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Abstract

We consider the problem of reconstructing the shape of

a surface with an arbitrary, spatially varying isotropic bidi-

rectional reflectance distribution function (BRDF), and in-

troduce a novel, stratified photometric stereo method. By

using a particular configuration of lights, it is possible to

use symmetry in the image measurements resulting from

BRDF isotropy to estimate at each point a plane contain-

ing the surface normal. For differentiable surfaces, this al-

lows us to recover the isocontours of the depth map, but not

the actual depth associated with each contour. The isocon-

tour structure provides topological information about the

surface (critical points, Reeb graph, etc.). By using addi-

tional cues in the image data or imposing additional con-

straints on the surface (e.g., shadows, specular highlights,

Helmholtz Reciprocity, uniform BRDF), the unknown height

of each isocontour can be estimated and the metric structure

is resolved. We validate this technique on real and synthetic

data by successfully recovering the isocontours of the depth

map from images.

1. Introduction

Reconstructing the shape of objects from images is one

of the fundamental goals of computer vision. Because

the problem is generally ill-posed, any solution will de-

pend on some combination of constraints and prior knowl-

edge which ultimately determine the performance of a given

method. In photometric stereo the viewpoint is fixed and the

illumination varies with each image; given strong enough

constraints on object shape, illumination and/or the BRDF,

surface normals and shape can be recovered.

Assuming distant (known) illumination and fixed view-

point, one might wonder “What is the minimal set of con-

straints required to recover the shape of a surface?” To an-

swer this question requires systematically defining the set

of potential constraints and determining how each one re-

stricts the surface shape. Figure 2 shows a hierarchy of pos-

Figure 1: Isocontours of constant depth recovered by en-

forcing isotropy and surface differentiability.

sible constraints that could be employed in a photometric

stereo setup to reconstruct a surface. In this paper we ex-

amine the cases of isotropic BRDF and surface smoothness

/ differentiability and show that just using isotropy, for ev-

ery image point the surface normal can be constrained to

a plane. By also imposing surface smoothness, the isocon-

tour structure (e.g., curves of constant surface height) can be

determined. While not a full Euclidean representation, the

isocontour structure provides topological information about

the surface (such as critical points and the Reeb graph) and

could be sufficient for many applications including object

recognition and parts inspection (for example, [18] uses iso-

depth contours of human faces for face recognition). More-

over, by imposing any of the additional constraints listed in

Figure 2 it is possible to recover the true surface barring de-

generate cases. For example, at attached shadow boundaries

the surface normal is constrained to lie in the plane orthog-

onal to the light source direction. Combined with isotropy

this constrains the surface normal to lie in the intersection



Figure 2: A hierarchy of assumptions whose corresponding

constraints can be used to recover the surface of an object

in a photometric stereo setup.

of two planes – a unique solution in general.

One of our main contributions is the use of a relatively

unexplored physical property that holds for any isotropic

BRDF – that isotropic BRDFs are symmetric about the

plane spanned by the viewing direction and surface normal.

From image data we show how to estimate this plane at each

point and thus restrict the set of surface normals to lie in a

plane. While we apply this constraint to photometric stereo,

it could potentially be useful in other computer vision con-

texts as well.

2. Background and Related Work

Photometric stereo is a classic problem in computer vi-

sion first proposed by Woodham [24]. The basic idea is to

infer the shape of an object by imaging it from a fixed view-

point under varying illumination conditions. Early algo-

rithms made strong assumptions on the reflectance function

across the surface, typically requiring either explicit knowl-

edge of the BRDF or simple parametric models, most often

the Lambertian model.

A major thrust of more recent research has been to re-

lax these assumptions to enable photometric stereo to work

on broader classes of objects. For example, a whole line

of research is based on the fact that the reflectance of many

materials is well approximated by the sum of a specular lobe

and a diffuse, Lambertian lobe [3, 1, 11, 16]. Coleman and

Jain [3] and later Barsky and Petrou [1] (among others) as-

sume the specular lobe has narrow angular extent, allowing

them to perform Lambertian photometric stereo by treating

specular pixels as outliers. Another approach is to exploit

the dichromatic model under which the color of the specular

lobe differs from the color of the diffuse lobe [21, 19, 14].

