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Abstract

The silhouette of a smooth 3D object observed by
a moving camera changes over time. Past work has
shown how surface geometry can be recovered using the
deformation of the silhouette when the camera motion
1s known. This paper addresses the problem of esti-
mating both the full Fuclidean surface structure and
the camera motion from a dense set of silhouettes cap-
tured under orthographic or scaled orthographic pro-
jection. The approach relies on a viewpoint-invariant
representation of curves swept by viewpoint-dependent
features such as bitangents, inflections and contour
points with parallel tangents. Feature points, which
form stereo frontier points between non-consecutive
wmages, are matched using this representation. The
camera’s angular velocity is computed from constraints
derived from this correspondence along with the image
velocity of these features. From the angular velocity,
the epipolar geometry is ascertained, and infinitestmal
motion frontier points can be detected. In turn, the
motion of these frontier points constrains the transla-
tion component of camera motion. Finally, the surface
1s reconstructed using established technigues once the
camera motion has been estimated.

1 Introduction

Most approaches for estimating the 3-D structure
of an object from pictures taken by a moving cam-
era are based on establishing a correspondence be-
tween viewpoint-independent image features. This
correspondence is explicit in feature-based approaches
where tokens such as points [5, 17] or lines [16] are
tracked through an image sequence, and implicit in
approaches using infinitesimal motion where the chal-
lenge is estimating the motion field [9]. For objects
with few surface markings and little texture, the most
reliable image feature is the object’s silhouette, i.e.,
the projection into the image of the curve, called the
occluding contour, where the cone formed by the op-
tical rays grazes the surface. As the camera moves,
the occluding contour changes, and when the cam-
era’s motion is known, it is possible to estimate the
second-order structure of the observed surface along
the occluding contour from the corresponding defor-
mation of the silhouette: this was first established
by Giblin and Weiss for orthographic projection with
coplanar viewing directions [7], and then extended
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to 3D objects under perspective projection by oth-
ers [1, 2, 4, 15, 18]. It has also been shown how to
actively move the camera to reconstruct the entire sur-
face using these methods [12].

A method has been developed for estimating both
the surface structure and the camera motion from
perspective images acquired by a calibrated trinocu-
lar rig [10]. For a single moving camera, techniques
have been proposed for recovering the camera motion
when 1t is constrained to be a rotation about a fixed
axis[6, 14]. More recently, a method was presented
for determining the epipolar geometry for infinitesi-
mal and finite motions [3], but this technique is iter-
ative and requires an initial guess for the direction of
translation or for the essential matrix.

We address the problem of estimating both the full
Euclidean surface structure and the camera motion
from a dense set of silhouettes captured under ortho-
graphic or scaled orthographic projection. The crit-
ical observation is that while the local information
conveyed by the deformation of the silhouette is not
sufficient to completely determine the observer’s mo-
tion, it can be combined with the more global informa-
tion conveyed by correspondences established between
non-consecutive images to recover the whole motion
up to a unique scale factor that 1s constant over the
full trajectory.

In this work, we model the camera by scaled ortho-

graphic prOJectlon For a pomt P € IR® and camera
whose origin is at O and whose image plane is spanned
by the orthogonal vectors ¢ and j, the coordinates
(X,Y) of the projected point are given by:

=¢1 - -0
¥ 2669 M

where (0,%,7) is the camera’s coordinate frame,
(0, Yo, 20) are the coordinates in this frame of some
reference point, and & = 1/z5. The vector k = ¢ x j
is the viewing direction and is also denoted by ». For
pure orthographic projection, ¢ is taken to be constant
and without loss of generality we shall choose &€ = 1.
For a moving camera, O, 2, 3 are functions of time,
and so the camera’s motion can be represented by its
linear velocity O and angular velocity §2. Further-
more the distance to the reference point might also be
changing, and so £ may be a function of time. We
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Figure 1: Stereo Frontier Points: Between two im-
ages, the stereo frontier points on a surface are the
points of intersection of the two occluding contours.

assume that & 1s constant in this paper; however the
method is extended in [20] to situations where & varies.

