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Abstract

Since antiquity, artisans have created flattened forms,
often called “bas-reliefs,” which give an exaggerated
perception of depth when viewed from a particular van-
tage point. This paper presents an explanation of
this phenomena, showing that the ambiguity in de-
termining the relief of an object is not confined to
bas-relief sculpture but is implicit in the determina-
tion of the structure of any object. Formally, if the
object’s true surface is denoted by ziyue = f(z,y),
then we define the “generalized bas-relief transforma-
tion” as z = Af(z,y) + px + vy, with a corresponding
transformation of the albedo.  For each image of a
Lambertian surface f(x,y) produced by a point light
source at infinity, there exists an identical image of a
bas-relief produced by a transformed light source. This
equality holds for both shaded and shadowed regions.
Thus, the set of possible images (illumination cone) is
invariant over generalized bas-relief transformations.
When n=v =0 (e.g. a classical bas-relief sculpture),
we show that the set of possible motion fields are also
tdentical. Thus, neither small unknown motions nor
changes of illumination can resolve the bas-relief am-
biguity. Implications of this ambiguity on structure
recovery and shape representation are discussed.

1 Introduction

Throughout the millennia, artisans have created flat-
tened forms, i.e. so-called “bas-reliefs,” which when
viewed from a particular vantage point are difficult, if
not impossible, to distinguish from a full relief sculp-
ture. As the sun moves through the sky, the shading
and shadows change, yet the degree of flattening can-
not be discerned on a well sculpted bas-relief. Even
if an observer’s head moves by a small amount, this
ambiguity cannot be resolved. This paper not only
presents an explanation of this phenomena, but also
demonstrates that the ambiguity in determining the
relief of an object is implicit in the determination of
the structure of any object.

In particular, we show that the set of images pro-
duced by arbitrary illumination of an object (i.e. the
object’s illumination cone [1]) is the same as the set
of images produced by what we call a “generalized
bas-relief transformation” of the object. A generalized
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bas-relief transformation is a transformation of both
the surface shape and the surface albedo for an arbi-
trary Lambertian surface. In particular, if an object’s
true surface is denoted by f(z,y) where the (z,y)
plane is perpendicular to the line of sight, a gener-
alized bas-relief transformation of the surface shape
is given by f = Af(z,y) + px + vy, and the corre-
sponding generalized bas-relief transformation of the
surface albedo is given by Eq. 3. Classical bas-relief
sculptures use a subset of the transformation on shape,
with 0 < A <1, p =0, and » = 0, and, to the best of
our knowledge, ignore the corresponding transforma-
tion on albedo.

The fact that a surface and a generalized bas-relief
transformation of the surface produce the same set
of images arises from an implicit duality. For each
image of a Lambertian surface f(x,y) produced by a
point light source at infinity s, there exists an identi-
cal image of the generalized bas-relief transformation
Af(z,y) + px + vy produced by a transformed light
source s. This equality holds not only for the illumi-
nated regions of the surfaces, but for the shadowed
regions as well. Furthermore, due to superposition,
the equality holds not only for a single light source,
but for an arbitrary — possibly infinite — number of
light sources.

Thus, from a single viewpoint, there is an ambigu-
ity in the recovery of the surface: we can — at best —
determine the relief of the surface up to a three param-
eter family of linear transformations. No information
in either the shadowing or shading can resolve this.
Yet, if the viewer moves relative to the surface, or the
surface moves relative to the viewer, does this ambi-
guity vanish?

For infinitesimal motion under perspective projec-
tion, the structure estimates are sensitive to noise, pro-
ducing an implicit error in the estimate of the relief A
of the surface [15, 21]. For infinitesimal motion under
orthographic projection, there is a genuine bas-relief
ambiguity: we can only recover the shape of the sur-
face up to a scale factor in the direction of the camera’s
optical axis, i.e. a bas-relief transformation for which
A is unknown [9].

A summary of these and other results follow:

e For any light source direction, there exists an-
other light source direction such that cast and
attached shadows produced by a surface and a
transformed surface are identical, irrespective of
the material type.