With knowledge of the light source color, this enables sepa-

ration of the specular and diffuse components of the BRDF

allowing Lambertian photometric stereo on the diffuse com-

ponent.

Another approach, proposed by Hertzmann and Seitz

[8, 9], is to use reference objects to essentially measure the

reflectance map for each lighting condition. This works for

arbitrary BRDFs, but requires a reference object of the same

material as the test object. Spatially varying BRDFs can

also be handled in a limited way – this requires the BRDF

of the test object to be closely approximated by the sum of

a small number of basis BRDFs as well as reference objects

whose BRDFs span the BRDFs present on the test object.

More recently, Goldman et al. [7] removed the need for a

reference object by iteratively estimating the basis BRDFs

and surface normals. The downsides are that parametric

BRDF models are reintroduced and convergence of the pro-

posed optimization strategy seems non-trivial to achieve.

More similar to our approach are techniques that directly

exploit various physical properties of BRDFs and illumina-

tion. For example, Helmholtz stereopsis [25, 26] exploits

symmetry of the BRDF on the incident and exitant direc-

tions (i.e., Helmholtz reciprocity). Magda et al. [13] re-

cover surface height using the squared distance intensity

falloff of nearby light sources. Tan et al. [23] use both sym-

metry and reciprocity present in isotropic BRDFs to resolve

the generalized bas-relief ambiguity.

3. The Bilateral Symmetry Constraint for

Isotropic BRDFs

The crux of our algorithm is based on a known, but rela-

tively unexplored property of isotropic BRDFs that has been

previously referred to as bilateral symmetry1 [15, 5]. Con-

sider a surface patch with normal n viewed from direction

v. Bilateral symmetry simply means that the BRDF is sym-

metric about the plane spanned by n and v with respect to

the incident lighting direction s (see Figure 3). Isotropic

BRDFs are often described by the fact that the exitant ra-

diance emitted from an isotropic surface patch is constant

when the surface is rotated about its normal. Bilaterally

symmetric BRDFs can similarly be described by the fact

that the exitant radiance emitted from a bilaterally symmet-

ric surface patch is constant when the surface is reflected

about any plane colinear with its normal.

Looking again at Figure 3, consider some incident light

source direction s. Then there exists another direction s
′ –

obtained by reflecting s about the plane spanned by n and

v – that gives rise to the same reflectance. Following the

notation of Tan et al. [23], we call such a pair of points an

isotropic pair, which we define as,

Definition 1. Two light source directions s and s
′ form an

isotropic pair if they satisfy n
⊤
s = n

⊤
s
′ and v

⊤
s = v

⊤
s
′

where n is the normal of a surface patch and v is the view-

ing direction.

1Some authors consider isotropy and bilateral symmetry to be distinct

phenomenon (i.e., isotropy ; bilateral symmetry); we do not make such

a distinction since all or nearly all physically valid isotropic BRDFs have

this property.
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Figure 3: Illustration of the bilateral symmetry constraint.

Symmetric light source vectors are obtained by reflecting s

about the plane spanned by the surface normal n and view-

ing direction v.

We summarize the main consequence of isotropic pairs

in the following fact,

Fact 1. For any isotropic pair of light sources defined rela-

tive to the surface normal and viewing direction, the value

of an isotropic BRDF is identical.

Fact 1 follows directly from the bilateral symmetry

present in isotropic BRDFs.

3.1. Image Formation Model

As is typically done in photometric stereo, we assume

distant point light sources and an orthographic camera.

Since the BRDF ρ is isotropic, it can be parameterized as

a function of α = n
⊤
s, β = n

⊤
v, and γ = v

⊤
s. Ignoring

cast shadows and interreflections we arrive at the following

image formation model,

E = Lρ(n⊤
s,n⊤

v,v⊤
s)max{0,n⊤

s} (1)

where E is the radiance arriving at the camera from a given

scene point, L is the radiant intensity of the light source, and

n, v, and s refer to the surface normal, viewing direction

and light source direction respectively.

