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Abstract. This paper addresses the problem of estimating the 3D shape
of a smooth textureless solid from multiple images acquired under ortho-
graphic projection from unknown and unconstrained viewpoints. In this
setting, the only reliable image features are the object’s silhouettes, and
the only true stereo correspondence between pairs of silhouettes are the
frontier points where two viewing rays intersect in the tangent plane of
the surface. An algorithm for identifying geometrically-consistent frontier
points candidates while estimating the cameras’ projection matrices is
presented. This algorithm uses the signature representation of the dual of
image silhouettes to identify promising correspondences, and it exploits
the redundancy of multiple epipolar geometries to retain the consistent
ones. The visual hull of the observed solid is finally reconstructed from
the recovered viewpoints. The proposed approach has been implemented,
and experiments with six real image sequences are presented, including a
comparison between ground-truth and recovered camera configurations,
and sample visual hulls computed by the algorithm.

1 Introduction

Structure and motion estimation algorithms typically assume that correspon-
dences between viewpoint-independent image features such as interest points or
surface markings have been established via tracking or some other mechanism
(e.g., [4, 21, 23]). Several effective techniques for computing a projective, affine,
or Euclidean scene representation from these correspondences while estimating
the corresponding projection matrices are now available (see, for example [8, 9,
13] for extensive discussions of such methods). For objects with little texture
and few surface markings, silhouettes are the most reliable image features. The
silhouette of a smooth solid is the projection of a surface curve, the occluding
contour, where the viewing cone grazes the surface. Establishing correspondences
between these viewpoint-dependent features is difficult: In fact, there is only a fi-
nite number of true stereo correspondences between any two silhouettes, namely
the frontier points where the two occluding contours and the corresponding view-
ing rays intersect in the tangent plane of the surface [10].

For image sequences taken by a camera with known motion, it is possible
to estimate the second-order structure of a surface along its occluding contour,



as first shown by Giblin and Weiss in the orthographic projection case [12]
(see, for example, [5, 7, 20] for extensions to perspective projection). Methods for
recovering both the surface structure and the camera motion using a trinocular
rig have also been proposed [14, 25]. The single-camera case is more difficult, and
all approaches proposed so far have either been limited to circular motions [11,
18, 28], required a reasonable guess to bootstrap an iterative estimation process
[2, 6], or been limited to synthetic data [26]. Likewise, all published methods for
computing visual hulls [16] from image silhouettes, dating back to Baumgart’s
1974 thesis [3], have assumed that the camera configurations were known a priori.

This paper presents an integrated approach to the problem of estimating
both structure and motion for smooth textureless solids observed by ortho-
graphic cameras with unknown and unconstrained viewpoints. An algorithm for
identifying geometrically-consistent frontier point candidates while estimating
the cameras’ projection matrices is presented. This algorithm uses the signature
representation of the dual of image silhouettes, proposed in [1] in the object
recognition context, to identify promising correspondences, and it exploits the
redundancy of multiple epipolar geometries [17] to retain the consistent ones.
The visual hull [3, 16] of the observed solid is finally reconstructed from the re-
covered viewpoints. We have implemented this algorithm, and tested it on six
real image sequences.

2 Proposed Approach

As mentioned in the previous section, the only true stereo correspondences be-
tween two silhouettes of a smooth solid are a finite number of frontier points,
where two viewing rays intersect as they graze the surface along the same tan-
gent plane (Figure 1). Equivalently, the frontier points are the intersections of
the corresponding occluding contours on the surface.

As will be shown in Section 2.2, it is a relatively simple matter to estimate
the projection matrices associated with m views of a smooth surface when a
sufficient number of true frontier points are available for a sufficient number of
image pairs. Conversely, it is easy to find the frontier points associated with
a pair of images once the corresponding projection matrices are known since
the corresponding tangent lines run parallel to the epipolar lines. This suggests
the following algorithm for robustly estimating the projection matrices while
identifying correct matches between silhouette pairs. It is similar in spirit to the
RANSAC-based approach to weak calibration proposed in [22].

