
In Proceedings of CVPR '96Structure and Motion of Curved 3D Objects fromMonocular Silhouettes�B. Vijayakumar David J. KriegmanDept. of Electrical EngineeringYale UniversityNew Haven, CT 06520-8267 Jean PonceComputer ScienceUniversity of IllinoisUrbana, IL 61801AbstractThe silhouette of a smooth 3D object observed bya moving camera changes over time. Past work hasshown how surface geometry can be recovered using thedeformation of the silhouette when the camera motionis known. This paper addresses the problem of esti-mating both the full Euclidean surface structure andthe camera motion from a dense set of silhouettes cap-tured under orthographic or scaled orthographic pro-jection. The approach relies on a viewpoint-invariantrepresentation of curves swept by viewpoint-dependentfeatures such as bitangents, inections and contourpoints with parallel tangents. Feature points, whichform stereo frontier points between non-consecutiveimages, are matched using this representation. Thecamera's angular velocity is computed from constraintsderived from this correspondence along with the imagevelocity of these features. From the angular velocity,the epipolar geometry is ascertained, and in�nitesimalmotion frontier points can be detected. In turn, themotion of these frontier points constrains the transla-tion component of camera motion. Finally, the surfaceis reconstructed using established techniques once thecamera motion has been estimated.1 IntroductionMost approaches for estimating the 3-D structureof an object from pictures taken by a moving cam-era are based on establishing a correspondence be-tween viewpoint-independent image features. Thiscorrespondence is explicit in feature-based approacheswhere tokens such as points [5, 17] or lines [16] aretracked through an image sequence, and implicit inapproaches using in�nitesimal motion where the chal-lenge is estimating the motion �eld [9]. For objectswith few surface markings and little texture, the mostreliable image feature is the object's silhouette, i.e.,the projection into the image of the curve, called theoccluding contour, where the cone formed by the op-tical rays grazes the surface. As the camera moves,the occluding contour changes, and when the cam-era's motion is known, it is possible to estimate thesecond-order structure of the observed surface alongthe occluding contour from the corresponding defor-mation of the silhouette: this was �rst establishedby Giblin and Weiss for orthographic projection withcoplanar viewing directions [7], and then extended

to 3D objects under perspective projection by oth-ers [1, 2, 4, 15, 18]. It has also been shown how toactively move the camera to reconstruct the entire sur-face using these methods [12].A method has been developed for estimating boththe surface structure and the camera motion fromperspective images acquired by a calibrated trinocu-lar rig [10]. For a single moving camera, techniqueshave been proposed for recovering the camera motionwhen it is constrained to be a rotation about a �xedaxis[6, 14]. More recently, a method was presentedfor determining the epipolar geometry for in�nitesi-mal and �nite motions [3], but this technique is iter-ative and requires an initial guess for the direction oftranslation or for the essential matrix.We address the problem of estimating both the fullEuclidean surface structure and the camera motionfrom a dense set of silhouettes captured under ortho-graphic or scaled orthographic projection. The crit-ical observation is that while the local informationconveyed by the deformation of the silhouette is notsu�cient to completely determine the observer's mo-tion, it can be combined with the more global informa-tion conveyed by correspondences established betweennon-consecutive images to recover the whole motionup to a unique scale factor that is constant over thefull trajectory.In this work, we model the camera by scaled ortho-graphic projection. For a point P 2 IR3 and camerawhose origin is at O and whose image plane is spannedby the orthogonal vectors i and j, the coordinates(X;Y ) of the projected point are given by:� X = �i � (P �O)Y = �j � (P � O) (1)where (O; i; j) is the camera's coordinate frame,(x0; y0; z0) are the coordinates in this frame of somereference point, and � = 1=z0. The vector k = i � jis the viewing direction and is also denoted by v. Forpure orthographic projection, � is taken to be constantand without loss of generality we shall choose � = 1.For a moving camera, O; i; j are functions of time,and so the camera's motion can be represented by itslinear velocity _O and angular velocity 