Note that this parameterization makes Fact 1 very ex-

plicit : For fixed n and v an isotropic pair of light source

vectors map to the same BRDF parameters since α =
n
⊤
s = n

⊤
s
′, β = n

⊤
v, and γ = v

⊤
s = v

⊤
s
′. More-

over, Equation 1 also makes apparent the following fact,

Fact 2. For a given surface normal n and viewing direction

v, the emitted radiance E(s) from an isotropic material is

symmetric about the span of n and v (barring non-local

illumination effects).

Consider an isotropic pair of light sources s and s
′. From

Equation 1 it is clear that E(s) = E(s′) since n
⊤
s =

n
⊤
s
′ and v

⊤
s = v

⊤
s
′. Since an isotropic pair can be

formed from any light source by reflecting it about the plane

spanned by n and v it follows that the emitted radiance

E(s) is symmetric about the plane spanned by n and v.

Finally, we note that for all but a few degenerate BRDFs

the span of n and v is the only plane about which E is

symmetric,

Fact 3. For a given surface normal n and viewing direc-

tion v, consider the emitted radiance function E(s) result-

ing from isotropic BRDF ρ. Then in general, E(s) is only

symmetric about the span of n and v, unless the BRDF at

the given n and v is of the form ρn,v = k
n

⊤
s

where k is a

constant.

To see that this is true, note that for fixed n and v any

isotropic BRDF can be written in the form,

ρ =
f(n⊤

s,v⊤
s)

n⊤s
, (2)

in which case Equation 1 becomes

E = max
{

0, Lf(n⊤
s,v⊤

s)
}

. (3)

Suppose E is symmetric about some plane defined by unit

normal π. This implies that f(n⊤
s,v⊤

s) = f(m⊤
s,u⊤

s)
where m = n − 2(n⊤π)π and u = v − 2(v⊤π)π are unit

vectors. This equality will only hold if n
⊤π = 0 (i.e., n lies

in the plane defined by π) or if f does not depend on n
⊤
s.

Likewise, equality will only hold if v
⊤π = 0 or if f does

not depend on v
⊤
s. Thus, if the plane defined by π does

not contain the span of n and v then f must be independent

of n
⊤
s and v

⊤
s, implying a BRDF of the form ρ = k

n
⊤
s
.

As an aside, it is worth discussing the special case when

n and v are coincident. When this occurs, the span of n and

v is degenerate; however, our theory still holds if symmetry

is defined appropriately. Specifically, we say two points s

and s
′ are symmetric about the span of n and v if n

⊤
s =

n
⊤
s
′ and v

⊤
s = v

⊤
s
′.

3.2. A Minimal Lighting Configuration for Detect-
ing Symmetry

Based on the theory in section 3.1 we could recover the

symmetry plane spanned by n and v at each point on the

surface by detecting symmetry in the emitted radiance func-

tion E(s) as measured over the entire sphere of lighting di-

rections. However, this is quite redundant considering we

already know the viewing direction (e.g., v = (0, 0, 1)⊤ in

a camera centered coordinate system). In fact, since sym-

metry planes are coincident with v, it suffices to use a 1D

slice of the reflectance field with constant v⊤
s.

In terms of acquisition setup, this implies a circle of light

source positions parallel to the image plane and centered

about the optical axis. Parameterizing s in spherical coordi-

nates (θ, φ) with pole v, such a circle is obtained by fixing
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Figure 4: Surface gradient directions recovered from 36 images of a synthetic sphere. (a) Input images. (b) Quiver plot of

gradient directions. (c) Zoom-in of quiver plot at center of sphere.

(a) (b) (c)

Figure 5: Surface gradient directions recovered from 32 images of a helmet. Note that the gradients have been flipped (if

necessary) to point in the direction of maximum image intensity. (a) Input images. (b) Quiver plot of gradient directions. (c)

Zoom-in of quiver plot near right eye.

the elevation angle θ so that,

sθ(φ) = (sin θ cos φ, sin θ sinφ, cos θ)⊤ (4)

which induces a 1D emitted radiance function,

E(φ) = E(sθ(φ)). (5)

This 1D radiance function is guaranteed to be symmetric2

about angle φg, the azimuthal angle of the surface normal

with respect to pole v (or equivalently, the azimuthal angle

of the surface gradient).

