
The Bas-Relief AmbiguityPeter N. Belhumeur � David J. Kriegman y Alan L. YuilleCenter for Computational Vision and Control Smith-Kettlewell Eye Research InstituteYale University San Francisco, CA 94115New Haven, CT 06520-8267AbstractSince antiquity, artisans have created 
attened forms,often called \bas-reliefs," which give an exaggeratedperception of depth when viewed from a particular van-tage point. This paper presents an explanation ofthis phenomena, showing that the ambiguity in de-termining the relief of an object is not con�ned tobas-relief sculpture but is implicit in the determina-tion of the structure of any object. Formally, if theobject's true surface is denoted by ztrue = f(x; y),then we de�ne the \generalized bas-relief transforma-tion" as z = �f(x; y) + �x+ �y; with a correspondingtransformation of the albedo. For each image of aLambertian surface f(x; y) produced by a point lightsource at in�nity, there exists an identical image of abas-relief produced by a transformed light source. Thisequality holds for both shaded and shadowed regions.Thus, the set of possible images (illumination cone) isinvariant over generalized bas-relief transformations.When � = � = 0 (e.g. a classical bas-relief sculpture),we show that the set of possible motion �elds are alsoidentical. Thus, neither small unknown motions norchanges of illumination can resolve the bas-relief am-biguity. Implications of this ambiguity on structurerecovery and shape representation are discussed.1 IntroductionThroughout the millennia, artisans have created 
at-tened forms, i.e. so-called \bas-reliefs," which whenviewed from a particular vantage point are di�cult, ifnot impossible, to distinguish from a full relief sculp-ture. As the sun moves through the sky, the shadingand shadows change, yet the degree of 
attening can-not be discerned on a well sculpted bas-relief. Evenif an observer's head moves by a small amount, thisambiguity cannot be resolved. This paper not onlypresents an explanation of this phenomena, but alsodemonstrates that the ambiguity in determining therelief of an object is implicit in the determination ofthe structure of any object.In particular, we show that the set of images pro-duced by arbitrary illumination of an object (i.e. theobject's illumination cone [1]) is the same as the setof images produced by what we call a \generalizedbas-relief transformation" of the object. A generalized�P. N. Belhumeur and A.L. Yuille were supported by AROgrant DAAH04-95-1-0494.yD. J. Kriegman was supported by NSF under an NYI, IRI-9257990.

bas-relief transformation is a transformation of boththe surface shape and the surface albedo for an arbi-trary Lambertian surface. In particular, if an object'strue surface is denoted by f(x; y) where the (x; y)plane is perpendicular to the line of sight, a gener-alized bas-relief transformation of the surface shapeis given by �f = �f(x; y) + �x + �y, and the corre-sponding generalized bas-relief transformation of thesurface albedo is given by Eq. 3. Classical bas-reliefsculptures use a subset of the transformation on shape,with 0 < � < 1, � = 0, and � = 0, and, to the best ofour knowledge, ignore the corresponding transforma-tion on albedo.The fact that a surface and a generalized bas-relieftransformation of the surface produce the same setof images arises from an implicit duality. For eachimage of a Lambertian surface f(x; y) produced by apoint light source at in�nity s, there exists an identi-cal image of the generalized bas-relief transformation�f(x; y) + �x + �y produced by a transformed lightsource �s. This equality holds not only for the illumi-nated regions of the surfaces, but for the shadowedregions as well. Furthermore, due to superposition,the equality holds not only for a single light source,but for an arbitrary { possibly in�nite { number oflight sources.Thus, from a single viewpoint, there is an ambigu-ity in the recovery of the surface: we can { at best {determine the relief of the surface up to a three param-eter family of linear transformations. No informationin either the shadowing or shading can resolve this.Yet, if the viewer moves relative to the surface, or thesurface moves relative to the viewer, does this ambi-guity vanish?For in�nitesimal motion under perspective projec-tion, the structure estimates are sensitive to noise, pro-ducing an implicit error in the estimate of the relief �of the surface [15, 21]. For in�nitesimal motion underorthographic projection, there is a genuine bas-reliefambiguity: we can only recover the shape of the sur-face up to a scale factor in the direction of the camera'soptical axis, i.e. a bas-relief transformation for which� is unknown [9].A summary of these and other results follow:� For any light source direction, there exists an-other light source direction such that cast andattached shadows produced by a surface and atransformed surface are identical, irrespective ofthe material type.



