
Toward Domain-Independent Navigation:Dynamic Vision and Control�G.D. Hager D.J. Kriegman A.S. Georghiades O. Ben-ShaharCenter for Computational Vision and ControlYale UniversityNew Haven, CT 06520-8285AbstractThis paper outlines a set of problems associated withconstructing a robust, domain-independent vision-based navigation system suitable for both structuredand unstructured environments. The system utilizesvisual tracking to monitor a set of automatically se-lected image features (markers), and employs vision-based control to guide the motion of the robot from theimage trajectory of a set of markers. An environmentis represented as a graph which may be constructed ei-ther under human control (e.g. by giving the system atour) or autonomously as the system explores. In thispaper, we review the system architecture and presenttwo image-based mobile robot controllers for followingvisually-de�ned trajectories.1 IntroductionSince early work in the 1970's, such as SRI's Shakey[23]and Moravec's Cart[22], there have been great stridesin the development of vision-based navigation methodsfor mobile robots operating both indoors and outdoors.Much of the e�ciency and robustness of the recent sys-tems can be attributed to the use of special purposearchitectures and algorithms that are tailored to ex-ploit domain speci�c image cues. For example, roadfollowers rely on �nding the road boundary and lanemarkers [3, 12] or landmarks [6, 18, 19, 20] whereasmobile robots navigating in hallways have exploiteduniform texture of the oor [13], oor/wall features[17, 15], and overhead lights [7]. However, althoughthese domain specializations lead to impressive perfor-mance, they do so by imposing particular sensor cuesand representations on low-level navigation. As a re-sult, a system that works in one domain may requiresubstantial redesign before it can be used in another.One path toward achieving domain-independencewould be to utilize geometric reconstruction. In par-ticular, dense surface descriptions produced by either�This research was supported by the National Science Foun-dation, the Army Research O�ce, and by DARPA.

range-�nders or vision-based reconstruction techniquescan be used to determine the free-space or traversableregions independent of the domain. However, thesemethods require a tremendous amount of computation,have limited resolution, and are di�cult to maintainover large spatial extent due to integral odometric er-ror.Instead, our aim is to develop a vision-based navigationsystem capable of performing tasks in environmentsranging from the usual \corridor and room" buildingto large open areas such as auditoriums, warehouses,parking lots, or open terrain. Although vision pro-vides a huge amount of data, we quickly focus attentionon small portions of the image which are easily distin-guished from their local (in the image) surroundings,and track these patches through image sequences. Vi-sual tracking of this type has proven to be simple toperform [2, 10], yet it is robust and it reduces imageinformation to a time history of a small set of featurelocations. Consequently, the set of nominal robot pathsin our system is represented in terms of the image tra-jectories of tracked features. During subsequent navi-gation, the image motion of observed features in com-parison to stored feature trajectories provides directfeedback for robot motion control. As features leavethe robot's �eld of view, new features in the map areacquired by predicting their expected image location;once acquired, these features are tracked and used tocontrol robot motion. In this way, the robot operates ina controlled, closed-loop manner during all operations.The remainder of this paper expands on these ideasand presents preliminary results on two motion controlalgorithms for implementing tour following.2 Navigation Using Tracked MarkersThroughout this article, we assume a non-holonomicmobile system with kinematics equivalent to a unicycle.The system travels in the x�z plane and rotates aboutthe y (gravity) axis. It is equipped with a unit focallength camera whose optical center de�nes the origin ofthe robot coordinate system. The state of the systemp. 1
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cFigure 1: A navigation example showing the environment (left), the sequence-based representation (upper right), and thegraph (lower right). The robot starts at point a observing the markers m1 through m5: As it moves to positionb, m5 falls out of view, but the robot is able to acquire m6: As it continues its motion from b to c; it notes thatthere is a corridor opening between m2 and m4; this information is added as an annotation to the sequence. Asit reaches c it is forced to drop m3 and m4; but acquires m7: At this point, it could have chosen instead to movedown the corridor to the right. A later traversal moving to position e would add a branch point to the graph asshown by the dotted line.in the plane is therefore given by r = (x; z; �)t 2 IR3where (x; z) denotes the position of the robot in theplane and � denotes its orientation. The kinematics ofthe system are( _x; _z; _�) = (�s sin(�); s cos(�); !) (1)where s and ! are the linear and angular velocity of therobot body. Note that the camera is �xed and points inthe \forward" (z axis) direction. Also, for the sake ofsimplicity we assume that the camera has an unlimited�eld of view. In practice, providing the system withan independent pan axis for the camera would achievenearly the same results.We assume that the robot has already acquired dataabout a set of nominal paths through the environment.Here we briey summarize the important aspects ofthat representation and refer the reader to [26, 8, 10]for more details on the techniques used to acquire it.The set of nominal paths is represented as a directedgraph (the map) based on the recorded visual tra-jectories of tracked features which we call markers.We represent the trajectory of marker i as a functionmi(t); bi � t � ei; where t = bi is the time of markeracquisition, and t = ei is the time at which the markeris lost. In general, the range of the functions mi(t)depends on the marker type. For the purposes of thisarticle we assume each marker is a point feature charac-terized by an image location and thus mi : IR+ ! IR2.Arcs of the graph correspond to the trajectories of col-lections of markers called sequences, and the nodes ofthe graph correspond to the initiation or terminationof a sequence. More formally, a sequence, Sj ; is de-�ned by a set of markers Sj = fmj1 ; : : : ;mjng which