1. For each image pair, select a set of promising frontier points candidates.
Each candidate will be referred to as a match between the two images in the
sequel.

2. Find a minimal set of images and geometrically-consistent matches, and
estimate the corresponding pairwise epipolar geometries and the individual
projection matrices;
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Fig. 1. Frontier points. See text for details.

3. Add the remaining images one by one, using matches that are geometri-
cally consistent with the current set of images to estimate the corresponding
projection matrices.

Three main ingredients play a role in the successful implementation of this
algorithm—namely, effective techniques for (1) selecting promising matches be-
tween pairs of images; (2) estimating the projection matrices from these matches;
and (3) rejecting matches that are not consistent with all available geometric in-
formation. These ingredients are detailed in the following sections.

2.1 Selecting Frontier Point Candidates

A fundamental property of frontier points under orthographic projection is that
the tangent lines at these points are parallel to each other, and the distances
between successive tangents are the same in the two images. This property was
used in [1] as the basis for a 3D object recognition algorithm. Briefly, the signa-
ture of a planar curve Γ is defined by mapping every unit vector n in the plane
onto the tuple formed by the successive distances between the tangent lines to Γ
perpendicular to n (Figure 1), taken in the order in which they are traversed by
that vector. Formally, the signature can be thought of as a representation of the
set of tangent lines—or dual—of Γ by a family of curves embedded in subspaces
of R

d of various dimensions, where d is the maximum number of parallel tan-
gents of Γ [1]. In the structure-from-motion context, this interpretation is not
necessary. Instead, it is sufficient to note that the signatures of two silhouettes
intersect at the corresponding frontier points, which affords a simple mechanism
for selecting potential pairs of frontier points.

To account for the possibility of self occlusion, we follow the robust matching
approach of [1, 24] to determine the “distance” between two signature points
d = (d1, . . . , dk) and d′ = (d′1, . . . , d

′
l), where k may not equal l. Assuming that



dij = |di − d′j | obeys a normal distribution with variance σ for matching entries,
and a uniform distribution for all others, the discrepancy between individual
entries in d and d′ is the Lorentzian Lσ = σ2/(d2

ij + σ2), whose value is 1
for a perfect match but is close to zero for large mismatches. To respect the
natural ordering of the tangent lines, the final score is found by using dynamic
programming to maximize the sum of the Lorentzians among all paths with non-
decreasing function j(i), and dividing the maximum by the number of matched
signature points.

This approach provides a guide for selecting promising matches. We also use
a number of filters for rejecting incorrect ones: First, the object should lie on
the same side of matching tangents in both images. Second, the curvatures at
matching frontier points should have the same sign [15]. In practice, we exhaus-
tively search each pair of silhouettes for potential sets of frontier points,3 and
retain the t most promising ones, where t is a fixed constant (t = 10 in our
implementation).

2.2 Estimating Projection Matrices from Frontier Points

We assume an affine (orthographic, weak-perspective, or para-perspective) pro-
jection model, and show in this section how to estimate the projection matrices
associated with a set of cameras from the corresponding object silhouettes and
their pairwise frontier points. Contrary to the typical situation in structure from
motion, where many point features are visible in many images, a (relatively)
small set of frontier points is associated with each pair of images, and it is only
visible there. Therefore, a different approach to motion estimation is called for.
We proceed in three steps as described below.