. Further-more the distance to the reference point might also bechanging, and so � may be a function of time. We
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Figure 1: Stereo Frontier Points: Between two im-ages, the stereo frontier points on a surface are thepoints of intersection of the two occluding contours.assume that � is constant in this paper; however themethod is extended in [20] to situations where � varies.1.1 Smooth Surfaces, Epipolar Geometryand Frontier PointsFor a smooth surface observed under orthographicprojection, the occluding contour is the set of surfacepoints where the surface normaln is orthogonal to theviewing direction v, and the silhouette is the projec-tion of the occluding contour. Note that the occludingcontour and the silhouette necessarily depend on theviewing direction.Between any two images taken by a camera mod-elled with orthographic projection, there is a one-parameter family of epipolar planes whose normals areorthogonal to the two viewing directions v1 and v2associated with the cameras [5]. In stereo vision, theprojection of an epipolar plane onto two epipolar linesis used to help establish correspondences. Now for twoimages of the same smooth surface, the occluding con-tours will be distinct curves. However, there is a set ofisolated surface points where the two occluding con-tours intersect. At these points, which are called thestereo frontier points, n is orthogonal to both v1 andv2. At such points, the surface normal is orthogonalto the epipolar plane. Figure 1 shows an example.A continuously moving camera establishes a localepipolar geometry at each instant in time [4, 8]. Inparticular, the normal to each plane in the family ofepipolar planes is given by:nf = v � _v = 
 � (
 � v)vsince _v = 
 � v. Because the camera is moving,the set of points on the surface that are orthogonalto nf de�ne a surface curve known as the frontiercurve [3, 8, 10]. A point on this curve will be referredto as an in�nitesimal frontier point. See Figure 2.At these points, the reconstruction method of [4]breaks down, but the in�nitesimal frontier points canbe detected when the camera motion is known.
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tfFigure 2: In�nitesimal Frontier Points: In�nitesi-mal frontier points de�ned by camera angular velocity.1.2 Outline of the AlgorithmThe reconstruction algorithm is composed of thefollowing steps which will be detailed subsequently.1. For each image in the sequence, detect the silhou-ette and locate feature points (bitangents, inec-tions, parallel tangents) on the contour.2. Track the feature points through the image se-quence and construct a set of invariant curves,one for each tracked bitangent and inection.3. For each image in the sequence, do the following:(a) For each bitangent or inection and asso-ciated parallel tangents, use the invariantcurves constructed in step 2 to �nd corre-sponding features in another image such thatthe corresponding features are stereo frontierpoints of the pair of images.(b) From three or more sets of correspondingstereo frontier points, compute the angularvelocity 
 of the camera frame.(c) From 
, determine the in�nitesimal epipo-lar geometry and locate the in�nitesimalfrontier points.(d) From constraints imposed by the motion ofthe frontier points, compute the linear ve-locity of a point on a reference curve.(e) Using the epipolar parameterization, recon-struct the occluding contour in a framewhose origin is at the reference point.4. Using the computed camera motion and recon-structed occluding contours, construct a surfacerepresentation in a common coordinate system.In the next four sections, we only consider pure or-thographic projection (� = 1). An extension to weakperspective (scaled orthographic projection) where �is function of time can be found in [20]. Under pureorthographic projection, the component of camera mo-tion along the viewing direction cannot be determined;two images will be identical if they are taken by cam-eras whose locations di�er only by translation alongthe viewing direction. Like Tomasi and Kanade, weperform reconstruction with respect to some featurepoint on the object [17], but in our case, this featurelies on a surface curve and is viewpoint-dependent.