Figure 1: The �gure shows two frontal views and a side view of a pair of bas-relief sculptures. Notice how the frontalviews appear to have full 3-D depth, while the side view reveals the extent of the 
attening.� If the material can modeled as having Lambertianre
ectance, then the set of possible images un-der any lighting condition (illumination cone [1])including shadowing for a surface and its trans-formed surface are identical; therefore, these ob-jects cannot be distinguished by any recognitionalgorithm.� The generalized bas-relief transformation is theonly transformation which has these �rst twoproperties.� Under orthographic projection, the set of mo-tion �elds produced by a surface and its classi-cal bas-relief are identical. Therefore, an objectand its relief cannot be distinguished from smallunknown camera motion.� For photometric stereo where the light source di-rections are unknown, the structure can only bedetermined up to a generalized bas-relief transfor-mation and shadows do not provide further infor-mation. Using prior information about the albedoand light source strength, the structure can be de-termined up to a re
ection in depth. Cast shad-ows can be used to distinguish these two cases.Thus, if an object is viewed orthographically, thenneither illumination nor small motions of the viewer(or object) will resolve the object's depth relief. Fig-ure 1 shows images of two bas-relief sculptures. Noticehow the frontal views appear to have full depth, butthe oblique views reveal the extent of the 
attening.2 Bas-Relief Ambiguity: IlluminationConsider a surface observed under orthographic pro-jection and de�ne a coordinate system attached to theimage plane such that the x and y axes span the imageplane. In this coordinate system, the depth of everyvisible point in the scene can be expressed asz = f(x; y)where f is a piecewise di�erentiable function. Thegraph of f(x; y), i.e. (x; y; f(x; y)), de�nes a surfacewhich will also be denoted byf .

The direction of the inward pointing surface normaln(x; y) can be expressed asn(x; y) = " fxfy�1 # (1)where fx and fy denote the partial derivatives of fwith respect to x and y respectively.Consider transforming the surface f to a new sur-face �f in the following manner. We �rst 
atten (orscale) it along the z axis and then add a plane, i.e.�f(x; y) = �f(x; y) + �x+ �ywhere � 6= 0 [2]. We call this transformation the \gen-eralized bas-relief transformation." See Figures 2 and3. As will be seen in Section 4, this is the only lin-ear transformation of the surface's normal �eld whichpreserves integrability. When � = 0 and � = 0, wecall this transformation the classical \bas-relief trans-formation," since for � < 1 the surface is 
attened likeclassical bas-relief sculptures.Note that for image point (x; y), the relation be-tween the direction of the surface normal of �f and fis given by �n = Gn whereG = " � 0 ��0 � ��0 0 1 # : (2)Under the matrix product operation, the set GBR =fGg forms a subgroup of GL(3) withG�1 = 1� " 1 0 �0 1 �0 0 � # :Also, note that if p = (x; y; f(x; y)) and �p =(x; y; �f(x; y)), then �p = �G�Tp where G�T �(GT )�1 = (G�1)T .Let the vector s denote a point light source at in-�nity, with the magnitude of s proportional to the in-tensity of the light source. (For a more general model
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Figure 2: The image points that lie in a cast or attachedshadow for a surface f under light source s are identical tothose in shadow for transformed the surface �f under lightsource �s = G�T s. The middle �gure shows a classical bas-relief transformation of the upper �gure while the bottom�gure is a generalized bas-relief. For diagrammatic clarity,the surface normals are drawn outward.of illumination, e.g. one that does not restrict lightsources to be at in�nity, see [12].) We �rst show thatshadowing on a surface f for some light source s isidentical to that on a bas-relief transformed surface �fwith an appropriate light source �s; we then show thatif the surfaces are Lambertian, the set of all possibleimages of both surfaces are identical.We can identify two types of shadows: attachedshadows and cast shadows [19]. See Figure 2. A sur-face point p = (x; y; f(x; y)) lies in an attached shadowfor light source direction s i� n(x; y)T s < 0. This def-inition leads to the following lemma.Lemma 2.1 A point p = (x; y; f(x; y)) lies in anattached shadow for light source direction s i� �p =(x; y; �f(x; y)) lies in an attached shadow for lightsource direction �s = G�T s.Proof. If a point p on f lies in an attached shadow,then nT s < 0. On the transformed surface, the point�p = (x; y; �f(x; y)) also projects to (x; y) and for thispoint �nT�s = nTGTG�T s = nT s. Therefore, �p is alsoin an attached shadow. The converse clearly holds aswell.

