complex, we have
writtenN t

pq as a score maxθq ; however, in practice we must
also store the location arg maxθq , such that we can retrieve
the solution later on during backtracking.

As in [9], we use a distance transform operation (which
we denote by the operator ⊗) to densely compute N t

pq in
time linear in the number of pixel locations. Let Ψp and
Λpq be shorthand for unary and pairwise score maps, such
that Ψp[θp] = ψp(x, θp) and Λpq[θq] is the cost associated
with part q being at an offset of θq from p. In our notation,
the standard dynamic programming algorithm for inference
on pictorial structures traverses the tree T bottom-up, using
the recursive update step:

M0
qp = Ψq +

∑
r∈child(q)

N0
qr (6)

N0
pq = M0

qp ⊗ Λpq (7)



where Eq 6 is evaluated for all q ∈ child(p). We run dy-
namic programming as our initial preprocessing step, then
employ a second pass that processes each edge p, q in a top-
down traversal of the tree:

M0
pq = M0

p −N0
pq (8)

N0
qp = M0

pq ⊗ Λqp (9)

M0
q = M0

qp +N0
qp (10)

This top-down pass computes M0
pq , N

0
qp, and M0

q for all
parent-child pairs p, q and relies onM0

qp andN0
pq being pre-

computed (these were computed during the initial dynamic
progamming step). As the user moves the mouse to drag a
part j(t) to location θ̃j(t), we can display in real-time the
solution corresponding to M t

j(t)[θ̃j(t)]. When the user re-

leases the mouse to finalize a part location θ̃j(t), we encode
the user response into an updated unary potential uj(t) ac-
cording to Eqn 3, which is used to update the ML solution
for that part:

M t+1
j(t) [θj(t)] = M t

j(t) + uj(t)(θj(t); θ̃j(t)) (11)

We then propagate this new information to other parts using
a single pass, breadth-first traversal of the graph T , origi-
nating from the node j(t). The update step is depicted in
Fig 2(d):

M t+1
qp = M t

qp, N t+1
pq = N t

pq (12)

M t+1
pq = M t+1

p −N t+1
pq (13)

N t+1
qp = M t+1

pq ⊗ Λqp (14)

M t+1
q = M t+1

qp +N t+1
qp (15)

where q is any neighbor of p. This update is efficient in
practice and involves computing one distance transform op-
eration per edge in the part tree. Both the update step
and precomputation steps take linear time in the number of
parts, scales, aspects, and pixel locations.

3. Online Structured Learning
Our method jointly learns the appearance and spatial pa-

rameters of our deformable part model. We formulate the
problem as a maximum margin structured learning problem
(structured SVM [20]), which searches for the optimal vec-
tor of weights w∗ that minimizes the error function Fn(w):

Fn(w) =
λ

2
‖w‖2 +

1

n

n∑
i=1

`i(w) (16)

`i(w) = max
y

(w · Φ(xi, y)−w · Φ(xi, yi) + ∆(yi, y))

(17)

where {(x1, y1)...(xn, yn)} is a training set of images and
ground truth labels (for part detection, y = Θ). Φ(x, y)

Algorithm 2 ONLINEINTERACTIVEPARTLEARNER

1: Initialize w0 ← 0, s← 0
2: for i = 1 to n do
3: Obtain new example xi:

yi ← INTERACTIVEPARTLABELER(ws, xi)
4: Update weights using Eq 20 or 22
5: s← s+ 1
6: Optional: w/ spare CPU cycles, repeat lines 4-5
7: end for

is a vector of features extracted with respect to a particular
prediction of part labels y (e.g., it concatenates HOG fea-
tures extracted from around each part location and squared
distances between adjacent parts). This criterion attempts
to learn a set of weight parameters w, such that the score
extracted at the ground truth part locations w · Φ(xi, yi)
is greater than the score of any other choice of part loca-
tions w · Φ(xi, y) by at least ∆(yi, y), a customizable loss
function encoding the penalty of predicting part locations y
when the true locations are yi.

The structured hinge loss `i(w) is convex in w, because
it is the maximum of a set of affine functions. The gradient
(or technically a sub-gradient) of `i can be computed by
solving a problem similar to an inference problem:

ȳi = max
y

(w · Φ(xi, y) + ∆(yi, y)) (18)

∇`i = Φ(xi, ȳi)− Φ(xi, yi) (19)

Learning with strongly convex loss functions (this in-
cludes arbitrary convex loss function with L2 regularization
added such as Eq 16) has recently been extensively studied
in online learning literature [12, 11, 18, 16]. [11, 12] show
that for learning problems with λ-strongly convex loss func-
tions (e.g., the form of Eq 16), an online stochastic gradient
descent (SGD) which streams in an example (xs, ys) and
takes an update step

ws = ws−1 −
1

λs
(λws−1 +∇`s) (20)

achieves at most logarithmic regret

S∑
s=1

fs(ws)−min
w

S∑
s=1

fs(w) ≤ R2 (logS + 1)