3.3. Symmetry Detection

In practice, we sample the emitted radiance function

E(φ) at N uniformly spaced intervals and minimize the fol-

lowing objective to recover the symmetry angle φg at each

pixel,

F (φg)

=

N
∑

i=0

min

{

η;
E(φi)

E(r(φi, φg))
+

E(r(φi, φg))

E(φi)

}

,(6)

2Ignoring non-local illumination effects; such effects are handled in

practice by treating them as outliers.

where η is a threshold to account for outliers and r(φi, φg)
is a function mapping angle φi to its reflected position about

angle φg. In our experiments, we use a threshold of either

η = 2.1 or η = 2.2. As for the number of samples N , this

is clearly related to the angular frequency of E(φ); for the

materials in our experiments we found that 20 to 30 samples

are sufficient for accurate reconstruction. It should also be

noted that this objective is robust to outliers, caused for ex-

ample by cast shadows and interreflections. Moreover, at-

tached shadows actually preserve symmetry and thus do not

violate our assumptions in Section 3.1.

Figures 4 and 5 demonstrate our ability to recover the

gradient direction using this approach. The sphere dataset

consists of 36 images rendered in POVRay with source di-

rections separated by 10◦[17]. The helmet dataset consists

of 32 images interpolated from a total set of 252 images

taken about the sphere of lighting directions3; this corre-

sponds to about 11◦ between light sources. In Figure 4, we

see that the recovered gradient directions correctly point ei-

ther toward or away from the center of the sphere. Figure

5 shows the recovered surface gradient directions for a hel-

3Data obtained from the Light Stage Data Gallery, ICT Graphics Lab,

USC [4, 2].



met. While we do not have ground truth for this dataset,

the gradients certainly seem plausible. It should be noted

that symmetry is computed per-pixel, and thus our results

are completely local.

4. Can Surface Constraints Resolve the Sur-

face?

Based on the image acquisition setup described in Sec-

tion 3.3, image measurements do not uniquely determine

the surface normal, but constrain the surface normal to a

plane. This is similar to shape from shading [10] where

an image measurement constrains the normal to a cone, but

does not fully determine the normal. In terms of the gradient

of the height function, measurements provide the direction

of the gradient, but not its magnitude. Here, we show that

there is a family of surfaces that give rise to the same gradi-

ent direction at each surface point; thus surface constraints

alone are insufficient to recover the full surface normal map.

Yet, we show that for differentiable surfaces the isocontour

structure can be recovered using only knowledge of the gra-

dient direction.

4.1. A Class of Ambiguous Surfaces

Fact 4. Consider two surfaces given by height functions

z = f(x, y) and z′ = g(x, y) with gradient fields ∇f and

∇g respectively. Then the two surfaces have the same gra-

dient direction if

∇g = k(x, y)∇f, (7)

where k(x, y) is some function of x and y that satisfies

∂k

∂x

∂f

∂x
=

∂k

∂y

∂f

∂y
(8)

for integrability to hold.

While we have not directly solved this system of partial

differentiable equations, we do show the existence of a fam-

ily of ambiguous surfaces,

Fact 5. Two surfaces defined by z = f(x, y) and z′ = h(z)
will have the same gradient direction at each point if h is a

differentiable function of z.

Proof. This follows directly from Fact 4 and the chain rule,

∇h =
∂h

∂f
∇f (9)

with k(x, y) = ∂h
∂f

.

This implies that without additional information or con-

straints, we can at best recover a surface up to an arbitrary

function of the true height. Figure 6 shows a set of surfaces

with the same gradient direction at each point to illustrate

this ambiguity.

x
y
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z

O

x
y

z

O

Figure 6: Three surfaces with the same gradient direction at

each point.

4.2. Gradient Direction Resolves Isocontour Struc-
ture

We now show that two surfaces with the same gradient

direction at each point must have height functions that result

in the same set of iso-depth contour curves,

Theorem 1. Two surfaces defined by height functions z =
f(x, y) and z′ = g(x, y) that have the same gradient di-

rection at each point must have the same set of iso-depth

contour curves (i.e., curves of constant height).