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3D curved objectFigure 3: Parallel Tangents: a. Surface points whose tangent planes are parallel to the tangent plane at alimiting bitangent project onto points with parallel image tangents. b. The limiting bitangent developable andparallel tangents de�ne surface curves.2 Finding Stereo Frontier Points usingInvariant CurvesIn order to compute the angular velocity 
 of thecamera frame, corresponding stereo frontier points areestablished between feature points of the silhouetteand other images in the sequence. To �nd these cor-respondences, we build on concepts developed for arecognition approach based on invariant curves [19].It is well known that the projection of parabolicpoints are inections of the silhouette, and that theprojection of points on a limiting bitangent devel-opable are bitangents of the silhouette [11, 19, 21].Using one of these points as a feature P0, consider theother points on the surface whose tangent planes areparallel to that of the feature. As shown in Fig. 3, allof these surface points project to points on the silhou-ette whose contour tangents are parallel. Up to occlu-sion, for any viewing direction orthogonal to the sur-face normal n at P0, these parallel tangent points willproject to the silhouette and can be detected. Turningthis observation around, for any pair of camera loca-tions whose viewing directions are orthogonal to n,the feature and the points with parallel tangents willall be stereo frontier points of the two images, and thetangent planes are epipolar planes.Now, let us assume that an inection or bitan-gent endpoint P0 and n other silhouette points Pi(i = 1; ::; n) with parallel tangents can be trackedthrough a sequence of images formed by a movingcamera. At one instant in time, all tracked paralleltangent points have the same surface normaln. If v isthe viewing direction, we construct a right-handed or-thonormal coordinate frame (t;n;v), such that (t;n)forms a basis of the image plane, and t is the directionof the tangent to the projection of the contour at P0and Pi. See Fig. 3.b. We write, for i = 1; ::; n,Pi � P0 = xit + yin+ ziv; (2)where Pi�P0 denotes the vector joiningP0 to Pi. Notethat xi, yi, and their temporal derivatives _xi and _yiare directly observable given a sequence of images. On

the other hand, zi is unknown, and the coordinates ofthe vectors t, n, v in a �xed coordinate system arealso unknown.We de�ne the invariant curve associated withthe feature points P0 and Pi (i = 1; ::; n) as thetrace of the parameterized curve de�ned by I(t) =(y1(t); : : : ; yn(t)) in IRn, where t is the time param-eter. In practice, the orthographic projection modelis valid when the moving camera remains at a fairlyconstant distance from the object. This de�nition ofinvariant curves can be extended to the scaled ortho-graphic projection model by tracing a curve on theunit sphere of IRn. In this case, the image coordi-nates are of the form Xi = �xi and Yi = �yi, where� = 1=z0 is the depth of some reference point. Wede�ne the vector J(t) = (Y1(t); : : : ; Yn(t)), and the in-variant curve is the trace of the parameterized curveK(t) = 1jJ (t)jJ (t) = 1jI(t)jI(t).An important property of invariant curves is thatthey do not depend on the motion of the cameraused to construct them, yet provide an e�cient wayof matching observables measured in one image to agiven curve. This property has been used in the pastin recognition experiments [19]. Furthermore, a neces-sary condition for two sets of features detected in twoimages to be stereo frontier points is that the value ofthis invariant must be equal.Much more can be said about the structure andproperties of these invariant curves (see [19]), but inthis paper we will simply use them to identify thethree sets of stereo frontier points that are needed tocompute 
. To �nd these, the invariant curves forall features and their parallel tangents over the entiresequence of images are constructed. To �nd stereofrontier points in an image, a feature and its paralleltangents are selected and an invariant is computed.The point on some invariant curve that is closest tothe computed invariant is found. The correspondingsets of features in both images are taken to be stereofrontier points for that pair since they satisfy the nec-essary condition outlined above.



3 Motion Constraints from ParallelTangentsTo compute 
 for an image, we shall need threesets of stereo frontier points between the given imageand three other images in the sequence. As we shallsee, each stereo frontier point provides one quadraticconstraint on the components of 
. To obtain thisconstraint, (2) is di�erentiated with respect to timeand the dot product of the result with n is formed.After some simple manipulation, this yields_yi = �xi _t �n� zi _v �n: (3)Let ! denote the angular velocity vector associ-ated with the moving frame (t;n;v). Recall that n isaligned with the surface normal of the bitangent de-velopable or inection, that t lies in the image plane,and that v is the viewing direction. We have _t = !�tand _v = ! � v, thus (3) can be rewritten as_yi + xi! � v � zi! � t = 0: (4)Solving for zi in (4) yieldszi = _yi + xi�� ; (5)where � = ! � v and � = ! � t are the components of! along the v and t directions.Let us assume that along the camera trajectory,the features with parallel tangents are observed in an-other image from another viewing direction v0. Thiscorrespondence is identi�ed using the invariant curvesdiscussed in the previous section. For this second im-age, construct as before the corresponding coordinatesystem (t0;n0;v0) . See Fig. 1.a. Note that n0 = nis the normal to the epipolar plane between the twoimages. Let � be the angle of rotation about n whichmaps v onto v0. The change of coordinates betweenthe two images can be written as( x0 = x cos � � z sin �;y0 = y;z0 = x sin � + z cos �: (6)Combining (5) and the �rst row of (6) yields(�� cos � + � sin �)xi + �x0i + sin � _yi = 0: (7)For n parallel tangents, de�ne the vectors x =(x1; : : : ; xn)T , x0 = (x01; : : : ; x0n)T , and _y =( _y1; : : : ; _yn). Equation 7 can then be rewritten in vec-tor form as:(�� cos � + � sin �)x + �x0 + sin � _y = 0; (8)which implies that the vectors x, x0, and _y are lin-early dependent. Recall that corresponding stereofrontier points are found through indexing the invari-ant curves. An additional condition that the corre-spondence must satisfy is that the 3 � n dimensionalmatrix formed from x;x0 and _y must be rank 2. Therank can be determined through singular value decom-position, used to verify correspondences.When x and x0 are linearly independent and n � 2,_y can be expressed as a linear combination of x andy or _y = dx + ex0. Since x;x0 and _y are measured,d and e can be computed using linear least squares.