2λ
(21)

where fs(w) = λ
2 ‖w‖

2 + `s(w) and R is a bound on the
magnitude of the gradient of fs(w). The regret is measured
as the total loss incurred as one streams in new unseen train-
ing examples as compared to the minimum achievable loss
over the entire training set. It implies that even when using
a simple optimization algorithm which takes only one gra-
dient step per training example, average test error goes with
O( logn

n )–a faster statistical convergence rate than those im-
plied by standard VC bounds for binary classification (if



the loss one cares about some is some strongly convex loss
function instead of 0/1 binary classification loss, bounds on
generalization error go with Õ( 1

n ) instead of O( 1√
n

).
For structured SVMs (as well as for linear SVMs), R is

related to a bound on the L2 norm of the image of Φ(x, y)
and is typically proportional to the dimensionality of the
feature space. Regret bounds hold regardless of the order
examples are processed and for any algorithm that improves
the dual objective to Eq 16 by at least as much as SGD [12].
A variant of SGD is used by Pegasos [18], a popular online
learning algorithm for linear SVMs. A slightly better update

ws =
s− 1

s
ws−1 −min

(
1

λs
,
`s(ws−1)

‖∇`s‖2

)
∇`s (22)

solves for the step size which maximally improves the dual
objective in closed form and is similar to an online version
of the update used by LIBLINEAR [8], a fast optimizer for
linear SVMs.

By choosing S such that regret bounds in Eq 21 are less
than ε, one can show that if one iterates for S = Õ(R

2

λε ) iter-
ations and processes each training example an equal num-
ber of times, then the converged solution is guaranteed to
be within ε of the minimal achievable training error. Sim-
ilarly, if one attains n = Õ( R

2

δλε ) training examples, then
with probability at least 1 − δ, the expected error on a ran-
dom test example will be within ε of the minimum achiev-
able model error f(w∗).

One important implication is that training time does not
depend directly on the number of training examples. In
practice this means that that the number of iterations of gra-
dient descent one must run per training example shrinks as
the training set size increases. Secondly, structured SVMs
have the same empirical and statistical convergence proper-
ties as linear SVMs; the only difference is that for structured
SVMs the time to compute the gradient (Eq 19) grows with
inference time.

Combining Interactive Labeling: Incorporating interac-
tive labeling is simple: every time we obtain a new training
example, we use our our current model parameters ws to
accelerate the labeling process (see Algorithm 2). We use
a loss function ∆(yi, y) equal to the number of misclassi-
fied labels (e.g. number of incorrect parts in a given image).
We assume a predicted part location is correct if its x, y
location is within some sufficiently small radius from the
ground truth location.

One motivation for using structured SVMs is that the
structured hinge loss `i(w) is always at least as big as the
custom loss function ∆(yi, y) [20], as is the regularized er-
ror fi(w). Thus the total loss incurred during online learn-
ing

∑S
s=1 fs(ws) (which is bounded by regret bounds in

Eq 21) is an upper bound on the total number of incor-
rect labels throughout the course of training. As a conse-

quence, obtaining n = Õ( R
2

δλε ) training examples ensures
not only that (with high probability) average test error will
be no more than f(w∗) + ε but also that the average num-
ber of labels corrected per training example will be no more
than f(w∗) + ε. Intuitively, it becomes harder and harder
to drive down generalization error as one adds more and
more training examples, such that the majority of training
examples are labeled with a similar level of error as that at
final convergence. These results suggest that increasing the
structural complexity of the model (e.g. adding more parts
or mixture components) while fixing the dimensionality of
the feature space Φ(x, y) does not necessarily increase the
total amount of annotation effort during training.

Labeling Bias and Time Considerations: We emphasize
though that these results are measured in terms of the total
number of labels corrected during training and not directly
in terms of human annotation time. We still assume that the
user must verify correctness of machine-predicted labels.
Clearly in practice this will result in additional annotation
time. Secondly, bounds on the number of corrected labels
are less useful if f(w∗) is high (e.g., the chosen feature
space saturates and is not capable of getting good perfor-
mance).

A second concern relates to the effect of interactive la-
beling on biasing user labels. For example, using an interac-
tive part labeling tool will result in slightly different labeled
pixel locations for some parts. It is our assumption that an
annotator will submit a final label which he/she believes to
be acceptable. Continuous variables such as part locations
have some range of acceptability and are prone to fluctua-
tion from annotator to annotator. Interactive labeling biases
annotated locations within this range. We intend to study
effects of labeling bias and annotation time in future work.

Diagnosing Sources of Error: Combining online learn-
ing and active labeling has a few nice practical properties
which facilitate debugging when training is unsuccessful.
Methodologies for diagnosing problems due to insufficient
training data, insufficient computation time, bad model or
feature space, and annotation error are described in the sup-
plementary material.

4. Experiments

To demonstrate the practicality and effectiveness of our
interactive labeling and learning system, we test perfor-
mance on two different datasets using two different user in-
terfaces: CUB-200-2011 [24], which allows users to simply
click and drag the location of a particular part, and a dataset
of synthetic birds, which also allows users to alter the scale,
orientation, and aspect of each part. Results on the synthetic
dataset are included in the supplementary material.