Proof. Suppose (x(t), y(t)) corresponds to an iso-depth

contour curve of z. Then z(t) = f(x(t), y(t)) and the

derivative of z with respect to t is,

∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
. (10)

Likewise, the derivative of z′ with respect to t is,

∂z′

∂t
=

∂g

∂x

∂x

∂t
+

∂g

∂y

∂y

∂t
(11)

∂z′

∂t
= k(t)

(

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

)

(12)

∂z′

∂t
= k(t)

∂z

∂t
, (13)

where Equation 12 holds from Fact 4 since z and z′ have the

same gradient direction at each point. Now note that ∂z
∂t

= 0
since (x(t), y(t)) is an iso-depth curve of z; combined with

Equation 13 it is clear that ∂z′

∂t
= 0 meaning (x(t), y(t)) is

an isocontour curve of z′ as well.

Theorem 1 tells us that an isocontour of the true surface

height must be an isocontour of any surface height func-

tion that has the same set of gradient directions. This is

quite significant because it reduces the problem of finding

the true height at every surface point to the problem of find-

ing the true surface height of a single point on each isocon-

tour curve. Another consequence of Theorem 1 is that it

is possible to recover iso-depth contours of a surface given

only the direction of the gradient at each point – the tangent

of the iso-depth contour at a given point is orthogonal to the

direction of the gradient. Thus, it is possible to obtain iso-

depth contour curves by tracing in the direction orthogonal

to the gradient.



It is also important to note that Theorem 1 does not imply

that the only class of ambiguous surfaces are functions of

the true height (e.g., Fact 5). For example, consider two sur-

faces : one composed of two non-intersecting hemispheres

and another composed of the same hemispheres with one

of the hemispheres raised higher than the other. The two

surfaces have the same gradient direction at each point and

share the same iso-depth contours; however, the second sur-

face is not a function of the first surface’s height.

4.3. Experimental Validation

To validate Theorem 1, we ran experiments on four

datasets. For each surface shown in Figure 7 we first com-

puted the gradient direction at each pixel as explained in

Section 3.3. We then hand-selected a set of points on each

surface and traced the iso-contour curves for some distance

(∼ 500 pixels) starting at those points. Clearly the iso-

contour structure for the synthetic data closely matches the

ground-truth. Also, while the true surface for the helmet is

unknown, the iso-contour curves look highly plausible, with

the exception of regions with depth discontinuities (such as

the ridge on the helmet) which violate our assumption of

surface differentiability. Figure 8 shows results on a knight.

This is a much more challenging dataset, yet we still obtain

reasonable results for most of the surface.

5. Recovering the Full Euclidean Structure

Suppose we have recovered the direction of the gradient

at each point as well as the iso-depth contours of a surface,

but do not know the true height of the surface nor the re-

maining component of the surface normals. As suggested

in the introduction, to recover Euclidean structure we need

to impose additional constraints (see Figure 2). Our options

include (1) cast and attached shadows, (2) spatially uniform

BRDF, (3) specularities, (4) multiple viewpoints, (5) para-

metric BRDF, (6) additional surface constraints, (7) struc-

tured lighting, and (8) hueristics [6]. Each of these con-

straints have previously been used in some form or another

for surface reconstruction, but we have a distinct advantage

since our surface is already highly constrained. In theory we

only need to estimate a single value per iso-depth contour.

In the following subsections we outline how one might fully

constrain the surface by utilizing some of these constraints.

5.1. Shadow Constraints

Resolving structure from cast and attached shadows has

been studied in some detail in the computer vision literature.

Representative works include Shafer and Kanade [22] who

first describe the constraints that shadow boundaries impose

on a surface; Kriegman and Belhumeur [12] who show that

the set of shadows produced by distant illumination can re-

solve the shape of a surface up to a generalized bas-relief

transformation when the lighting is unknown, and Savarese

et al. [20] who implement a “shadow carving” algorithm.

The following facts capture the fundamental constraints

that shadows provide,

Fact 6. Consider a surface point that lies on an attached

shadow boundary. Then the surface normal at that point

must be orthogonal to the light source direction.