Figure 1: The figure shows two frontal views and a side view of a pair of bas-relief sculptures. Notice how the frontal
views appear to have full 3-D depth, while the side view reveals the extent of the flattening.

e If the material can modeled as having Lambertian
reflectance, then the set of possible images un-
der any lighting condition (illumination cone [1])
including shadowing for a surface and its trans-
formed surface are identical; therefore, these ob-
jects cannot be distinguished by any recognition
algorithm.

e The generalized bas-relief transformation is the
only transformation which has these first two
properties.

e Under orthographic projection, the set of mo-
tion fields produced by a surface and its classi-
cal bas-relief are identical. Therefore, an object
and its relief cannot be distinguished from small
unknown camera motion.

e For photometric stereo where the light source di-
rections are unknown, the structure can only be
determined up to a generalized bas-relief transfor-
mation and shadows do not provide further infor-
mation. Using prior information about the albedo
and light source strength, the structure can be de-
termined up to a reflection in depth. Cast shad-
ows can be used to distinguish these two cases.

Thus, if an object is viewed orthographically, then
neither illumination nor small motions of the viewer
(or object) will resolve the object’s depth relief. Fig-
ure 1 shows images of two bas-relief sculptures. Notice
how the frontal views appear to have full depth, but
the oblique views reveal the extent of the flattening.

2 Bas-Relief Ambiguity: Illumination

Consider a surface observed under orthographic pro-
jection and define a coordinate system attached to the
image plane such that the x and y axes span the image
plane. In this coordinate system, the depth of every
visible point in the scene can be expressed as

z:f(x,y)

where f is a piecewise differentiable function. The
graph of f(z,y), i.e. (z,y, f(x,y)), defines a surface
which will also be denoted by f.

The direction of the inward pointing surface normal
n(z,y) can be expressed as

fa
n(z,y) = l fy ] (1)
-1

where f, and f, denote the partial derivatives of f
with respect to x and y respectively.

Consider transforming the surface f to a new sur-
face f in the following manner. We first flatten (or
scale) it along the z axis and then add a plane, i.e.

f(z,y) = Af(2,y) + po + vy

where A # 0 [2]. We call this transformation the “gen-
eralized bas-relief transformation.” See Figures 2 and
3. As will be seen in Section 4, this is the only lin-
ear transformation of the surface’s normal field which
preserves integrability. When p = 0 and v = 0, we
call this transformation the classical “bas-relief trans-
formation,” since for A < 1 the surface is flattened like
classical bas-relief sculptures.

Note that for image point (z,y), the relation be-
tween the direction of the surface normal of f and f
is given by n = Gn where

A0 —p
G=|0 X —v ] (2)
0 0 1

Under the matrix product operation, the set GBR =
{G} forms a subgroup of GL(3) with

G'==01 v |.
ALo 0 A
Also, note that if p = (z,y,f(z,y)) and p =
(z,y, f(z,y)), then p = MG Tp where G =

(GT)—l — (G_l)T.

Let the vector s denote a point light source at in-
finity, with the magnitude of s proportional to the in-
tensity of the light source. (For a more general model
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Figure 2: The image points that lie in a cast or attached
shadow for a surface f under light source s are identical to
those in shadow for transformed the surface f under light
source § = G~ Ts. The middle figure shows a classical bas-
relief transformation of the upper figure while the bottom
figure is a generalized bas-relief. For diagrammatic clarity,
the surface normals are drawn outward.

of illumination, e.g. one that does not restrict light
sources to be at infinity, see [12].) We first show that
shadowing on a surface f for some light source s is
identical to that on a bas-relief transformed surface f
with an appropriate light source s; we then show that
if the surfaces are Lambertian, the set of all possible
images of both surfaces are identical.

We can identify two types of shadows: attached
shadows and cast shadows [19]. See Figure 2. A sur-
face point p = (z,y, f(z,y)) lies in an attached shadow
for light source direction s iff n(z,y)?'s < 0. This def-
inition leads to the following lemma.

Lemma 2.1 A point p = (z,y, f(z,y)) lies in an
attached shadow for light source direction s iff p =
(z,y, f(z,y)) lies in an attached shadow for light

source direction § = G~ Ts.