1.1 Smooth Surfaces, Epipolar Geometry
and Frontier Points

For a smooth surface observed under orthographic
projection, the occluding contour is the set of surface
points where the surface normal n is orthogonal to the
viewing direction v, and the silhouette is the projec-
tion of the occluding contour. Note that the occluding
contour and the silhouette necessarily depend on the
viewing direction.

Between any two images taken by a camera mod-
elled with orthographic projection, there is a one-
parameter family of epipolar planes whose normals are
orthogonal to the two viewing directions v; and ws
associated with the cameras [5]. In stereo vision, the
projection of an epipolar plane onto two epipolar lines
1s used to help establish correspondences. Now for two
images of the same smooth surface, the occluding con-
tours will be distinct curves. However, there is a set of
isolated surface points where the two occluding con-
tours intersect. At these points, which are called the
stereo frontier points, n is orthogonal to both v, and
vo. At such points, the surface normal is orthogonal
to the epipolar plane. Figure 1 shows an example.

A continuously moving camera establishes a local
epipolar geometry at each instant in time [4, 8]. In
particular, the normal to each plane in the family of
epipolar planes is given by:

ng=vxov=410—- (0 v

since © = {2 x v. Because the camera is moving,
the set of points on the surface that are orthogonal
to n; define a surface curve known as the frontier
curve [3, 8, 10]. A point on this curve will be referred
to as an infinitesimal frontier point. See Figure 2.

At these points, the reconstruction method of [4]
breaks down, but the infinitesimal frontier points can
be detected when the camera motion is known.
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Figure 2: Infinitesimal Frontier Points: Infinitesi-
mal frontier points defined by camera angular velocity.

1.2 Outline of the Algorithm
The reconstruction algorithm is composed of the
following steps which will be detailed subsequently.

1. For each image in the sequence, detect the silhou-
ette and locate feature points (bitangents, inflec-
tions, parallel tangents) on the contour.

2. Track the feature points through the image se-
quence and construct a set of invariant curves,
one for each tracked bitangent and inflection.

3. For each image in the sequence, do the following:

(a) For each bitangent or inflection and asso-
ciated parallel tangents, use the invariant
curves constructed in step 2 to find corre-
sponding features in another image such that
the corresponding features are stereo frontier
points of the pair of images.

(b) From three or more sets of corresponding
stereo frontier points, compute the angular
velocity £2 of the camera frame.

(¢) From £2, determine the infinitesimal epipo-
lar geometry and locate the infinitesimal
frontier points.

(d) From constraints imposed by the motion of
the frontier points, compute the linear ve-
locity of a point on a reference curve.

(e) Using the epipolar parameterization, recon-
struct the occluding contour in a frame
whose origin is at the reference point.

4. Using the computed camera motion and recon-
structed occluding contours, construct a surface
representation in a common coordinate system.

In the next four sections, we only consider pure or-
thographic projection (£ = 1). An extension to weak
perspective (scaled orthographic projection) where £
is function of time can be found in [20]. Under pure
orthographic projection, the component of camera mo-
tion along the viewing direction cannot be determined;
two images will be identical if they are taken by cam-
eras whose locations differ only by translation along
the viewing direction. Like Tomasi and Kanade, we
perform reconstruction with respect to some feature
point on the object [17], but in our case, this feature
lies on a surface curve and is viewpoint-dependent.
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a. Surface points whose tangent planes are parallel to the tangent plane at a

limiting bitangent project onto points with parallel image tangents. b. The limiting bitangent developable and

parallel tangents define surface curves.

2 Finding Stereo Frontier Points using

Invariant Curves

In order to compute the angular velocity §2 of the
camera frame, corresponding stereo frontier points are
established between feature points of the silhouette
and other images in the sequence. To find these cor-
respondences, we build on concepts developed for a
recognition approach based on invariant curves [19].