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Figure 4: _P0 is determined by constraints establishedfrom the relative motion of the image of P0 and thefrontier points in two image sequences.Substituting d and e into (8) yields after some alge-braic manipulation:( �2 + (� + d)2 = e2;tan � = �� + d: (9)The �rst equation provides a quadratic constraint ontwo components of the angular velocity of the mov-ing frame associated with the parallel tangents whilethe second one can be used to compute � from � and�. To compute the angular velocity 
 of the cam-era coordinate system, we �rst note that the feature'scoordinate system (t;n;v) and the camera coordinatesystem (i; j;k) simply di�er by a rotation about view-ing direction, v = k. If � denotes the angle of the ro-tation about v that maps i onto t, then 
 = ! � _�v.Note that both � and its temporal derivative _� aredirectly observable from the image sequence.Let (
i;
j;
k) denote the coordinates of 
 in thecamera's coordinate system (i; j;k). Since ! = 
 +_�v, we have:� � = 
i cos�+
j sin�;� = 
k + _�: (10)Substituting for � and � in (9) yields(
i cos�+
j sin�)2 + (
k + d+ _�)2 = e2: (11)Thus three bitangents yield three quadratic equationsin 
i;
j;
k. This system of equations can be solvedusing a global numerical method such as homotopycontinuation [13]. Substituting the corresponding so-lutions into (10) and (9) yields the values of �; � and� for the parallel tangent features in each image.4 Motion Constraints from In�nitesi-mal Frontier PointsNow the remaining di�culty is to estimate the lin-ear velocity of some feature point (e.g. an endpoint ofa bitangent or a parabolic point), and we turn to con-straints derived from the motion of the in�nitesimalfrontier points. See Fig. 4. We choose this featurepoint P0 as the origin of a coordinate system, and



estimate its velocity _P0 by establishing three linearconstraints on _P0.First, we note that _P0 lies in the tangent plane ofthe surface since the trace of P0(t) is a surface curve.Thus, we immediately have the constraint _P0 �n = 0.As discussed in Section 1.1, the frontier points lie ona surface curve determined by the camera motion. Fora �xed surface and moving camera under orthographicprojection where the viewing direction is v(t) and thevelocity of v is _v = 
 � v, the frontier points de�nea curve on the surface satisfying� nf � v = 0;nf � _v = 0; (12)where nf denotes the surface normal at the frontierpoint F . That is, they lie on the occluding contour,and the surface normal is orthogonal to _v. This allowsus to detect the frontier points in an image. If wede�ne the vector tf = nf � v, the vectors tf ;nf ;vform an orthonormal basis of IR3, and tf is tangentto the image contour at the projection of F onto theimage plane.Let !f denote the rotational velocity associatedwith the basis (tf ;nf ;v). As before, the (i; j;v) and(tf ;nf ;v) bases di�er by a rotation about v with an-gle �, that maps i onto tf . The angular velocity !f ofthe (tf ;nf ;v) basis is related to the angular velocity
 of the camera by:!f = 
 + _�v:Thus we can compute !f from measurements. Recall-ing from (12) that nf � _v = 0, we have(!f � v) �nf = 0() !f � tf = 0:That is, !f lies in a plane spanned by nf and tfand can be expressed as: !f = �fnf + �fv where�f and �f are known. Applying !f to nf , we have_nf = ��f tf . Now, the image coordinates (xf ; yf ) of afrontier point F can be expressed in the (P0; tf ;nf ;v)frame as: xf = (F � P0) � tfyf = (F � P0) �nf :Di�erentiating yf with respect to time, noting that_F �nf = 0, and simplifying yields_P0 �nf = ��fxf � _yf :Since �f ; xf and _yf are known, we can compute _P0�nf .A second image sequence containing the projectionof P0 is used to establish a third constraint on _P0 (i.e.,P0 is a stereo frontier point of both images). This sec-ond image could have been used to establish one of theconstraints on 
. If n0f is the normal to in�nitesimalepipolar plane at time t0 in the second image sequence,then we can determine _P0(t0) �n0f as above.Now, the only problem is to relate _P0(t0) � n0f to_P0(t). To do this, we re-parameterize the second imagesequence by the same time parameter as the �rst oneusing the arc length s of the matching invariant curve.