Affine motion from a pair of images. Exploiting the affine ambiguity of
affine structure from motion allows us to write the projection matrices associated
with two images I and I ′ in the canonical form (see [9] for example):

M̂ =
[
1 0 0 0
0 1 0 0

]
, M̂′ =

[
0 0 1 0
a b c d

]
. (1)

Assuming there are n frontier points with three-dimensional coordinates (xj , yj , zj)
and image coordinates (uj , vj) and (u′

j , v
′
j) (i = 1, . . . , n), it follows immediately

that

auj + bvj + cu′
j − v′j + d = 0 for j = 1, . . . , n. (2)

This is of course equivalent to the affine epipolar constraint αuj + βvj + α′u′
j +

β′v′j + δ = 0, where the coefficients a, b, c, and d are related to the parameters
α, β, α′, β′, and δ by a : α = b : β = c : α′ = −1 : β′ = d : δ. Given the images
3 We could of course use some hashing technique—based, say, on the diameter D of
the object in the direction of interest—to improve the efficiency of the search for
promising matches, but this is far from being the most costly part of our algorithm.



of n frontier points, the parameters a, b, c, and d can be computed by using
linear least squares to solve the over-constrained system of linear equations (2)
in these unknowns.

Affine motion from multiple images. This section shows how to recover
the m projection matrices Mi (i = 1, . . . ,m) in some global affine coordinate
system once the pairwise epipolar geometries are known, or, equivalently, once
the projection matrices are known in the canonical coordinate systems attached
to each camera pair.

Suppose that the values (akl, bkl, ckl, dkl) associated with two images Ik and
Il have been computed from (2). There must exit some affine transformation A
mapping the canonical form (1) onto Mk and Ml, i.e.,

[Mk

Ml

]
=

[M̂k

M̂l

]
A. (3)

If we write the two projection matrices Mk and Ml as

Mk =
[
pT

k

qT
k

]
and Ml =

[
pT

l

qT
l

]
,

it is a simple matter to eliminate the unknown entries of A in Eq. (3) and show
that

ql =
[
pk qk pl 0

]
ekl,

where 0 = (0, 0, 0, 1)T , and ekl = (akl, bkl, ckl, dkl)T . In other words, we have
four linear constraints on the entries of the matrices Mk and Ml. By combin-
ing the equations associated with all image pairs, we obtain a linear system of
2m(m−1) linear equations in the 8m entries of the m projection matrices, whose
solutions are only defined up to an arbitrary affine transformation. We remove
this ambiguity by fixing two projection matrices to their canonical form given
by (1). The solution of the remaining p = 2m(m − 1) − 4 linear equations in
q = 8(m− 2) unknowns is again computed by using linear least squares. Three
images are sufficient to compute a single solution, and four images yield redun-
dant equations that can be used for consistency checks as explained in the next
section.

Euclidean motion. Let us write the affine projection matrices recovered in
the previous section as Mi =

[Ai bi

]
(i = 1, . . . ,m). As shown in [19] for

example, once the affine projection matrices are known, there exists an affine
transformation, or Euclidean upgrade,

Q =
[ C 0
0T 1

]
such that MiQ =

[Ri bi

]
,

where the 2×3 matrix Ri is the top part of a 3×3 rotation matrix and, this time,
0 = (0, 0, 0)T . It follows that Ai(CCT )AT

i = AiSAT
i = Id2, where S = CCT , and



Id2 is the 2 × 2 identity matrix. The m instances of this equation provide 3m
constraints on the 6 independent entries of the symmetric matrix S, allowing its
recovery via linear least squares. Once S is known, the matrix C can be recovered
using Cholesky factorization for example.4

2.3 Enforcing Geometric Consistency

As shown in [17] for example, the pairwise epipolar constraints among a set of
images are redundant. We propose in this section to exploit this redundancy by
enforcing the corresponding geometric constraints during matching.

Geometric consistency constraints. The following simple tests can be used
to check whether a set of matches and the corresponding projection matrices are
geometrically consistent:

1. Motion estimation residuals. As shown in Section 2.2, the recovery of the
affine projection matrices from a set of frontier points can be formulated
as a linear least-squares problem. The size of the corresponding residual
gives a first measure of consistency. The same is true of the residual of the
linear system associated with the corresponding Euclidean upgrade. We use
both measures in our implementation as simple filters for rejecting incorrect
matches.