It is well known that the projection of parabolic
points are inflections of the silhouette, and that the
projection of points on a limiting bitangent devel-
opable are bitangents of the silhouette [11, 19, 21].
Using one of these points as a feature Py, consider the
other points on the surface whose tangent planes are
parallel to that of the feature. As shown in Fig. 3, all
of these surface points project to points on the silhou-
ette whose contour tangents are parallel. Up to occlu-
sion, for any viewing direction orthogonal to the sur-
face normal n at P, these parallel tangent points will
project to the silhouette and can be detected. Turning
this observation around, for any pair of camera loca-
tions whose viewing directions are orthogonal to n,
the feature and the points with parallel tangents will
all be stereo frontier points of the two images, and the
tangent planes are epipolar planes.

Now, let us assume that an inflection or bitan-
gent endpomt Py and n other silhouette points P;
(¢ = 1,..,n) with parallel tangents can be tracked
through a sequence of images formed by a moving
camera. At one instant in time, all tracked parallel
tangent points have the same surface normal n. If v is
the viewing direction, we construct a right-handed or-
thonormal coordinate frame (¢, n, v), such that (¢,n)
forms a basis of the image plane, and % is the direction
of the tangent to the projection of the contour at F
and P;. See Fig. 3.b. We write, fort:=1,..,n

P — Py = zit + yin + zjv (2)

where P;— Py denotes the vector joining Po to P;. Note
that x;, y;, and their temporal derivatives z; and y;
are directly observable given a sequence of images. On

the other hand, z; is unknown, and the coordinates of
the vectors t, n, v in a fixed coordinate system are
also unknown.

We define the invariant curve associated with
the feature points Py and P; (i = 1,..,n) as the
trace of the parameterized curve defined by I(t) =
(Y1 (), -, yn(t)) in IR", where ¢ is the time param-
eter. In practice, the orthographic projection model
is valid when the moving camera remains at a fairly
constant distance from the object. This definition of
invariant curves can be extended to the scaled ortho-
graphic prOJectlon model by tracing a curve on the
unit sphere of IR™. 1In this case, the image coordi-
nates are of the form X; = &u; and Y; = Ey;, where
& = 1/zp is the depth of some reference point. We
define the vector J(t) = (Yi(t), ..., Yn(?)), and the in-
variant curve is the trace of the parameterized curve

1 1
K = 77O = g 10)-

An important property of invariant curves is that
they do not depend on the motion of the camera
used to construct them, yet provide an efficient way
of matching observables measured in one image to a
given curve. This property has been used in the past
1n recognition experiments [19]. Furthermore, a neces-
sary condition for two sets of features detected in two
images to be stereo frontier points is that the value of
this invariant must be equal.

Much more can be said about the structure and
properties of these invariant curves (see [19]), but in
this paper we will simply use them to identify the
three sets of stereo frontier points that are needed to
compute 2. To find these, the invariant curves for
all features and their parallel tangents over the entire
sequence of images are constructed. To find stereo
frontier points in an image, a feature and its parallel
tangents are selected and an invariant is computed.
The point on some invariant curve that is closest to
the computed invariant is found. The corresponding
sets of features in both images are taken to be stereo
frontier points for that pair since they satisfy the nec-
essary condition outlined above.




3 Motion Constraints from Parallel

Tangents

To compute 2 for an 1mage, we shall need three
sets of stereo frontier points between the given image
and three other images in the sequence. As we shall
see, each stereo frontier point provides one quadratic
constraint on the components of §2. To obtain this
constraint, (2) is differentiated with respect to time
and the dot product of the result with n 1s formed.
After some simple manipulation, this yields

U = —xit-m— 0 n. (3)

Let w denote the angular velocity vector associ-
ated with the moving frame (¢, n, v). Recall that n is
aligned with the surface normal of the bitangent de-
velopable or inflection, that # lies in the image plane,

and that v is the viewing direction. We have t = w x ¢
and ® = w x v, thus (3) can be rewritten as

U+ ziw-v—ziw-t=0. (4)
Solving for z; in (4) yields

Yi + ;v
% — (5)
where v = w - v and 7 = w - t are the components of
w along the v and ¢ directions.