Proof. If a point p on f lies in an attached shadow,
then n”'s < 0. On the transformed surface, the point
P = (x,y, f(z,y)) also projects to (x,y) and for this
point n’'s = n?”’GTG~Ts = n’'s. Therefore, p is also
in an attached shadow. The converse clearly holds as
well. ||

A necessary condition for a point p; =
(z1,y1, f(z1,91)) on the surface to fall on the cast
shadow boundary for light source direction s is that
there exists another point ps = (2, y2, f(z2,y2)) on
the surface such that the light ray in the direction
s passing through ps grazes the surface at ps and
intersects the surface at p;. The point ps is the
boundary of an attached shadow. For smooth sur-
faces, attached shadow and cast shadow boundaries
can be distinguished in intensity images; along any im-
age curve (x(t),y(t)) intersecting the shadow bound-
ary transversally, the intensity I(z(t),y(t)) is contin-
uous at an attached shadow boundary, whereas it is
discontinuous at a cast shadow.

Lemma 2.2 A point p = (z,y, f(x,y)) satisfies the
necessary condition for lying on a cast shadow bound-
ary for light source direction s iff p = (z,y, f(z,y))
satijgﬁes the condition for light source direction s =
G~ 's.

Proof. The condition for a point p; to be on a shadow
boundary cast by p» is that

ngs:()
P2 —P1 =178

for some v < 0. For the transformed surface, the first
condition for a point to be on the shadow boundary is

nis=nlG'G Ts=nls=0.

Under the generalized bas-relief transformation p =
AG~Tp, and the second condition can be expressed
for the relief surface as

AG T (py —p1) —9G s
A(p2 —p1) =78 = 0.

P2 —P1— 78

This condition clearly holds when 4 = Ay. The con-
verse of this lemma can be similarly proven. ||

This lemma becomes both necessary and sufficient
for a point to lie on a shadow boundary when the ray
from p; passing through p, does not intersect any
other portion of the surface for both f and f. In
general, this is true when A > 0.

Taking these two lemmas together, it follows that if
some portion of the surface f is in a cast or attached
shadow for a light source direction s, then if the surface
is subject to a generalized bas-relief transformation G,
there exists a lighting direction 8 = G~T's such that
the same portion of the transformed surface is also
shadowed. Let us specify these shadowed regions —
both attached and cast — through a binary function
U s(x,y) such that

| 0 if (x,y) is shadowed
Urs(z,y) = { 1  otherwise.



Using this notation and the above two lemmas, we can
then write ¥y s(z,y) = ¥r5(z,y).

We should stress that shadowing ¥;<(z,y) is a
function of the object’s geometry and light source di-
rection — it is unaffected by the reflectance properties
of the surface. For any surface, any light source di-
rection, and any generalized bas-relief transformation
of that surface, there exists a light source direction
such that the shadowing will be identical irrespective
of the surface properties. Furthermore, the general-
ized bas-relief transformation is the only transforma-
tion for which this is true for any surface. (Space
limitations preclude including a proof.)

We now show that if the surface reflectance is Lam-
bertian [6, 11], then the sets of images produced by a
surface (i.e. the surface’s illumination cone [1]) and a
transformed surface under all possible lighting condi-
tions are identical. Letting the albedo of a Lambertian
surface f be denoted by a(z,y), the intensity image
produced by a light source s can be expressed as

It os(z,y) = Vss(z,y)b(z,y)’'s

where b(z, y) is the product of the albedo a(x, y) of the
surface and the inward pointing unit surface normal
n(z,y).

We now show that the set of images produced by f
and f are identical when the albedo a(z,y) of f is

a= a\/O\m —pn3)? + (Ang —vnz)? +n3  (3)

where i = (ny,n9,n3)?. The effect of applying Eq. 3
to a classical bas-relief transformation 0 < A < 1 is
to darken points on the surface where n points away
from the optical axis.

Lemma 2.3 For each light source s illuminating a
Lambertian surface f(x,y) with albedo a(x,y), there
exists a light source s illuminating a surface f(x,y) (a
generalized bas-relief transformation of f) with albedo
a(z,y) (as given in Eq. 3), such that I, s(x,y) =
If,ﬁ,é(xay)'

Proof. The image of f is given by
If7a7s(x7 y) = \I]ﬁs(ﬁ?, y)bT(I, y)S
For any 3 x 3 invertible matrix A, we have that
If7a7s(m7 y) = \Ilf,s(xa y)bT(xa y)AAils‘

Since GBR is a subgroup of GL(3) and ¥y s(z,y) =
Wf,é(xay)a

If,a,s(xay) lI’ﬁs(way)bT(m;!13’)€';’TG7TS

\Il_fys(xv y)E)T(xa y)S

([l
B
w
~
B
<

where b(z,y) = Gb(z,y) and s = G~ Ts. |

With the above three lemmas in hand, we can now
state and prove the central proposition of this section:

Proposition 2.1 The set of images under all possible
lighting conditions produced by a Lambertian surface
f with albedo a(x,y) and those surfaces f differing by
any generalized bas-relief transformation with albedo
a(x,y) given by Eq. 3 are identical.