A necessary condition for a point p1 =(x1; y1; f(x1; y1)) on the surface to fall on the castshadow boundary for light source direction s is thatthere exists another point p2 = (x2; y2; f(x2; y2)) onthe surface such that the light ray in the directions passing through p2 grazes the surface at p2 andintersects the surface at p1. The point p2 is theboundary of an attached shadow. For smooth sur-faces, attached shadow and cast shadow boundariescan be distinguished in intensity images; along any im-age curve (x(t); y(t)) intersecting the shadow bound-ary transversally, the intensity I(x(t); y(t)) is contin-uous at an attached shadow boundary, whereas it isdiscontinuous at a cast shadow.Lemma 2.2 A point p = (x; y; f(x; y)) satis�es thenecessary condition for lying on a cast shadow bound-ary for light source direction s i� �p = (x; y; �f(x; y))satis�es the condition for light source direction �s =G�T s.Proof. The condition for a point p1 to be on a shadowboundary cast by p2 is that� nT2 s = 0p2 � p1 = 
sfor some 
 < 0. For the transformed surface, the �rstcondition for a point to be on the shadow boundary is�nT2 �s = nT2GTG�T s = nT2 s = 0:Under the generalized bas-relief transformation �p =�G�Tp, and the second condition can be expressedfor the relief surface as�p2 � �p1 � �
�s = �G�T (p2 � p1)� �
G�T s= �(p2 � p1)� �
s = 0:This condition clearly holds when �
 = �
. The con-verse of this lemma can be similarly proven.This lemma becomes both necessary and su�cientfor a point to lie on a shadow boundary when the rayfrom p1 passing through p2 does not intersect anyother portion of the surface for both f and �f . Ingeneral, this is true when � > 0.Taking these two lemmas together, it follows that ifsome portion of the surface f is in a cast or attachedshadow for a light source direction s, then if the surfaceis subject to a generalized bas-relief transformation G,there exists a lighting direction �s = G�T s such thatthe same portion of the transformed surface is alsoshadowed. Let us specify these shadowed regions {both attached and cast { through a binary function	f;s(x; y) such that	f;s(x; y) = � 0 if (x; y) is shadowed1 otherwise.