2. Unmatched external frontier points. Suppose the projection matrices associ-
ated with m images have been estimated, but matches of some image pairs
(Ik, Il) have not been used in the estimation process (this is a typical situa-
tion because of the epipolar constraints’ redundancy). The affine fundamen-
tal matrix associated with Ik and Il is easily computed from the correspond-
ing projection matrices, and it can be used to predict the frontier points’
projections in both images. Due to noise, discretization errors, occlusions,
etc., some of the predicted points in one image may not have matches in the
other one. Still, the two outermost—or external—frontier points are normally
visible in each image (Figure 1), even in the presence of self occlusion, and
they can be used as a second consistency filter. Of course, the distance be-
tween these points should be the same in the two images, i.e., the diameters
of the two silhouettes in the direction orthogonal to the epipolar lines should
be the same. But one can go further and compute the distance separating
each external frontier point from the epipolar line associated with its match.
This test, that computes four images distances instead of a single diameter
difference, has proven much more discriminative in our experiments.

3. Matched frontier points. Assuming as before that the projection matrices
are known, the 3D positions of all matched frontier points are easily recon-
structed via triangulation. Our third consistency check is to project these

4 This assumes that S is positive definite, which may not be the case in the presence of
noise. See [21] for another approach based on non-linear least squares and avoiding
this assumption.



frontier points into every other image and see if they lie outside the cor-
responding silhouette. Sum of distances of outlying frontier points to the
closest point on each silhouette becomes the measure.

4. Smooth camera motion. When the input images are part of a video sequence,
it is possible to exploit the continuity of the camera motion. In particular,
we require the angle between the viewing directions associated with images
number k and l to be less than |k− l| times some predefined threshold d. We
use d = 10 [degrees] in our experiments.

Selecting consistent matches while estimating motion parameters. Let
us show how to find geometrically consistent matches between image pairs while
estimating the corresponding epipolar geometries as well as the individual pro-
jection matrices. As noted in Section 2.2, bootstrapping the process requires
selecting r ≥ 3 images from a total of n images and one match candidate for
each one of the

(
r
2

) ≥ 3 corresponding image pairs. First, we randomly select
r images H = {H1, . . . , Hr} and try all promising matches among them to es-
timate r projection matrices. Second, we measure how well these estimates are
supported by the other images K = {K1, . . . ,Kn−r}. After repeating this process
a fixed number of times, we finally report the set H of r images with maximum
support as the winner.

H1 H4H3H2

Kn-r. . . . . . . . .

Current Estimation (r=4)

For each image Ki in K

[suppose i=1]

   Randomly select s=2 images from H

   [suppose H2 and H4 are selected]

   For each match candidate for a pair (K1, H2)

      For each match candidate for a pair (K1, H4)

         Estimate K1's projection matrix by using

         these 2 match candidates

         Compute consistency of 5 projection matrices

         (K1, H1, H2, H3, H4)

   The most consistent result becomes the measure

   of support from K1

The average over all Ki is the measure of support for

the current estimation

Match candidate

K1

Images in H

Images in K

Images in H'

Fig. 2. A procedure for estimating how well r projection matrices are supported by all the
other images in the bootstrapping process.

Our measure of support is defined as follows (Figure 2): Suppose for a moment
that

(
r
2

)
match candidates have been used to estimate the projection matrices

associated with the r images in H. For each image Ki in K, s ≥ 2 images are
randomly selected from H to estimate the projection matrix of Ki. Note that
since the projection matrices associated with the elements of H are known, we
only need to match Ki with s ≥ 2 elements H ′ of H to estimate its projection



matrix. For each image Ki and each element of H ′, we select one match can-
didate, estimate the projection matrix of Ki, and compute a consistency score
by using the geometric constraints described above. This process is repeated for
all tuples of match candidates between Ki and H ′, and we take the maximum
consistency score as the measure of support S(Ki) of the image Ki for H. The
overall measure of support for H is computed as the average of the individual
measures, or

∑n−r
i=1 S(Ki)/(n−r). Next, we will describe how to estimate all the

other (n − r) projection matrices starting from the estimation of r projection
matrices that has been just computed.