Fact 7. Consider a surface point p1 that lies on a shadow

boundary cast by point p2. Then the difference in height

between the two points can be determined from the light

source direction.

Fact 6 suggests that the surface normal can be fully de-

termined at the intersection of attached shadow boundaries

and Fact 7 implies that surface height can be determined be-

tween cast shadow boundaries and corresponding occluding

points (which are themselves attached shadow boundaries).

A major hurdle to utilizing these facts is that detecting at-

tached shadows is difficult to do reliably. However, if the

iso-depth contours of the surface are known then constraints

from noisy estimates of attached shadow boundaries can be

distributed across entire isocontours, making the final sur-

face estimate much more reliable than using shadows alone.

5.2. Uniform BRDF

If every surface point has the same BRDF then we can

impose at least two additional constraints : constant bright-

ness and reciprocity. The constant brightness constraint

simply reflects the fact that points illuminated from the

same light source direction will have the same intensity.

Since we know the orientation of the surface normals and

have measurements over a set of light source positions, we

can effectively cluster the surface points according to the

angle between the surface normal and viewing direction,

n
⊤
v.

Helmholtz reciprocity imposes another set of constraints

on the surface. Specifically, consider two surface points

with surface normals n and m respectively. n and m are

said to be reciprocal pairs under light source positions sn

and sm if n
⊤
v = m

⊤
sm and m

⊤
v = n

⊤
sn. It is well

known that BRDFs which satisfy Helmholtz reciprocity are

constant with respect to a reciprocal pair which means the

image intensities corresponding to a reciprocal pair must

satisfy,

Enn
⊤
v = Emm

⊤
v. (14)

The problem then becomes one of isolating reciprocal pairs.

5.3. Specular Highlights

If we assume that the BRDF has a relatively tight spec-

ular lobe and that the specular lobe points in the idealized
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Figure 7: Recovered isocontour structure for three different data sets. (a) Synthetic sphere. (b) Synthetic bunny. (c) Helmet.

(d) Zoom-in of inner-most isocontour. Notice the accumulated error after one loop is around 1/10th of a pixel. (e) Ground-

truth isocontour map for the Stanford bunny. (f) Zoom-in of recovered isocontours on helmet.

reflection direction, then we can directly recover the sur-

face normal at positions corresponding to specular peaks.

Consider a surface point that coincides with a specular peak

from light source direction s. Then the surface normal at

that point is given by the half angle between the viewing

and source directions,

n = (s + v) /‖s + v‖. (15)

6. Conclusions and Future Work

Reconstructing shape from images is of fundamental im-

portance to computer vision, yet is a very challenging prob-

lem that requires many constraints to effectively solve in

practice. An unfortunate consequence is that many of the

constraints used for shape reconstruction are only physi-

cally valid for very limited types of objects, or are not physi-

cally valid at all (e.g., brightness constancy in structure from

motion). In this paper, we have shown how to utilize a rel-

atively unexplored constraint for photometric stereo that is

valid for arbitrary, unknown, and spatially varying isotropic

materials. Much like Helmholtz reciprocity, bilateral sym-

metry is an important physical property of isotropic BRDFs

that can and should be utilized when possible. Unlike most

competing methods, we do not assume any parametric form

for the BRDF, making our technique the least restrictive to

date with respect to assumptions on object reflectance.

While bilateral symmetry is only strong enough to con-

strain the surface normal at each point to a plane, we show

how additional assumptions can be used to recover further

structure. A particularly interesting case is surface differ-

entiability which, when combined with bilateral symme-

try, constrains the surface up to a set of iso-depth contour

curves. This representation, which has been shown to be

useful in its own right [18], reveals object topology (singu-

lar points and saddle points stand out for example) and re-

duces the surface ambiguity to a single value per iso-depth

contour. The use of further constraints to fully resolve Eu-

clidean structure is left to future work.
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Figure 8: Recovered isocontour structure of a knight [4, 2].

Note that some regions (e.g., chain-mail) violate our as-

sumptions of isotropy and/or surface differentiability.
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