Proof. From Lemmas 2.1, 2.2, and 2.3, we have that
the image of a surface f produced by light source s is
the same as the image of a generalized bas-relief trans-
formed surface f produced by the transformed light
source § = G~ T's, Le. Iy qs(w,y) = I7 5 4(2,y). When
the object is illuminated by a set of light sources {s;},
then the image is determined by the superposition of
those images that would be formed under the individ-
ual light sources. Similarly, the same image can be
produced from the transformed surface if it is illumi-
nated by the set of light sources given by {s;}, where
S; = GiTSi. |

This proposition says that the set of surfaces pro-
duced by a generalized bas transformation of a surface
form an equivalence class. The sets of possible images
produced by every surface in this equivalence class are
identical. That is, the set of images is invariant over
the equivalence class of surfaces formed under the gen-
eralized bas-relief transformation. An implication of
this result is that given any number of images, it is
impossible to distinguish two objects that differ only
by a generalized bas-relief transformation. Additional
information must be brought to bear to distinguish
them.

In Figure 3, we have simulated bas-relief transfor-
mations of a human face. The middle row contains
images produced by the true surface of the face. The
top row contains images produced by a flattened form
of the surface, and the bottom row contains images
produced by an elongated form of the surface. The
left column shows the surface of the face from a side
view, orthogonal to the direction of the chosen bas-
relief transformation. The middle column shows the
faces from a frontal view, parallel to the direction
of the transformation. By choosing the appropriate
lighting directions for each surface all three images in
the column appear identical. (The right column is ex-
plained in the next section.)

3 Bas-Relief Ambiguity: Motion
Consider again a surface observed under orthographic
projection. We again define a coordinate system at-
tached to the image plane such that the x and y axes
span the image plane and the depth of every visible
point in the scene can be expressed as z = f(x,y)
where f is again a continuous function.

If the surface undergoes a rigid motion and is
viewed under perspective projection, the object’s Eu-
clidean structure can be determined from as few as two
images [13, 16, 23]. If the object is viewed orthographi-
cally, the object’s structure can only be determined up
to a one parameter family of affine distortions [9]. To



Figure 3: This figure shows images of three human faces
each differing by a classical bas-relief transformation. The
3-D data for the true head (the middle row) was obtained
with a 3-D scanner (Cyberwave) and rendered assuming
a Lambertian surface with constant albedo. The heads
in the first and third row were obtained by scaling the z
coordinate with A < 1 and XA > 1 respectively. The left
column shows the faces from a side view, orthogonal to
the direction of the chosen bas-relief transformation. The
middle column shows the faces from a frontal view, parallel
to the direction of the transformation. We have chosen
lighting directions to illuminate the middle images so that
all three images will appear identical. The right column
shows images of the faces after being rotated. We have
chosen rotations angles (7, 5, and 3.5 degrees from top to
bottom) to make the images appear nearly identical.

determine the Euclidean structure under orthographic
projection, at least three images are needed.

Yet, complications arise when the object’s motion is
small. For infinitesimal motion under perspective pro-
jection, the structure estimates are sensitive to noise,
producing an implicit error in the estimate of the re-
lief of the surface [15, 21]. For small (infinitesimal)
unknown motion under orthographic projection, there
is a genuine bas-relief ambiguity: the shape of the sur-
face can only be recovered up to a scale factor in the
direction of the camera’s optical axis, i.e. a classical
bas-relief transformation (A > 0, u = v = 0).

To see this, let us assume that the surface does, in
fact, undergo and arbitrary infinitesimal motion. The
velocity (z,9,2) of a point (z,y,z) on the surface f
induces a velocity (#,¢) in the image plane. The col-
lection of velocities for all points in the image plane is
often called the motion field. In the following propo-

sition, we show the motion fields of any surface and
a classical bas-relief transformation (not a generalized
bas-relief transformation) of the surface are identical.

