
Structure from Periodic Motion

Serge Belongie and Josh Wills

Department of Computer Science and Engineering,
University of California, San Diego,

La Jolla, CA 92093
http://vision.ucsd.edu

Abstract. We show how to exploit temporal periodicity of moving ob-
jects to perform 3D reconstruction. The collection of period-separated
frames serve as a surrogate for multiple rigid views of a particular pose
of the moving target, thus allowing the use of standard techniques of
multiview geometry. We motivate our approach using human motion
capture data, for which the true 3D positions of the markers are known.
We next apply our approach to image sequences of pedestrians captured
with a camcorder. Applications of our proposed approach include 3D
motion capture of natural and manmade periodic moving targets from
monocular video sequences.

1 Introduction

Periodic motion is ubiquitous in the physical world, from the oscillations of a
pendulum to the gallop of a horse. The periodicity of moving objects such as
pedestrians has been widely recognized as a cue for salient object detection in
the context of tracking and surveillance, see for example [1, 11]. In this paper
we focus on the use of periodicity for a different and, to our knowledge, novel
purpose: 3D reconstruction. The key idea is very simple. Given a monocular
video sequence of a periodic moving object, any set of period-separated frames
represents a collection of snapshots of a particular pose of the moving object
from a variety of viewpoints. This is illustrated in Figure 1. Thus each complete
period in time yields one view of each pose assumed by the moving object, and
by finding correspondences in frames across neighboring periods in time, one
can apply standard techniques of multiview geometry, with the caveat that in
practice such periodicity is only approximate. In this paper we present this idea
and apply it to the problem of estimating sparse 3D structure and dense disparity
for walking humans.

The organization of this paper is as follows. We review related work in
Section 2. In Section 3 we discuss our approach. Experimental results appear
in Section 4, and we conclude and discuss future work in Section 5.

2 Related Work

Periodicity is a kind of symmetry, and as such, its use in recovering 3D infor-
mation is related to approaches that leverage other kinds of symmetry. An early
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Fig. 1. Illustration of periodic motion for a walking person. Equally spaced frames
from one second of footage are shown. The pose of the person is approximately the
same in the first and last frames, but the position relative to the camera is different.
Thus this pair of frames can be treated approximately as a stereo pair for purposes of
3D structure estimation. Note that while the folds in the clothing change over time,
their temporal periodicity makes them rich features for correspondence recovery across
periods.

example of work in this vein is Kanade’s method of recovering 3D shape from
a single view of a skew symmetric object [9]; more recent extensions of these
ideas appear in [6, 4]. The periodicity we are concerned with is temporal; in con-
trast, spatial periodicity (together with homoegeneity and isotropy) has been
exploited in several shape-from-texture approaches, e.g. [5, 14], in which the pe-
riodicity pertains to texture elements on the surface of a curved object. While
the periodicity of walking humans and animals has indeed been used for other
purposes, e.g. pedestrian detection [1], to our knowledge the present work is the
first to exploit it for 3D reconstruction.

3 Our Approach

In this section we describe our approach to estimating structure from periodic
motion (SFPM). In illustrating the idea, we make use of motion capture (or mo-
cap) data from [16]. We provide experimental results on regular video sequences
in the following section.

3.1 Estimating the Period

In the present work we specify the period of the moving target manually. A num-
ber of approaches exist for estimating the period of a walking figure,
e.g. [1]. As our focus is on the reconstruction problem, we have not investi-
gated the use of these algorithms, though we do address the issue of error in the
period estimation step in Section 4.
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3.2 Multiview Geometry Across Periods

The most elementary configuration for periodic structure from motion is the
case of two views separated in time by one period. As is well known from [2, 7],
the 3D structure of a rigid object can be estimated up to a projective transfor-
mation from two uncalibrated views. The periodic motion counterpart to this is
illustrated in Figure 2(a,b), which depicts two 2D views of mocap data spaced
apart one period To in time.

In this case, the camera is stationary and the walking figure has translated
and rotated relative to the camera over the course of the period. These two views
correspond approximately to a stereo pair of a particular pose of the walking
figure. The reconstruction obtained from these two views is shown in Figure 2(c).
Since we are using uncalibrated cameras, the reconstruction is arbitrary up to
a 3D homography; our display shows the reconstruction using a least-squares
homography estimated using the ground truth marker positions. Alternatively,
if three or more views are available, one can employ autocalibration techniques
such as [13]. Partial calibration information can also be obtained from knowledge
about the scene (see e.g. [8] Ch. 18) or from known properties of the moving
target, e.g. that it is a human of a certain aspect ratio.

As is the case in standard structure from motion (SFM), the underlying ge-
ometry is only part of the problem: one must solve for correspondences between
views before estimating the structure.
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Fig. 2. Illustration of structure from periodic motion using motion capture data: (a)
view at time t, (b) view at time t + To, (c) 3D reconstruction from To-separated views

3.3 Solving for Correspondences

In real video sequences, for which identified features are not available as in the
mocap data, we can appeal to methods of interest point detection and corre-
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spondence recovery that are used in conventional SFM. In particular, we use a
RANSAC-based approach [17] on interest points extracted using the Förstner op-
erator [3]. We perform interest point description and matching using the method
of [18], which uses the L1-norm on the error between vectors of filter responses
computed at each interest point.