Using this notation and the above two lemmas, we canthen write 	f;s(x; y) = 	 �f;�s(x; y).We should stress that shadowing 	f;s(x; y) is afunction of the object's geometry and light source di-rection { it is una�ected by the re
ectance propertiesof the surface. For any surface, any light source di-rection, and any generalized bas-relief transformationof that surface, there exists a light source directionsuch that the shadowing will be identical irrespectiveof the surface properties. Furthermore, the general-ized bas-relief transformation is the only transforma-tion for which this is true for any surface. (Spacelimitations preclude including a proof.)We now show that if the surface re
ectance is Lam-bertian [6, 11], then the sets of images produced by asurface (i.e. the surface's illumination cone [1]) and atransformed surface under all possible lighting condi-tions are identical. Letting the albedo of a Lambertiansurface f be denoted by a(x; y), the intensity imageproduced by a light source s can be expressed asIf;a;s(x; y) = 	f;s(x; y)b(x; y)T swhere b(x; y) is the product of the albedo a(x; y) of thesurface and the inward pointing unit surface normaln̂(x; y).We now show that the set of images produced by fand �f are identical when the albedo �a(x; y) of �f is�a = aq(�n1 � �n3)2 + (�n2 � �n3)2 + n23 (3)where n̂ = (n1; n2; n3)T . The e�ect of applying Eq. 3to a classical bas-relief transformation 0 < � < 1 isto darken points on the surface where n points awayfrom the optical axis.Lemma 2.3 For each light source s illuminating aLambertian surface f(x; y) with albedo a(x; y), thereexists a light source �s illuminating a surface �f(x; y) (ageneralized bas-relief transformation of f) with albedo�a(x; y) (as given in Eq. 3), such that If;a;s(x; y) =I �f;�a;�s(x; y).Proof. The image of f is given byIf;a;s(x; y) = 	f;s(x; y)bT (x; y)sFor any 3� 3 invertible matrix A, we have thatIf;a;s(x; y) = 	f;s(x; y)bT (x; y)AA�1s:Since GBR is a subgroup of GL(3) and 	f;s(x; y) =	 �f;�s(x; y),If;a;s(x; y) = 	f;s(x; y)bT (x; y)GTG�T s= 	f;s(x; y)�bT (x; y)�s= I �f;�a;�s(x; y)where �b(x; y) = Gb(x; y) and �s = G�T s.With the above three lemmas in hand, we can nowstate and prove the central proposition of this section:

Proposition 2.1 The set of images under all possiblelighting conditions produced by a Lambertian surfacef with albedo a(x; y) and those surfaces �f di�ering byany generalized bas-relief transformation with albedo�a(x; y) given by Eq. 3 are identical.Proof. From Lemmas 2.1, 2.2, and 2.3, we have thatthe image of a surface f produced by light source s isthe same as the image of a generalized bas-relief trans-formed surface �f produced by the transformed lightsource �s = G�T s, i.e. If;a;s(x; y) = I �f;�a;�s(x; y): Whenthe object is illuminated by a set of light sources fsig,then the image is determined by the superposition ofthose images that would be formed under the individ-ual light sources. Similarly, the same image can beproduced from the transformed surface if it is illumi-nated by the set of light sources given by f�sig; where�si = G�T si.This proposition says that the set of surfaces pro-duced by a generalized bas transformation of a surfaceform an equivalence class. The sets of possible imagesproduced by every surface in this equivalence class areidentical. That is, the set of images is invariant overthe equivalence class of surfaces formed under the gen-eralized bas-relief transformation. An implication ofthis result is that given any number of images, it isimpossible to distinguish two objects that di�er onlyby a generalized bas-relief transformation. Additionalinformation must be brought to bear to distinguishthem.In Figure 3, we have simulated bas-relief transfor-mations of a human face. The middle row containsimages produced by the true surface of the face. Thetop row contains images produced by a 