Proposition 3.1 The set of motion fields induced by
all 3-D infinitesimal motions of a surface f is the
same, under orthographic projection, as the set of
all motion fields of a surface differing by a bas-relief
transformation f(z,y) = Af(z,y) where A # 0.

Proof. Any rigid motion of the surface can be decom-
posed into a rotation about an axis through the origin
and a translation. The overall motion field is the sum
of the motion fields produced by rotation and transla-
tion. For translation, the motion field is independent
of depth, i.e. constant for all (x,y) and, consequently,
equivalent for both f and f. For rotation, the motion
can be further decomposed into a rotation about the
camera’s optical axis and a rotation about an axis in
the image plane. Rotations in the image plane create
motion fields which are again independent of depth.
Thus, the only motion field in this decomposition that
is dependent on depth is a rotation about an axis in
the image plane.

Without loss of generality, let us choose the y axis.
Denoting the angular velocity of the surface by @ =
(0,6,0), the 3-D velocity of a point p = (z,y, z) is

—0z
p=Qxp=| 0
Oz
Under orthographic projection, the motion field is
given by

5[]

for all (z,y). Since the angular velocity is unspeci-
fied, the surfaces f and f = Af have the same motion
vector fields. ||

This proof follows the results in [9, 17]. An impli-
cation of Proposition 3.1 is that under orthographic
projection, a small motion of either the object or the
observer cannot resolve the bas-relief ambiguity. Fur-
thermore, since the motion field is linear in f(z,y), the
classical bas-relief transformation is the only transfor-
mation of f that will be preserve the set of motion
fields.

Consider the third column in Figure 3. The image
produced by a “normal” relief for a viewing direction
of 5° from frontal is nearly identical to the images
produced by a motion of 7° for the flattened head and
by a motion of 3.5° for the elongated head.

4 Integrability, Reconstruction, and
the Bas-Relief Ambiguity

In this section, we investigate the role of the gen-

eralized bas-relief ambiguity on surface reconstruc-

tion using photometric stereo. Let us assume that



a Lambertian surface is illuminated by a point light
source at infinity. When there is no shadowing (i.e.
Urs(r,y) = 1), the intensity image produced by a
light source s can be expressed as

Ifus(z,y) = b(z,y)"'s (4)

where b(z,y) is the product of the albedo a(x,y) of
the surface and the inward pointing unit surface nor-
mal f(z,y). From multiple images of the object seen
from a fixed viewpoint but with different light source
direction, we can solve Eq. 4 for b when the light
source strengths and directions are known. This, of
course, is the standard photometric stereo technique,
see [6, 20, 24].

However, if the light source strengths and directions
are not known, then we can only determine the vector
field b(z,y) of surface normals and albedos up to a
3 x 3 linear transformation. For any invertible 3 x 3
linear transformation A € GL(3) [2, 5, 17]

bls =blATA s, (5)

If b(x,y) is the true vector field of surface normals
then the recovered vector field b*(z,y) is any vector
field in the orbit of b(z,y) under the group GL(3).
For a pixelated image with no surface point in shadow,
b* can be estimated from a collection of images using
singular value decomposition; when some of the sur-
face points are shadowed, Jacobs’ method can be used
to estimate b* [8]. Note, however, that not all vector
fields b*(z, y) correspond to continuous (or even piece-
wise continuous) surfaces. We will use this observation
to restrict the group of allowable transformations on
b(z,y) [2].

If b is transformed by an arbitrary A € GL(3)
(i.e. any vector field b*(x,y) in the orbit of b un-
der GL(3)), then in general, there will be no surface
f*(z,y) with unit normal field n*(z,y) and albedo
a*(z,y) that could have produced the vector field
b*(x,y). For f*(x,y) to be a surface, it must satisfy
the following integrability constraint [7]:

Y
zy — Jyx

which, in turn, means b*(z, y) must satisfy

i), (&)

=] =1 (6)
<b3 y b3 T

Proposition 4.1 If b(z,y) corresponds to a surface
fx,y) with albedo a(x,y), then the set of linear trans-
formation b*(x,y) = Ab(x,y) which satisfy the inte-

grability constraint in Eq. 6 are the generalized bas-
relief transformations G given in FEq. 2.

Proof. The integrability constraint given in Eq. 6
can be written as (b], — b5 )b3 + b3 b3 — b3 by = 0.