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and _P0 are known.Algebraically, if t0 denotes the time associated with thesecond sequence, we havedP0dt0 = dtdt0 dP0dt = dtds dsdt0 dP0dt = jdK=dt0jjdK=dtj dP0dt :Thus we can relate components _P0 measured in bothcoordinate systems. In particular, we can use the sec-ond image sequence to measure _P0 �n0f , and since wehave the additional constraint _P0 � n = 0, we obtaina system of three linear constraints which uniquelydetermines the velocity _P0 of P0.5 Occluding Contour ReconstructionUp to this point, the angular velocity of the cam-era 
 and the linear velocity _P0 of a feature P0 havebeen determined. We now reconstruct the whole oc-cluding contour using the epipolar parameterization ofthe surface in a coordinate system whose origin is atP0 and whose axes are (tf ;nf ;v).Let P be a surface point with coordinates (x; y; z)in the coordinate system (P0; tf ;nf ;v). By de�ni-tion, the epipolar curves are everywhere tangent tothe viewing direction [4, 8]. In other words _P � v = 0or _P � tf = 0 and _P � nf = 0. See Figure 5. Recall-ing that !f = �fnf + �fv, the velocity of the imagecoordinates of P is:� _x = �fy � �f z � _P0 � tf ;_y = ��fx� _P0 �nf : (13)The second equation can be used to establish corre-spondences between points in the given image and thenext one in the sequence. For a point (x; y) on thesilhouette at time t, the corresponding point in theimage at time t+ �t must lie along the line parallel totf whose coordinate along the nf axis is y+ _y�t. Oncea match is determined, _x in the tf ;nf coordinate sys-tem can be measured. Solving the �rst equation in(13) yields the depth z, of the reconstructed point.z = 1�f (� _x + �fy � _P0 � tf ): (14)An alternative method for computing the depth oncethe motion has been determined is presented in [15]and may be more robust.



Equation (14) is used to reconstruct the coordinatesof points on the occluding contour for a single imagein the (P0; tf ;nf ;v) frame. The orientation R(t) ofthe camera frame can be computed from 
 throughintegration over the entire sequence of images. Fur-thermore, _P0 can be integrated to obtain P0(t). OnceP0(t) and R(t) are expressed in a common coordinatesystem, the reconstructed occluding contour each im-age can also be written in the common system.6 Implementation and ResultsThe presented method has been completely imple-mented in Common Lisp, and applied to a syntheticsequence to validate the implementation and deter-mine the e�ects of noise. In previous work, we haveconstructed the invariant curves from real images andused them for recognition [19]. The scene is com-posed of four spheres shown in Fig. 6.a. Noiselessimages were generated using graphics techniques, andthe camera trajectory was sampled at one degree in-crements. All of the images are composed of four cir-cles. Between any two non-intersecting circles, thereare four bitangents (two outer and two inner) and atotal of 24 bitangents for the four spheres; for each bi-tangent, there are six parallel tangents. Of these, threebitangents and three associated parallel tangents areshown in Fig. 6.b.The camera's trajectory can be divided into foursubsequences. The primary trajectory, in which re-construction was performed, corresponds to rotatingthe viewing direction about the horizontal axis. Inthree additional subsequences, seven bitangent devel-opables are fully revealed and matched using the in-variant curves. Figure 6.c shows the invariant curvescomputed from the four subsequences for the three bi-tangents. For the synthetic image shown in Fig. 6.b,the correspondences were determined for each of thebitangents. The bitangent and frontier points shownin Fig. 6.d and the features with horizontal tangentsin Fig. 6.b are stereo frontier points of the two images.As discussed in Section 3, these correspondences areused to compute the camera's angular velocity.From the computed angular velocity 
, the epipo-lar geometry can be established, and the eight frontierpoints shown in Fig 6.e were detected. _P0 is then com-puted from the velocity of these eight frontier points.Next, the occluding contour for a single image is recon-structed and shown from two orthogonal viewpoints inFigs. 6.f,g. As expected for spheres, the occluding con-tour is circular and lies in a plane. Finally, the recon-structed contours for the entire sequence are placed ina common coordinate system. Figures 6.h,i show twoorthogonal views of the reconstructed surface alongwith the trace of the viewing direction on a sphere. Be-cause the primary trajectory covers 35�, only a portionof the sphere can be reconstructed. Since 
 is con-stant over the camera trajectory, the viewing directionv lies in a plane, and the frontier curve degenerates toa point. Consequently, the reconstructed surface islike an orange slice; each reconstructed occluding con-tour de�nes a meridian of a reconstructed sphere, andthe poles are frontier points.

