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Abstract

Landmarks are often used as a basis for mobile robot navigation. In this pa-
per, we consider the problem of automatically selecting from a set of 3D features
the subset which is most likely to be recognized from noisy monocular image data
and is least likely to be confused with any of the other groups of features. As-
suming perspective projection, real valued recognition functions are constructed
for a set of features. The value returned from such functions are invariant to
changes of viewpoint and can be evaluated directly from image measurements
without prior knowledge of the position and orientation of the camera. With
image noise, the recognition function no longer evaluates to a constant value.
Because of the possibility of false matches, a Bayes detector is used to determine
the optimal range of values of the recognition function that will be accepted as
image features of the model. The model with the lowest Bayes cost is selected as
the most distinguishable landmark. We show implementation results for real 3D

objects. Some issues, improvements and extensions to the method are discussed.
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1 Introduction

There have been two approaches to mobile robot navigation in the literature: reconstruc-
tionist versus reactive. In the more traditional reconstuctionist approach, sensor information
(stereo vision, motion, LIDAR, sonar, etc.) is used to construct a three dimensional model
or map of the robot’s environment [2, 7, 14, 17]. In this approach a great deal of effort is
required to maintain a consistent (and hopefully accurate) representation of the geometry
of the world [5, 8, 22, 29]. On the other hand, the reactive paradigm, initially championed
by Brooks [4] and adopted by many others [1, 25], bases robot behavior more directly on
immediate sensor data and less on a stored representation. In particular explicit, large scale
reconstruction is avoided because as argued by proponents, the world is not static, it is diffi-
cult to maintain a consistent representation, and perhaps more importantly, it is unnecessary
for most navigation tasks.

In the our own work, we have developed algorithms for systematically exploring a bounded
two dimensional configuration space in search of a recognizable object [30, 31]. A prototyp-
ical task for an indoor mobile robot operating in an office setting might be fetching output
from a printer. Clearly the robot must be able to recognize the printer when it is in sight.
In addition to recognizing its goal, the robot takes advantage of objects that it can recognize
along the way. As a byproduct, the algorithm constructs a “topological representation” of
the environment akin to a level of Kuiper’s spatial semantic hierarchy [19]. The represen-
tation essentially encodes which recognizable objects are visible in the vicinity of a given
recognizable object, and this leads to a natural graph structure. A robot can execute a plan,
defined by a path through this graph, using a combination of boundary following and “visual
servoing” to approach the recognizable object. A planned path is represented much like a
person’s description of a route (e.g. go down main street until you see the traffic light and
turn left, then turn right at the gas station) rather than a trajectory in some fixed, absolute
coordinate system, e.g. [x(t),y(t), ¢(1)]. Exploration is then cast as the process of learning
this graph and terminating when the recognizable object has been found. As a byproduct,
the learned graph can be used for future navigation tasks. Note that this is not a quantitative

reconstruction of the geometric structure of the environment but instead encapsulates the



qualitative relationship of recognizable objects. The graph can be augmented with metric
information (e.g. distances between objects) allowing shorter routes to be planned.

The exploration/navigation algorithm described above has been implemented on our
mobile robot [31], and the focus of this work as to show how object recognition could be used
to solve navigation and exploration problems rather than using reconstruction. The actual
problem of object recognition was trivialized by tacking recognizable targets (essentially bar
codes) on objects; these targets are easily recognized even in cluttered scenes. One obvious
approach to using natural objects rather than artificial landmarks would be to store some 3D
model of a set of objects that the robot is likely to encounter and use one of the established
recognition techniques such as alignment [13, 15], interpretation trees [9, 10], geometric
invariance [26], aspect graphs [3, 16, 20, 27] or geometric hashing [34]. While prior models
are useful for describing the destination, such an approach is going be ineffective during
the course of navigation when the robot encounters many unmodelled objects. Instead, the
robot should be able to learn about the new objects that it encounters and retain models
of those objects that are useful for the task. Besides our own work, landmarks have been
critical to many other approaches to navigation [18, 21, 23].

In this paper, we consider the problem of recognizing and learning about perceptually
salient objects or landmarks from image data. Thus, a robot would not have to be prepro-
grammed with CAD-like models of important objects and instead would learn from what
it encounters. What the robot uses a landmark will be driven by the statistical distribu-
tion of objects and features that it encounters in the world rather than some prior set of
preprogrammed models.