Let us assume from now on that the projection matrices associated with
m ≥ r images I = {I1, . . . , Im} have been computed, and consider the problem of
adding one more image J to I (Figure 3). We use a voting scheme to improve the
matching reliability: We tessellate the unit sphere and represent each projection
matrix by its viewing direction on the sphere. For all tuples I ′ of size s of images
in I (again for the same reason as above, we need to match J with only s ≥ 2
other elements for the estimation), we exhaustively choose a match candidate
between J and each image in I ′, then estimate the projection matrix for J . Its
consistency is checked by enforcing the four geometric constraints given above,
and we cast a vote. The cell receiving the largest number of votes is declared as
a winner and simply an average is taken in that cell to estimate the projection
matrix of J . Note that the motion smoothness constraint can be incorporated
in this scheme by limiting the voting space as an intersection of circles, centered
at viewing directions of each Ii, as shown in Figure 3. All images are added one
by one to the set I by using this simple voting strategy repeatedly.

I1

I2
I3 I4

I5

Voting space is limited by the

smooth camera motion constraint.

I1

I2

I3

I4

I5

J

Match candidate

Images with known

projection matrix

Image to be estimated

Vote by the

viewing direction

Vote

Estimate projection

matrix of J and check

its consistency

Fig. 3. Voting method to estimate a new projection matrix. Two match candidates are
selected to cast a vote. When a camera motion is known to be smooth, the third consistency
check method is applied and the voting space is limited to the intersection of circles.



3 Implementation Details and Experimental Results

Six objects (a bracelet, a toy dolphin, a toy camel, a toy turtle, a toy duck, and
a Mexican doll) have been used in our experiments. Each sequence consists of
21 images, which are acquired using a pan-tilt head providing ground truth for
the viewing angles. Figure 4 shows one sample image for the first five objects,
and five images for the Mexican doll to illustrate its complex shape.

Fig. 4. Sample images of objects. The top row shows an image of a bracelet, a toy dolphin,
a toy camel, a toy turtle, and a toy duck. The bottom row shows five images of a Mexican
doll.

Image contours are extracted with sub-pixel localization using B-spline snakes
and gradient vector flow [27], while detecting corners. As discussed in the previ-
ous section, our algorithm first finds a set of r geometrically-consistent projection
matrices by examining a subset of all the image tuples. The size of this subset
has been set to 50 for all the examples. All other projection matrices are then
estimated one by one. We exploit the smooth camera motion constraint for all
the objects, using values of r = 4 and s = 2 in all cases.

Figure 5 compares the camera trajectories recovered by our algorithm to the
ground-truth data from the pan-tilt head. In each case, the corresponding camera
coordinate frames are first registered by a similarity transformation before being
plotted on the unit sphere. As can be seen from the figure, estimated trajectories
are quite accurate, especially for the first four objects. As shown by Figure 6, the
objects’ visual hulls [3, 16] are also recovered quite well. In fact, most inaccuracies
are not so much due to errors in the recovered projection matrices as to the fact
that a limited set of camera positions was used to construct each model.

Some quantitative results are given in Figure 7. The top two graphs show
that errors tend to decrease in the middle of image sequences, which corresponds
to intuition. As shown by the bottom table, rather large errors are obtained for
the duck sequence. This is due do a few erroneous projection matrices at the
beginning and the end of the sequence, with accurate estimates in its middle
part.



Fig. 5. In all the figures, thin lines represent ground truth data and thick lines represent our
estimations. Top: recovered camera trajectories of bracelet, dolphin, and camel. Bottom:
recovered camera trajectories of turtle, duck, and Mexican doll.
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