Simulation experiments were conducted to deter-mine the e�ects of noise on reconstruction using syn-thetic images with a resolution of 512 by 512 pixels.Random noise with a uniform distribution was addedto the pixel coordinates of detected features. Since theaccuracy of feature detection is anisotropic, the ratioof the magnitude of the noise in the normal and tan-gential directions of the contours was varied as wellas the size of the interval. Statistics were gatheredfrom approximately 200 trials, and the performancewas compared to ground truth. Figure 7.a shows meanerror in the direction of 
. For noise levels rangingbetween �:25 pixels and �2 pixels, the error in 
ranged from 2� to 16�. Figures 7.b,c show the meanand variance of the computation of �; note that the er-ror is nearly zero mean, but that the variance increaseswith noise. Finally, the mean error of the location ofdetected frontier points is illustrated in Fig. 7.d.7 DiscussionIn this paper, we have presented a method for re-covering the motion of a camera and structure ofa curved 3D object from a sequence of silhouettesdetected in images. The key observation is thatunder orthographic projection, stereo frontier pointsand the in�nitesimal motion frontier points establishconstraints on the observer motion. The invariantcurve representation, that was previously introducedfor recognition [19], can be used to establish corre-spondences between nonconsecutive images in the se-quence. Once the observer motion has been computed,the 3-D Euclidean structure can be recovered using es-tablished techniques.It is well known that structure and motion can onlybe recovered up to a common scale factor. In thiscase, the common factor is � which we have takento be unity (see Equation 1). Thus, if � is known,the surface structure and the entire camera trajectoryare completely determined; otherwise, they are onlycomputed up to an unknown factor.The method has also be extended to weak perspec-tive where the scale parameter � is also varying withtime. To date, we have just tested our implementationon synthetic images. While we are anxious to applyit to real images, the noise analysis indicates that rea-sonably accurate reconstruction will only be possibleif features can be detected with sub-pixel resolution.Acknowledgments: This work was supported inpart by the National Science Foundation under GrantIRI-9224815. D. Kriegman was supported in partby a National Science Foundation NYI Grant IRI-9257990. Jean Ponce was supported in part by theCenter for Advanced Study of the University of Illi-nois at Urbana-Champaign.References[1] E. Arbogast and R. Mohr. 3D structure inference fromimage sequences. Journal of Pattern Recognition andArti�cial Intelligence, 5(5), 1991.[2] E. Boyer and M. Berger. 3D surface reconstructionfrom occluding contours. 1995. Preprints.



a. b. c.
d. e. f.
g. h. i.Figure 6: Reconstruction from a simulated image sequence: a. The scene; b. A synthetic image from thesequence, three bitangents, and the parallel tangents used for reconstruction; c. The invariant curves computedfrom the tracks of the three bitangents and corresponding parallel tangents shown in Fig. 6.a; d. The bitangentand parallel tangents in this image and the corresponding one in the image in Fig. 6.b are stereo frontier points,and have been found using the invariant curves; e. Two consecutive images in the sequence after aligning theirepipolar lines, the in�nitesimal epipolar geometry, and the frontier points. In parts b,c, and d, the square, triangleand circles indicate corresponding sets of feature points; f,g. Two views of the reconstructed occluding contourfrom just one image; h,i. The reconstructed surface seen from two views along with the camera trajectory andframes. The origin of the coordinate system in parts f,g,h, and i is P0.
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