are simultaneously visible over some non-empty in-terval dom(Sj) = [max(bj1 ; : : : ; bjn);min(ej1 ; : : : ; ejn)]:We write Sj(t) = hmj1(t); : : : ;mjn(t)i; t 2 dom(Sj) todenote the feature trajectory of the sequence. We as-sume that every marker belongs to a sequence at everytime point, and that sequences are maximal | thatis, if Sj is a sequence, there is no Sk; k 6= j such thatSj � Sk: Note that with this particular set of de�ni-tions, it follows that one sequence ends and anotherbegins if and only if a marker is acquired or lost. Alsonote that the arcs are directed since markers that arevisible while going in one direction, may not be visiblein the other direction.Finally, we assume that the time history of the con-trol inputs to the system during sequence generation isstored with the sequence.3 Visual Tracking and Motion Control3.1 Epipolar Geometry for Mobile SystemsConsider �rst the perspective projection of an arbitrarypoint feature i. If the feature's homogeneous coor-dinates in two distinct images are denoted by m1i =(u1i ; v1i ; 1) and m2i = (u2i ; v2i ; 1), it is well-known thatthe two measurements must satisfy the following bilin-ear form known as the epipolar constraint(m1i )tF12m2i = 0 (2)where F12 is a 3 � 3 matrix of rank 2 [5]. When thecamera's internal parameters are known, F12 can beexpressed as F12 = skew(t12)R12 where R12 2 SO(3)and t12 2 IR3 denote the rotation and translation be-tween the camera locations at which the correspond-p. 2



ing images were acquired, and skew(t12) is the skew-symmetric matrix whose elements are given by t12 [21].For the constrained motions of a mobile system oper-ating in the x� z plane it follows that F12 takes on thesimpli�ed formF12 = 24 0 �tz 0tzC + txS 0 tzS � txC0 tx 0 35 (3)= 24 0 f1 0f2 0 f30 f4 0 35 : (4)where S = sin �12; C = cos �12; �12 is the relative angleof rotation about the vertical axis which parameterizesR12, and t12 = (tx; 0; tz)t.Given three or more corresponding points, F12 can beestimated as follows. First, the epipolar constraint canbe expressed as atif = 0 where f = [f1; f2; f3; f4]t andati = � u1i v2i v1i u2i v1i v2i � : We then construct thepositive semi-de�nite matrixA = nXi=1 ai ati : (5)The best estimate in a least squares sense for f is theeigenvector of the matrix A associated with its smallesteigenvalue.We can relate this to the geometry of the system asfollows. Given F12; we see that t12 = �[f4; 0;�f1] forsome real value �: Since � is unknown, we can think oft12 as de�ning the line joining the two robot locations.Henceforth, we will denote the direction of this line by 12 which is ambiguous modulo �:We can solve for �12by �rst solving the linear system� �f1 f4�f4 �f1 �� CS � = � f2f3 � (6)and then computing �12 = tan�1 S=C: It is possibleto show that estimation of �12 is always well-de�ned(provided all points do not lie on the horizon line),however t12 is not well-de�ned when the centers of thetwo cameras are coincident.3.1.1 Feed-Forward Marker Acquisition: Totransition between sequences as the robot moves alonga trajectory it is necessary to acquire landmarks as theycome into view. This problem, which is closely relatedto the image transfer problem [1, 11, 27], can be solvedas follows [8]. For simplicity, suppose that S1 and S2are two \snapshots" (e:g: the �rst and last images) froma �xed sequence Sj which contains four or more points.Let S3 denote a snapshot from a sequence Sk; k 6= jwhich shares at least three points with Sj . It followsthat, from the three shared points, we can compute twofundamental matrices: F13 and F23 from S1; S2; andS3:

Let m34 denote the coordinates of a fourth point to belocated in S3 given its known locations m14 in S1 andm24 in S2: This location is given by solving the linearsystem � (m14)tF1;3(m24)tF2;3 �m34 = 0 (7)for the �rst two components of m34: Figure 2 shows anexample of this type of point prediction.It is important to note that this system does not alwayshave a unique solution: there are certain geometric con-ditions which lead to a degenerate linear system. Morediscussion on this point can be found in [8].3.2 Motion ControlIn order to formalize the motion control problem, wenow suppose that the robot is traversing an arc inthe map corresponding to a stored sequence whiletracking a corresponding set of markers. Recall thatwe assume the following information is available fromthe previously taken \tour:" (1) a reference sequenceSr : IR+ ! IRn which is of �xed dimension n=2 >= 3;and (2) a record (sr(t); !r(t); t 2 [0;1) of the inputcontrol values to the system when Sr was \recorded."It is important to note that due to wheel slippage, itis not possible, via the kinematic equations, to simplyintegrate using the recorded sequence of s and ! tocompute the position of the robot.As the robot moves, it observes a sequence of \current"marker values Sc : IR+ ! IRn which correspond tothose in Sr (that is, they arise from the projections ofthe same points in the world). Our goal is to choosea control strategy such that kSc(t) � Sr(t)k2 ! 0 ast!1:3.2.1 Geometry-Based Feedback: Consider acamera which is currently at position and orientationr1 with snapshot S1 = Sc(t) and a reference positionand orientation r2 with snapshot S2 = Sr(t). From theresults of the previous section, one possible strategy tomove the robot to the desired location (r2) would be tocompute F12 using S1 and S2; use this in turn to com-pute  12 which parameterizes the line joining r1 andr2, and to move along this line until r2 is reached. Un-fortunately, due to the ambiguity modulo � in  12 wedo not know the direction to move on this line. Fur-thermore, the calculation of  12 breaks down as therobot nears r2:Both of these problems can be solved by using the errorE12 = kS1(t)� dS2(t)k2, where dS2(t) is the reprojectionof S2(t) to an image plane rotated about the y axisby �12: We can disambiguate  12 by moving in the di-rection that causes E12 to decrease. Furthermore, adecreasing E12 implies that the robot moves closer tothe desired position r2 which in turn means that calcu-lation of  12 becomes less reliable. Therefore, we canp. 3



a. b.
f. g. h.Figure 2: The top row shows two training images taken about one meter apart with the robot looking in the same direction.The remaining images were taken at equal intervals as the robot moved forward approximately ten feet from itsposition in Figure b. During training the image coordinates of all four features marked in Figure 2.a were knowninitially, then tracked to their positions in Figure 2.b. The crosses in the subsequent three images indicate therobot's predictions of the feature location.Standard Deviation = 0.0 pixels Standard Deviation = 0.5 pixels Standard Deviation = 1.5 pixels
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Figure 3: At the top, simulation tests of the geometry-based control algorithm under various noise conditions. At thebottom, simulation tests of the Jacobian-based control algorithms under the same conditions. The �gures showthe location of the controlled system (solid line) as well as the reference trajectory (dashed line). p. 4



use E12 to bias the e�ect of  12 on the control of therobot. We can then control the robot by a policy ofthe form, � = �1E121 + �1E12 (8)s(t) = sr(t) + �2(E12 cos( 12)� �) (9)!(t) = !r(t) + � 12 (10)where �1; �2 and � are design parameters. We can view� as a continuous switch which determines how closeto the reference trajectory  12 is active in altering theheading of the robot. The value of � determines howclosely the robot \follows" the setpoint on the referencetrajectory and �2 is a gain.Figure 3(top row) shows some simulated trajectories ofa robot following the same reference trajectory underdi�erent noise conditions with �1 = �2 = 1000 and� = 0:005. The camera is modeled as having a 30 de-gree �eld of view divided into 600 pixels. Noise waszero mean Gaussian noise of the given standard devia-tion. As is clear from the the �gures, the method workswell under low noise conditions, but quickly breaksdown as more noise is introduced. It also exhibits anodd \switching" behavior at the start of the trajectory.This is due to the fact that speed control (s) is designedfor a setpoint \ahead" of the robot; if this is not thecase, the robot backs up until the point is su�cientlyfar ahead to begin chasing it.3.2.2 Jacobian-based feedback: A second ap-proach to controlling the robot is to consider adapta-tions of classical \visual servoing" techniques to a non-holonomic system operating in the plane. Methods forholonomic problems of this form have been developedby many authors [14, 9, 4, 24]; several recent articlesdescribing adaptations of these ideas to non-holonomicsystems can be found in [16].Suppose that an observed marker mi has image coor-dinates mi = (u; v)t 2 IR2 and external coordinatesPi = (X;Y; Z)t 2 IR3 expressed in the camera frame ofreference. The point Pi and its projection are relatedby mi = � uv � = 1Z � XY � : (11)It follows that the velocity of the projection, _mi; dueto robot motion v = _r is_mi = � � 1Z uZ �(1 + u2)0 vZ �uv � _r = Ji(u; v; z)v: (12)This is a planar version of the so-called Image Jacobianor Interaction Matrix expressed as a function of ob-served values u and v and the unknown value Z: Moregenerally, if Sr is comprised of markers with image co-ordinates fmig; the evolution of Sr as a function of themotion of the system can be written by \stacking" the