CUB-200-2011 [24] is an extended version of the



Figure 3. Typical Results on Birds-200, with blue dots denoting parts predicted by a deformable part model trained on a 1000 image
training set, and red dots denoting parts that were corrected by a simulated user (as described in Section 4)

Caltech-UCSD Birds 200 dataset [26] and contains 11,788
images of birds of 200 species. The dataset contains un-
cropped images of birds in the wild, including birds that are
flying, perched, swimming, truncated and occluded. Each
image was annotated by 5 different Mechanical Turk users
by a simple x, y coordinate (e.g. users were asked to click on
the center of each part) and associated with a non-semantic
aspect.

Although our interface is practical and realtime, it re-
quires background processing to precompute lookup tables
when the user releases the mouse. Thus the engineering
challenges associated with mass-deploying our system on
MTurk were beyond the scope of this paper. Since the
dataset contains an exhaustive set of part click locations for
each training image, we constructed a simulated user inter-
face as follows:

1. The computer vision system updates its prediction of
the most likely part locations

2. The simulated user selects and drags the part with max-
imum distance to his/her click response (normalized
by a per part standard deviation)

3. If all part predictions are within 1.5 standard devia-
tions from the user’s click response, the session ends.
Otherwise, steps 1-2 are repeated.

We processed training images in random order, ignoring
bird species labels. The standard deviation of user click re-
sponses was computed separately for each part, using 5 dif-
ferent MTurk responses per image. Qualitatively, the simu-
lated interface was fairly true to life (see Figure 3).

Since we are interested in understanding how total an-
notation time changes as we train our part detectors in an
online fashion, we varied the training set size from 50 to
4000 images and used the remaining images as test data.
The results of our experiments are summarized in Figure
4. Each curve in Figure 4a shows part prediction accuracy

(measured as the number of parts within 1.5 standard devi-
ations of a user click response) as a function of the number
of parts corrected by the interactive interface.

Additionally, we measure the average number of parts
that needed to be labeled until all part predictions were
deemed acceptable. We see that of 13 possible parts, on
average the user needed to label 6.6 parts when using only
50 training examples. This was reduced to 3.9 parts when
the training set was increased to 4000 images. At this
point, the benefits of adding more training images were
small, and errors were mostly attributable to saturation of
the model/feature space.

Figure 4b plots the same results, except that we mea-
sured performance as a function of the duration (in terms
of human time spent) of the interactive interface. This was
estimated using timing data for each part click response in
the CUB-200-2011 dataset. The average duration of an in-
teractive labeling session was 12.0 seconds when using the
detectors trained on the set of 4000 images and 19.7 seconds
when trained on 50 images.

Computational Properties: The bird model we used con-
sisted of 13 different parts, 11 aspects, and 4 scales. Total
preprocessing time (which includes computing HOG fea-
tures, evaluating sliding window detectors, and running dy-
namic programming) takes less than 1 second on a single
2.4GHz CPU. As the user drags a part, the predicted part
locations are displayed as a simple lookup operation (which
easily runs in realtime). Each time the user releases the
mouse to finalize a part location, lookup tables are updated,
which takes approximately .3 seconds. Total training time
of the standalone online structured learning algorithm was
approximately 3 hours on the 4000 image dataset on an 8-
core computer when training, where training was stopped
when it reached an approximation factor of ε = .02 from
the minimal achievable training error.



0 5 10 15
0

2

4

6

8

10

12

# User Annotated Parts

#
 C

o
rr

e
c
tl
y
 P

re
d

ic
te

d
 P

a
rt

s

 

 

n=50 (ave 6.6 parts)
n=250 (ave 4.9 parts)

n=1000 (ave 4.1 parts)
n=4000 (ave 3.9 parts)

(a) Part Prediction By # Corrections

0 10 20 30
0

2

4

6

8

10

12

Labeling Time (sec)

#
 C

o
rr

e
c
tl
y
 P

re
d

ic
te

d
 P

a
rt

s

 

 

n=50 (ave 19.7sec)
n=250 (ave 15.2sec)

n=1000 (ave 12.8sec)
n=4000 (ave 12.0sec)

(b) Part Prediction By Time

Figure 4. Results on Birds-200: (a) Average part prediction ac-
curacy as a function of the number of annotated parts per image.
Each curve shows performance for a different training set size,
indicating annotation becomes progressively more automated as
more images are labeled. The legend shows the average number
of parts that needed to be labeled until all 13 were correct. An
upward curving plot indicates interactive labeling is effective. (b)
Part prediction accuracy as a function of labeling time per image.

5. Conclusion

We proposed a framework for large scale annotation and
learning of structured models that has excellent theoretical
properties in terms of computation time and annotation ef-
fort. We introduced a novel interface for interactive labeling
of deformable part models that is capable of updating and
displaying the maximum likelihood location of each part
in realtime as the user drags the mouse, and applied this
model to our interactive, online learning framework. In fu-
ture work, we hope to deploy our system on a larger scale
and apply similar methodologies to other domains such as
segmentation, tracking, and scene understanding.
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