attened formof the surface, and the bottom row contains imagesproduced by an elongated form of the surface. Theleft column shows the surface of the face from a sideview, orthogonal to the direction of the chosen bas-relief transformation. The middle column shows thefaces from a frontal view, parallel to the directionof the transformation. By choosing the appropriatelighting directions for each surface all three images inthe column appear identical. (The right column is ex-plained in the next section.)3 Bas-Relief Ambiguity: MotionConsider again a surface observed under orthographicprojection. We again de�ne a coordinate system at-tached to the image plane such that the x and y axesspan the image plane and the depth of every visiblepoint in the scene can be expressed as z = f(x; y)where f is again a continuous function.If the surface undergoes a rigid motion and isviewed under perspective projection, the object's Eu-clidean structure can be determined from as few as twoimages [13, 16, 23]. If the object is viewed orthographi-cally, the object's structure can only be determined upto a one parameter family of a�ne distortions [9]. To



Figure 3: This �gure shows images of three human faceseach di�ering by a classical bas-relief transformation. The3-D data for the true head (the middle row) was obtainedwith a 3-D scanner (Cyberwave) and rendered assuminga Lambertian surface with constant albedo. The headsin the �rst and third row were obtained by scaling the zcoordinate with � < 1 and � > 1 respectively. The leftcolumn shows the faces from a side view, orthogonal tothe direction of the chosen bas-relief transformation. Themiddle column shows the faces from a frontal view, parallelto the direction of the transformation. We have chosenlighting directions to illuminate the middle images so thatall three images will appear identical. The right columnshows images of the faces after being rotated. We havechosen rotations angles (7, 5, and 3.5 degrees from top tobottom) to make the images appear nearly identical.determine the Euclidean structure under orthographicprojection, at least three images are needed.Yet, complications arise when the object's motion issmall. For in�nitesimal motion under perspective pro-jection, the structure estimates are sensitive to noise,producing an implicit error in the estimate of the re-lief of the surface [15, 21]. For small (in�nitesimal)unknown motion under orthographic projection, thereis a genuine bas-relief ambiguity: the shape of the sur-face can only be recovered up to a scale factor in thedirection of the camera's optical axis, i.e. a classicalbas-relief transformation (� > 0; � = � = 0).To see this, let us assume that the surface does, infact, undergo and arbitrary in�nitesimal motion. Thevelocity ( _x; _y; _z) of a point (x; y; z) on the surface finduces a velocity ( _x; _y) in the image plane. The col-lection of velocities for all points in the image plane isoften called the motion �eld. In the following propo-

sition, we show the motion �elds of any surface anda classical bas-relief transformation (not a generalizedbas-relief transformation) of the surface are identical.Proposition 3.1 The set of motion �elds induced byall 3-D in�nitesimal motions of a surface f is thesame, under orthographic projection, as the set ofall motion �elds of a surface di�ering by a bas-relieftransformation �f(x; y) = �f(x; y) where � 6= 0.Proof. Any rigid motion of the surface can be decom-posed into a rotation about an axis through the originand a translation. The overall motion �eld is the sumof the motion �elds produced by rotation and transla-tion. For translation, the motion �eld is independentof depth, i.e. constant for all (x; y) and, consequently,equivalent for both f and �f . For rotation, the motioncan be further decomposed into a rotation about thecamera's optical axis and a rotation about an axis inthe image plane. Rotations in the image plane createmotion �elds which are again independent of depth.Thus, the only motion �eld in this decomposition thatis dependent on depth is a rotation about an axis inthe image plane.Without loss of generality, let us choose the y axis.Denoting the angular velocity of the surface by 
 =(0; _�; 0), the 3-D velocity of a point p = (x; y; z) is_p = 