Image Jacobians for the individual markers leading tothe general form _Sr = Jv (13)where J 2 IR2n�3 depends now on the image coordi-nates and depth of every observed point. Since themotion of the system is already stabilized by encoderfeedback, it is usually possible to model system dynam-ics as a pure time delay and to choose a control inputu = ( _x; _z; _�)t[14]. Under these conditions, given a �xedsetpoint S� = Sr(s); feedback systems of the generalform u(t) = �k(JtJ)�1Jt (Sc(t)� S�); (14)will, in the absence of noise, uncertainty about J andthe given dynamics, be locally asymptotically stable foran appropriate choice of the \gain" k:There are three issues which arise when implementinga controller of this form. First, since J is a function ofthe distance from the robot to the observed feature, wemust develop an estimation procedure for this quantitywhich preserves stability. In our case, since we havethe complete tour at our disposal, it is not di�cult tocompute registered values for Z for every observationfor the pre-learned sequence. These values can then bemodi�ed online using any of a number of estimationmethods [24].A second issue is to map this control vector to the non-holonomic kinematics. There are several possibilities inthis case [25]. We have chosen the following mappingK = 11 + j _xj=� (15)s(t) = sr(t) + _z (16)!(t) = K(!r(t) + _�(t))� �K _x (17)where � and � are design parameters chosen to \tune"the system. Note that K; which ranges from 0 when _xis large to 1 when _x is small, acts as a continuous switchactive about the value j _xj = �: The expression _xK actsas a \limiter" so that the value of _x does not becometoo large and destabilize the system. Thus, intuitivelythis policy simply heads toward the current referencesetpoint when it is far o� the path, but then begins tomimic the reference once it is within approximately �1units of the underlying path.A �nal issue which arises is the fact that the resultsof (14) deteriorate rapidly when the orientation di�er-ence between the controlled system and the referenceare large. However, recall that we can easily compute�cr using epipolar methods and we can use this valueto rotate observed data into the frame of the referencetrajectory as described in the previous section. In prac-tice, we do this, apply (14) to the modi�ed values, andadjust the control policy for ! to be!(t) = K(!r(t) + �cr(t))� �K _x (18)p. 5



We then \tune" the controller for a nominal capture re-gion. Figure 3(bottom row) shows several simulationsof this controller with varying noise levels. We havechosen � = :012 and � = 10: In general this method ap-pears have much higher accuracy for comparable noiselevels than the geometry-based method, although thisfact is not surprising given that it makes use of an ex-plicitly calculated value for the depth of each point.4 ConclusionWe have described a system for domain independentmobile robot navigation in which naturally occurringfeatures of the environment are used as markers orlandmarks. During a tour, features are automaticallyselected, and a representation useful for subsequentnavigation is automatically constructed. When nav-igating, features are acquired as they come into therobot's �eld of view, tracked over time, and used tocontrol the robot's motion. Two feedback controllersfor this purpose have been described. Simulation re-sults suggest that a modi�cation of a traditional image-based control system will work near the desired trajec-tory. Far from the initial trajectory, a novel approachbased on projective geometry can be used to move thesystem into the capture region of the Jacobian-basedcontrol. We are currently working to test these ideas ona real mobile system. We are also working to develop atheoretical basis for the stability of the described sys-tem. References[1] E. Barett, M. Brill, N. Haag, and P. Payton. Invari-ant linear methods in photogrammetry and model match-ing. In J. Mundy and A. Zisserman, editors, GeometricInvariance in Computer Vision, pages 277{292. MIT Press,1992.[2] A. Blake and M. Isard. Active Contours. Springer-Verlag, 1998.[3] E. D. Dickmanns and V. Graefe. Dynamic monocularmachine vision. Machine Vision and Applications, v:223{240, 1988.[4] B. Espiau, F. Chaumette, and P. Rives. A New Ap-proach to Visual Servoing in Robotics. IEEE Trans. onRobotics and Automation, 8:313{326, 1992.[5] O. Faugeras. Three-Dimensional Computer Vision.MIT Press, Cambridge, MA, 1993.[6] C. Fennema, A. Hanson, E. Riseman, J. Beveridge,and R. Kumar. Model-directed mobile robot navigation.IEEE Trans. on Robotics and Automation, 20(6):1352{69,1990.[7] T. Fukuda, S. Ito, F. Arai, and Y. Yokoyama. Navi-gation system based on ceiling landmark recogntion for au-tonomous mobile robot. In IEEE Int. Workshop on Intelli-gent Robots and Systems, pages 150{155, 1995.[8] G. Hager, D. Kriegman, E. Yeh, and C. Rasmussen.Image-based prediction of landmark features for mobile
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