In using RANSAC to estimate the epipolar geometry, we assume that the
feature points on the moving object dominate those in the rest of the scene.
Because of this simplification, we do not need a separate figure/ground motion
segmentation step as preprocessing.

3.4 Computing Dense Disparity

Once the epipolar geometry is known for an image pair, a number of dense stereo
correspondence algorithms can be applied along the epipolar lines. In this work
we use the method of [10], which is an energy minimization based method using a
graph cut approximation. The input to the algorithm is a pair of rectified images
(with respect to the object of interest) and the output is a disparity array. For
rectification, we use the algorithm described in [8], Sec. 10.12.

4 Experiments

4.1 Walking Person I

Figure 3(c) shows the sparse 3D structure recovered for the To-separated frames
of a walking person shown in Figure 3(a,b). A detail of the head and left shoulder
region is shown in Figure 3(d) from a viewpoint behind the person and slightly
to the left. Here we can see that the qualitative shape of the head relative to the
sleeve region is reasonable.

The set of points used here consists of (i) the Förstner interest points used to
estimate the fundamental matrix and (ii) the neighboring Canny edges with cor-
respondences consistent with the epipolar geometry. Many points appear around
the creases in the clothing, but this leaves several blank patches around the lower
shirt and the arm.

4.2 Walking Person II

In Figure 4 we show an example of dense disparity estimation for another
To-separated frame pair of a walking person. The input frames are shown at the
top, followed by the rectified image pair. The estimated disparity relative to the
left rectified image is shown next; for purposes of visualization, in this figure we
have manually masked out the region corresponding to the person. The disparities
are shown as a gray level, with lighter shades indicating larger disparity. We ob-
serve that the individual’s right leg has higher disparity than the left leg, which is
consistent with their depth ordering relative to the image plane, and that the ma-
jority of the disparity estimates for the rest of the body fall somewhere in between
these values. In the original image pair, the light colored top of the forearm bleeds
into the bright background; this corrupts the disparity estimate in that region.
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Fig. 3. (a,b) To-separated input frames. (c) Estimated 3D structure for interest points.
(d) Detailed view of head and shoulder region viewed from behind the person.

4.3 Sensitivity Study

To conclude our experiments, we examine the sensitivity of the 3D reconstruction
with respect to errors in the estimate of To. For this purpose, we again make use
of the mocap data from Section 3.

We consider 200 frames of a regular walking sequence captured at 60 fps with
To ≈ 90 frames [16]. Each frame is a 2D projection (cf. Figure 2(a,b)) of the
recorded 3D positions (which are accurate to 1mm) of a set of markers rigidly



Structure from Periodic Motion 21

(a) (b)

(c) (d)

(e)

Fig. 4. (a,b) To-separated input frames. (c,d) Rectified images computed with respect
to estimated epipolar geometry of input frames. (e) Estimated disparity, masked out
to show region of interest containing the person.

attached to a subject’s body. We selected a different 2D projection of frame 100
as a reference view. Using the reference view together with each of the previously
mentioned 200 views, we computed the 3D reconstruction and the root-mean-
square (RMS) error relative to the known 3D structure at the reference frame.

The error, which is plotted in Figure 5(a), is computed after solving for the
least-squares homography aligning the projective reconstruction with the ground



22 S. Belongie and J. Wills

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

frame no.

E
rr

or
 (

cm
)

175 180 185 190 195 200 205
5

10

15

20

25

30

35

40

frame no.

E
rr

or
 (

cm
)

(a) (b)

Fig. 5. Reconstruction error vs. frame number for mocap data of a walking person with
To ≈ 90 frames. (a) RMS error in units of cm between true 3D coordinates at frame
100 and the estimated 3D coordinates using one 2D view at frame 100 and a different
2D view at each of frames 1-200. (b) RMS error for frames 175-205 relative to frame
100, this time using the same 2D view for the reference frame as for frames 1-200.

truth marker positions at the reference frame. The periodicity is evident in the
dips that occur at ±90 frames on either side of 100. As expected, the error drops
to zero at frame 100, at which point the reconstruction problem reduces to the
case of exact stereo. The plot in Figure 5(b) shows a detail of the reconstruction
error computed for 30 frames centered around frame 190; again the reference
view is frame 100, but here the cameras specifying the 2D projections are the
same for all the views. In each plot, it is evident that the error grows gradually
with respect to displacements around the local optimum.

5 Conclusion and Future Work

We have presented an approach to 3D structure estimation based on monocular
views of periodic motion. We demonstrated this approach using motion capture
data and raw footage of pedestrians. Using the motion capture data, we ex-
plored the behavior of the reconstruction with respect to errors in the period
estimation step.

The weakest part of the system is currently the correspondence estimation
step. In theory, by the definition of periodicity, the problem treated in this work
is identical to the classical SFM problem, provided the period estimate is correct.
However, in practice, the correspondence problem is at least as hard as the usual
stereo correspondence problem, and is in general harder, due to appearance
variations across periods. In this regard, the correspondence problem associated
with the SFPM problem lies somewhere in between the classical correspondence
problem of wide-baseline stereo and the feature correspondence problem in 3D
object recognition. We could therefore benefit from the use of methods designed
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with the latter problem in mind; in future work we will investigate the use of
scale-invariant keypoints [12] and affine invariant interest points [15].
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