� p = 24 � _�z0_�x 35Under orthographic projection, the motion �eld isgiven by� _x_y � = � � _� z0 � = � � _� f(x; y)0 �for all (x; y). Since the angular velocity is unspeci-�ed, the surfaces f and �f = �f have the same motionvector �elds.This proof follows the results in [9, 17]. An impli-cation of Proposition 3.1 is that under orthographicprojection, a small motion of either the object or theobserver cannot resolve the bas-relief ambiguity. Fur-thermore, since the motion �eld is linear in f(x; y), theclassical bas-relief transformation is the only transfor-mation of f that will be preserve the set of motion�elds.Consider the third column in Figure 3. The imageproduced by a \normal" relief for a viewing directionof 5� from frontal is nearly identical to the imagesproduced by a motion of 7� for the 
attened head andby a motion of 3:5� for the elongated head.4 Integrability, Reconstruction, andthe Bas-Relief AmbiguityIn this section, we investigate the role of the gen-eralized bas-relief ambiguity on surface reconstruc-tion using photometric stereo. Let us assume that



a Lambertian surface is illuminated by a point lightsource at in�nity. When there is no shadowing (i.e.	f;s(x; y) = 1), the intensity image produced by alight source s can be expressed asIf;a;s(x; y) = b(x; y)T s (4)where b(x; y) is the product of the albedo a(x; y) ofthe surface and the inward pointing unit surface nor-mal n̂(x; y). From multiple images of the object seenfrom a �xed viewpoint but with di�erent light sourcedirection, we can solve Eq. 4 for b when the lightsource strengths and directions are known. This, ofcourse, is the standard photometric stereo technique,see [6, 20, 24].However, if the light source strengths and directionsare not known, then we can only determine the vector�eld b(x; y) of surface normals and albedos up to a3 � 3 linear transformation. For any invertible 3 � 3linear transformation A 2 GL(3) [2, 5, 17]bT s = bTATA�T s: (5)If b(x; y) is the true vector �eld of surface normalsthen the recovered vector �eld b�(x; y) is any vector�eld in the orbit of b(x; y) under the group GL(3).For a pixelated image with no surface point in shadow,b� can be estimated from a collection of images usingsingular value decomposition; when some of the sur-face points are shadowed, Jacobs' method can be usedto estimate b� [8]. Note, however, that not all vector�elds b�(x; y) correspond to continuous (or even piece-wise continuous) surfaces. We will use this observationto restrict the group of allowable transformations onb(x; y) [2].If b is transformed by an arbitrary A 2 GL(3)(i.e. any vector �eld b�(x; y) in the orbit of b un-der GL(3)), then in general, there will be no surfacef�(x; y) with unit normal �eld n̂�(x; y) and albedoa�(x; y) that could have produced the vector �eldb�(x; y). For f�(x; y) to be a surface, it must satisfythe following integrability constraint [7]:f�xy = f�yxwhich, in turn, means b�(x; y) must satisfy�b�1b�3�y = �b�2b�3�x (6)Proposition 4.1 If b(x; y) corresponds to a surfacef(x; y) with albedo a(x; y), then the set of linear trans-formation b�(x; y) = Ab(x; y) which satisfy the inte-grability constraint in Eq. 6 are the generalized bas-relief transformations G given in Eq. 2.Proof. The integrability constraint given in Eq. 6can be written as (b�1y � b�2x)b�3 + b�3xb�2 � b�3yb�1 = 0.

Letting Aij be the i; j-th element of A, and recall-ing that b� = Ab, the left hand side is a function ofbi(x; y); bix(x; y); biy (x; y) for i = 1; 2; 3. Since thesefunctions are generally independent, the coe�cientsof these function must all vanish for the integrabil-ity constraint to hold for all (x; y). This leads to thefollowing algebraic constraints on the elements of A.8>>><>>>: A22A31 �A21A32 = 0A21A33 �A23A31 = 0A12A33 �A13A32 = 0A12A31 �A11A32 = 0A22A33 �A11A33 +A13A31 �A32A23 = 0Since this system is homogeneous, for any A satisfy-ing this system, �A also satis�es the system; varying� corresponds to changing the light source intensitywhile making a corresponding global scaling of thealbedo function. It can be shown that if A33 = 0,the matrix A satisfying the constraints is singular. Sowe can let A33 = 1, and solve for the remaining coef-�cients. The only nonsingular solution is A11 = A22and A12 = A21 = A31 = A32 = 0. That is, A must bea generalized bas-relief transformation.The choice of b�(x; y) is, of course, not unique sinceb�(x; y) = Gb satis�es the integrability constraint forany G 2 GBR. Yet, every b� has a correspondingsurface f� with a corresponding albedo a(x; y), andthese surfaces di�er by a generalized bas-relief am-biguity. Thus, if we have at least three images {each acquired under di�erent light source directions{ of a surface f(x; y) with Lambertian re