Letting A;; be the ¢,j-th element of A, and recall-
ing that b* = Ab, the left hand side is a function of
bi(x,y),bi, (x,y),b;, (x,y) for i = 1,2,3. Since these
functions are generally independent, the coefficients
of these function must all vanish for the integrabil-
ity constraint to hold for all (z,y). This leads to the
following algebraic constraints on the elements of A.

Asp Az — Ap1 Az =0
As1Ags — Apg Az =0
A1pAszs — A13A3 =0
Ao Az — AnAse =0
Ay Azz — A1 Azz + A3 Az — Az Ax3 =0

Since this system is homogeneous, for any A satisfy-
ing this system, pA also satisfies the system; varying
p corresponds to changing the light source intensity
while making a corresponding global scaling of the
albedo function. It can be shown that if Asz3 = 0,
the matrix A satisfying the constraints is singular. So
we can let A3z = 1, and solve for the remaining coef-
ficients. The only nonsingular solution is A;; = Ass
and A12 = A21 = A31 = A32 = 0. That iS, A must be
a generalized bas-relief transformation. ||

The choice of b*(z,y) is, of course, not unique since
b*(z,y) = Gb satisfies the integrability constraint for
any G € GBR. Yet, every b* has a corresponding
surface f* with a corresponding albedo a(z,y), and
these surfaces differ by a generalized bas-relief am-
biguity. Thus, if we have at least three images —
each acquired under different light source directions
— of a surface f(z,y) with Lambertian reflectance
and albedo a(z,y), then by imposing the integrabil-
ity constraint in Eq. 6, we can recover the surface
f(z,y) up to a generalized bas-relief transformation
flz,y) = Af(z,y)+ pz+vy. Note that no information
given in the image shadows can resolve this ambiguity,
as Section 2 showed that the set of all possible images
of a surface f(x,y) is invariant under the generalized
bas-relief transformation. If, however, we have addi-
tional information about the albedo or the strength of
the light sources we can further restrict the ambiguity.

Corollary 4.1 If the albedo a(z,y) is constant (or
known), or the light sources s; all have the same inten-
sity, then the generalized bas-relief ambiguity G is re-
stricted to the binary subgroup given by A = £1, u =0,
and v = 0.

Proof. If a(z,y) = |b(x,y)| is constant (or known),
then for |b(z,y)| = |b*(z,y)| = |Ab(z,y)|, A must
preserve length for any b. The only matrices that
preserve length are the orthonormal matrices. The
only orthonormal matrices that are also generalized
bas-relief transformations correspond to A = £1, u =
0, and » = 0. A similar argument holds about G~7
when the light source intensities are known. |



Thus, we can determine the true surface up to
a sign, ie. f(z,y) = £f(z,y). This is the classi-
cal in-out ambiguity that occurs in shape from shad-
ing [6, 14]. Note however, that the shadowing configu-
rations change when A\ changes sign, and if shadowing
is present, this ambiguity can be resolved.

5 Discussion

We have shown that under any lighting condition, the
shading and shadowing on an object is identical to
the shading and shadowing on any generalized bas-
relief transformation of the object. The generalized
bas-relief transformation is unique in that it is the
only transformation of the surface having this prop-
erty. Thus, from a single viewpoint, there is an am-
biguity in the recovery of the surface: we can — at
best — determine the relief of the surface up to a three
parameter family of linear transformations. No infor-
mation in either the shadowing or shading can resolve
this. This result supports the recent psychophysical
findings of [10] that for a variety of surfaces this ambi-
guity exists and is often unresolved in the human vi-
sual system. Furthermore, the motion fields produced
by small camera motions cannot be used to resolve the
surface relief.

In shape recovery, the generalized bas-relief trans-
formation arises because the recovered surface must be
piecewise integrable. While it has been thought that
photometric stereo with unknown light source direc-
tion could be solved by first estimating the light source
directions and then estimating the surface structure,
this paper has shown that these estimates are coupled
through an unresolvable generalized bas-relief trans-
formation. Taken together, these results suggest that
the aim of structure recovery should be a weaker non-
Euclidean representation, such as an affine represen-
tation [9, 17, 18, 22], a projective representation [3],
or an ordinal representation [4]; object recognition
should not depend on resolution of these ambiguities.
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