Let us assume that along the camera trajectory,
the features with parallel tangents are observed in an-
other image from another viewing direction »’. This
correspondence is identified using the invariant curves
discussed in the previous section. For this second im-
age, construct as before the corresponding coordinate
system (¥,n/,v') . See Fig. l.a. Note that n’ = n
is the normal to the epipolar plane between the two
images. Let 6 be the angle of rotation about n which
maps v onto v’. The change of coordinates between
the two images can be written as

x' = xcosf — zsinb,

{ ¥ =y (6)

!

)
z zsind + zcosb.

Combining (5) and the first row of (6) yields
(—7cosf +vsinb)z; + 7 +sinfy; = 0. (7)
For n parallel tangents, define the vectors = =
. o), @ = (2, 2)T and y =
U1,..-,Yn). Equation 7 can then be rewritten in vec-
tor form as:

(—7cosf +vsinb)x + T&’' +sinfy = 0, (8)

which implies that the vectors #, ®’, and ¥ are lin-
early dependent. Recall that corresponding stereo
frontier points are found through indexing the invari-
ant curves. An additional condition that the corre-
spondence must satisfy is that the 3 x n dimensional
matrix formed from «, 2’ and ¥ must be rank 2. The
rank can be determined through singular value decom-
position, used to verify correspondences.

When ® and #’ are linearly independent and n > 2,
y can be expressed as a linear combination of & and
yory =de+ex’. Since x, &' and ¢ are measured,
d and e can be computed using linear least squares.
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Figure 4: Py is determined by constraints established
from the relative motion of the image of Py and the
frontier points in two image sequences.

Substituting d and e into (8) yields after some alge-
braic manipulation:

{ 2+ (v+d)?=e?,
_ T (9)
tan 9 = I/——i—d
The first equation provides a quadratic constraint on
two components of the angular velocity of the mov-
ing frame associated with the parallel tangents while
the second one can be used to compute 6 from 7 and
v. To compute the angular velocity §2 of the cam-
era coordinate system, we first note that the feature’s
coordinate system (¢, n, v) and the camera coordinate
system (, 7, k) simply differ by a rotation about view-
ing direction, v = k. If « denotes the angle of the ro-
tation about v that maps ¢ onto ¢, then 2 = w — aw.
Note that both « and its temporal derivative & are
directly observable from the image sequence.

Let (£2;,€;, Qi) denote the coordinates of §2 in the
camera’s coordinate system (¢, 7, k). Since w = £2 +
awv, we have:

T = ; cosa+ ; sina,
{y:9k+a. ! (10)

Substituting for 7 and v in (9) yields

(Qi cosa + Q sina)2 +(Qpr+d+ o'z)2 = ¢, (11)
Thus three bitangents yield three quadratic equations
in Q;,Q;, €. This system of equations can be solved
using a global numerical method such as homotopy
continuation [13]. Substituting the corresponding so-

lutions into (10) and (9) yields the values of 7, v and
@ for the parallel tangent features in each image.

4 Motion Constraints from Infinitesi-

mal Frontier Points
Now the remaining difficulty is to estimate the lin-
ear velocity of some feature point (e.g. an endpoint of
a bitangent or a parabolic point), and we turn to con-
straints derived from the motion of the infinitesimal
frontier points. See Fig. 4. We choose this feature
point Py as the origin of a coordinate system, and



estimate its velocity P, by establishing three linear
constraints on Fj.

First, we note that Py lies in the tangent plane of
the surface since the trace of Py(t) is a surface curve.

Thus, we immediately have the constraint Py -n = 0.

As discussed in Section 1.1, the frontier points lie on
a surface curve determined by the camera motion. For
a fixed surface and moving camera under orthographic
projection where the viewing direction is »(¢) and the
velocity of v is © = £2 x v, the frontier points define
a curve on the surface satisfying

ng-v =0,

{ nj: ‘v = 0 (12)
where n; denotes the surface normal at the frontier
point F'. That is, they lie on the occluding contour,
and the surface normal is orthogonal to ». This allows
us to detect the frontier points in an image. If we
define the vector t; = m; x v, the vectors t; ns,v
form an orthonormal basis of IR?, and t; is tangent
to the image contour at the projection of F' onto the
image plane.