ectanceand albedo a(x; y), then by imposing the integrabil-ity constraint in Eq. 6, we can recover the surfacef(x; y) up to a generalized bas-relief transformation�f(x; y) = �f(x; y)+�x+�y: Note that no informationgiven in the image shadows can resolve this ambiguity,as Section 2 showed that the set of all possible imagesof a surface f(x; y) is invariant under the generalizedbas-relief transformation. If, however, we have addi-tional information about the albedo or the strength ofthe light sources we can further restrict the ambiguity.Corollary 4.1 If the albedo a(x; y) is constant (orknown), or the light sources si all have the same inten-sity, then the generalized bas-relief ambiguity G is re-stricted to the binary subgroup given by � = �1; � = 0;and � = 0.Proof. If a(x; y) = jb(x; y)j is constant (or known),then for jb(x; y)j = jb�(x; y)j = jAb(x; y)j, A mustpreserve length for any b. The only matrices thatpreserve length are the orthonormal matrices. Theonly orthonormal matrices that are also generalizedbas-relief transformations correspond to � = �1; � =0; and � = 0. A similar argument holds about G�Twhen the light source intensities are known.



Thus, we can determine the true surface up toa sign, i.e. �f(x; y) = �f(x; y). This is the classi-cal in-out ambiguity that occurs in shape from shad-ing [6, 14]. Note however, that the shadowing con�gu-rations change when � changes sign, and if shadowingis present, this ambiguity can be resolved.5 DiscussionWe have shown that under any lighting condition, theshading and shadowing on an object is identical tothe shading and shadowing on any generalized bas-relief transformation of the object. The generalizedbas-relief transformation is unique in that it is theonly transformation of the surface having this prop-erty. Thus, from a single viewpoint, there is an am-biguity in the recovery of the surface: we can { atbest { determine the relief of the surface up to a threeparameter family of linear transformations. No infor-mation in either the shadowing or shading can resolvethis. This result supports the recent psychophysical�ndings of [10] that for a variety of surfaces this ambi-guity exists and is often unresolved in the human vi-sual system. Furthermore, the motion �elds producedby small camera motions cannot be used to resolve thesurface relief.In shape recovery, the generalized bas-relief trans-formation arises because the recovered surface must bepiecewise integrable. While it has been thought thatphotometric stereo with unknown light source direc-tion could be solved by �rst estimating the light sourcedirections and then estimating the surface structure,this paper has shown that these estimates are coupledthrough an unresolvable generalized bas-relief trans-formation. Taken together, these results suggest thatthe aim of structure recovery should be a weaker non-Euclidean representation, such as an a�ne represen-tation [9, 17, 18, 22], a projective representation [3],or an ordinal representation [4]; object recognitionshould not depend on resolution of these ambiguities.References[1] P. N. Belhumeur and D. J. Kriegman. What is theset of images of an object under all possible lightingconditions. In Proc. IEEE Conf. on Comp. Visionand Patt. Recog., pages 270{277, 1996.[2] R. Epstein, A. Yuille, and P. N. Belhumeur. Learningand recognizing objects using illumination subspaces.In Proc. of the Int. Workshop on Object Representa-tion for Computer Vision, 1996.[3] O. Faugeras. Strati�cation of 3-d vision: Projective,a�ne, and metric representations. J. Opt. Soc. Am.A, 12(7):465{484, 1995.[4] C. Fermuller and Y. Aloimonos. Ordinal representa-tions of visual space. In Proc. Image UnderstandingWorkshop, pages 897{904, 1996.[5] H. Hayakawa. Photometric stereo under a light-sourcewith arbitrary motion. JOSA-A, 11(11):3079{3089,Nov. 1994.
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