Let w; denote the rotational velocity associated
with the basis (¢;,n;,v). As before, the (2,7, v) and
(t;,ns, v) bases differ by a rotation about v with an-
gle 8, that maps ¢ onto t;. The angular velocity w; of

the (tf,ny,v) basis is related to the angular velocity
£2 of the camera by:

wf:Q+Bv.

Thus we can compute w; from measurements. Recall-
ing from (12) that ny - v = 0, we have

(wy xv) - np =0<=wys-t; =0.

That is, w; lies in a plane spanned by n; and ¢;
and can be expressed as: w; = xyn; + vyv where
X§ and vy are known. Applying w; to ny, we have

ny = —vyty. Now, the image coordinates (x,y;) of a
frontier point F' can be expressed in the (Py, t;, ny, v)
frame as:

Ty = (F — Po) ~tf

yp =(F —PF)n
Differentiating y; with respect to time, noting that
F-n; =0, and simplifying yields

Po My = —VpXyf — yf.
Since vy, x; and yy are known, we can compute P, n;.

A second image sequence containing the projection

of Py is used to establish a third constraint on Py (i.e.,
Py is a stereo frontier point of both images). This sec-
ond image could have been used to establish one of the
constraints on f2. If n} is the normal to infinitesimal
epipolar plane at time ¢’ in the second image sequence,

then we can determine Po(t’) n} as above.
Now, the only problem is to relate Po(t’) n} to

P, (t). To do this, we re-parameterize the second image
sequence by the same time parameter as the first one
using the arc length s of the matching invariant curve.
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Figure 5: The entire occluding contour can recon-
structed using the epipolar parameterization once 2

and P are known.
Algebraically, if ¢’ denotes the time associated with the
second sequence, we have

dPo _ dt dPo _ dt ds dPo _

- dt dt  dsdt’ dt

|dK /dl'| dPy
T |dK/dt| dt

Thus we can relate components Py measured in both
coordinate systems. In particular, we can use the sec-

ond image sequence to measure F ~n}, and since we

have the additional constraint Py - n = 0, we obtain
a system of three linear constraints which uniquely

determines the velocity Po of Py.

5 Occluding Contour Reconstruction
Up to this point, the angular velocity of the cam-

era {2 and the linear velocity Po of a feature %) have
been determined. We now reconstruct the whole oc-
cluding contour using the epipolar parameterization of
the surface in a coordinate system whose origin is at
P, and whose axes are (¢;,ns,v

Let P be a surface point with coordinates (x,y,z2)
in the coordinate system (Py,tf,m¢,v). By defini-
tion, the epipolar curves are everywhere tangent to
the viewing direction [4, 8]. In other words P x v = 0

or P t; =0 and P-n; = 0. See Figure 5. Recall-
ing that wy = xfny + vyv, the velocity of the image
coordinates of P is:

T=vpy— sz—Po t;, (13)
y=—-vir— FPy-n;.

The second equation can be used to establish corre-
spondences between points in the given image and the
next one in the sequence. For a point (z,y) on the
silhouette at time ¢, the corresponding point in the
image at time ¢ + 6¢ must lie along the line parallel to
t; whose coordinate along the n; axis is y4yét. Once
a match is determined, # in the #;,n; coordinate sys-
tem can be measured. Solving the first equation in
(13) yields the depth z, of the reconstructed point.

1
z=—(— x—i—yfy—Po tr). (14)
Xf
An alternative method for computing the depth once
the motion has been determined is presented in [15]
and may be more robust.



Equation (14) is used to reconstruct the coordinates
of points on the occluding contour for a single image
in the (Py,ts,nyp,v) frame. The orientation R(t) of
the camera f{rame can be computed from §2 through
integration over the entire sequence of images. Fur-

thermore, Py can be integrated to obtain Py(?). Once
Py(t) and R(t) are expressed in a common coordinate
system, the reconstructed occluding contour each im-
age can also be written in the common system.

6 Implementation and Results

The presented method has been completely imple-
mented in Common Lisp, and applied to a synthetic
sequence to validate the implementation and deter-
mine the effects of noise. In previous work, we have
constructed the invariant curves from real images and
used them for recognition [19]. The scene is com-
posed of four spheres shown in Fig. 6.a. Noiseless
images were generated using graphics techniques, and
the camera trajectory was sampled at one degree in-
crements. All of the images are composed of four cir-
cles. Between any two non-intersecting circles, there
are four bitangents (two outer and two inner) and a
total of 24 bitangents for the four spheres; for each bi-
tangent, there are six parallel tangents. Of these, three
bitangents and three associated parallel tangents are
shown in Fig. 6.b.

The camera’s trajectory can be divided into four
subsequences. The primary trajectory, in which re-
construction was performed, corresponds to rotating
the viewing direction about the horizontal axis. In
three additional subsequences, seven bitangent devel-
opables are fully revealed and matched using the in-
variant curves. Figure 6.c shows the invariant curves
computed from the four subsequences for the three bi-
tangents. For the synthetic image shown in Fig. 6.b,
the correspondences were determined for each of the
bitangents. The bitangent and frontier points shown
in Fig. 6.d and the features with horizontal tangents
in Fig. 6.b are stereo frontier points of the two images.
As discussed in Section 3, these correspondences are
used to compute the camera’s angular velocity.

From the computed angular velocity §2, the epipo-
lar geometry can be established, and the eight frontier

points shown in Fig 6.e were detected. Py is then com-
puted from the velocity of these eight frontier points.
Next, the occluding contour for a single image is recon-
structed and shown from two orthogonal viewpoints in
Figs. 6.f,g. As expected for spheres, the occluding con-
tour is circular and lies in a plane. Finally, the recon-
structed contours for the entire sequence are placed in
a common coordinate system. Figures 6.h;1 show two
orthogonal views of the reconstructed surface along
with the trace of the viewing direction on a sphere. Be-
cause the primary trajectory covers 35°, only a portion
of the sphere can be reconstructed. Since {2 is con-
stant over the camera trajectory, the viewing direction
v lies in a plane, and the frontier curve degenerates to
a point. Consequently, the reconstructed surface is
like an orange slice; each reconstructed occluding con-
tour defines a meridian of a reconstructed sphere, and
the poles are frontier points.

Simulation experiments were conducted to deter-
mine the effects of noise on reconstruction using syn-
thetic images with a resolution of 512 by 512 pixels.
Random noise with a uniform distribution was added
to the pixel coordinates of detected features. Since the
accuracy of feature detection 1s anisotropic, the ratio
of the magnitude of the noise in the normal and tan-
gential directions of the contours was varied as well
as the size of the interval. Statistics were gathered
from approximately 200 trials, and the performance
was compared to ground truth. Figure 7.a shows mean
error in the direction of £2. For noise levels ranging
between +.25 pixels and £2 pixels, the error in 2
ranged from 2° to 16°. Figures 7.b,c show the mean
and variance of the computation of 8; note that the er-
ror is nearly zero mean, but that the variance increases
with noise. Finally, the mean error of the location of
detected frontier points is illustrated in Fig. 7.d.

7 Discussion

In this paper, we have presented a method for re-
covering the motion of a camera and structure of
a curved 3D object from a sequence of silhouettes
detected in images. The key observation is that
under orthographic projection, stereo frontier points
and the infinitesimal motion frontier points establish
constraints on the observer motion. The invariant
curve representation, that was previously introduced
for recognition [19], can be used to establish corre-
spondences between nonconsecutive images in the se-
quence. Once the observer motion has been computed,
the 3-D Euclidean structure can be recovered using es-
tablished techniques.

It is well known that structure and motion can only
be recovered up to a common scale factor. In this
case, the common factor is & which we have taken
to be unity (see Equation 1). Thus, if £ is known,
the surface structure and the entire camera trajectory
are completely determined; otherwise, they are only
computed up to an unknown factor.

The method has also be extended to weak perspec-
tive where the scale parameter £ 1s also varying with
time. To date, we have just tested our implementation
on synthetic images. While we are anxious to apply
it to real images, the noise analysis indicates that rea-
sonably accurate reconstruction will only be possible
if features can be detected with sub-pixel resolution.
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