The goal of identifying and later recognizing perceptually distinctive objects (also termed
landmarks) can be cast as the following problem: Given a set of features, select a subset of
these features which in a monocular image is most likely to be recognized and least likely
to be confused with any of the other group of features. Here, we assume landmarks are
selected from a set of viewpoint independent 3D features (e.g. points or lines) that are
indistinguishable; that is they cannot be differentiated by local geometry, color, or texture
nor can they be distinguished by adjacency information (e.g. connectivity by edges). If

such information were available, it would naturally simplify the resulting combinatorics and



improve accuracy.

We take the following approach: From a set of 3D features, a subset of the features
becomes a hypothetical landmark model. For this set of features, a recognition function can
be constructed which evaluates to zero for any noiseless image of these features. Applying
this function to actual image data, a set of features is taken to be an instance of the model
when the function evaluates to zero. Because of image noise, it will not evaluate precisely
to zero, and a range of values (presumable about zero) must be accepted. Knowing the
probability distribution of image measurements, an optimal range can be selected based
on a Bayes detector. Furthermore, the probabilities of mistaking some other object as a
landmark (false positives) or missing a landmark (false negatives) can be computed. For a
set of hypothetical landmarks, the one which minimizes the Bayes cost can be selected as
the most salient landmarkww and used for robot navigation.

In this paper, we simplify the problem in the following way: we assume that the mobile
robot only travels along a horizontal ground plane, and the only features considered are
vertical lines. Together, this allows us to reduce the problem to using point features in the
plane. We assume Gaussian image noise, though other models could be employed. We also
assume that the 3D features are visible from any viewpoint within a certain distance (i.e., no
occlusion). Taken together, these assumptions allow for tractable formulation. Future work
will include methods for relaxing some of these assumptions to a richer set of features, more
realistic noise models, and using representations like aspect graphs to handle occlusion.

The paper is organized as follows: In section 2, the world model and recognition functions
are introduced. We then develop the probability densities for the result of applying the
recognition function to noisy data, and a method for selecting the most distinguishable
landmark using a Bayesian criterion is established in section 3. The approach has been
implemented, and in section 4 we consider the result of applying this method. Finally, we

conclude with a discussion of the method and some future directions.
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Figure 1: a. The frames and vectors associate with two views of a point. b. The perspective
projection imaging model.

2 Recognition Functions and Model-based invariants

Recently, Weinshall introduced the notion of “model-based invariants” for object recogni-
tion [33]. From a set of m 3D features called the model M, a real valued recognition function
Z(a) can be constructed where a is a vector of the image measurements. The recognition
function Z(a) evaluates to zero for any image of the model M. Thus, given an image with
n features, an algorithm for recognizing M is to choose all (ZL) subsets of m features and
evaluate Z(a). The subset of m features which minimizes |Z(a)| is considered to be the
recognized object.

In this paper, we assume that the robot moves on a horizontal ground plane and that the
camera is modeled by perspective projection. Asin [17], note that for a camera whose optical
axis is parallel to the ground plane, the image of vertical 3D lines will be vertical. Using
vertical line segments as features, and projecting both the features and the image plane onto
the ground plane, the problem can be modelled in two dimensions. The features project
to points in the plane, the camera position is given by one orientation and two translation
parameters, and the image plane can be considered an image line.

As shown in Figure l.a, define a coordinate system attached to the camera’s optical
center with the x-axis in the direction of the optical axis. Given the coordinates of a point

in the world frame “p; = ( “x;, “¥; ), the coordinates of the point in the camera frame are



given by:!

Pi =R “pi+ t. (1)
@; | |cosf sind Wy, 4 %
;| | —sinfcosO| | “y; 1y

where (R is a 2D rotation matrix of the world frame relative to the camera frame, and %
is the translation vector in camera frame.

Assuming a camera with unit focal length, the image line (projection onto the ground
plane of the image plane) is located at © = 1 in the camera frame. Let a; be the image
measurements of P ;, then

Vi " cosf — "x; sinf + 4,
a;  wr; cos® 4 Uy sinf 4+ 4,

a; =

(2)

As shown in Figure 1.b, from an image measurement a; of a 2D point 9 ;, we know that
P i lies on a ray defined by the optical center and the point (a;,1). Considering the vector
m; = [a;,—1]" to be a vector that is orthogonal to this ray, we can derive the following

constraint in the camera coordinate system:

m;- p; =0 (3)

Expanding the above equation and expressing the coordinates of Pp; in the world frame,

we can construct an equation in three variables (0, %, , %, ),
(a; “z; — “y;)cos O+ (a; “y; + “x;)sinf +a; t, — ¢, =0. (4)

Since each measurement provides one constraint on the values of (8, ¢, , %, ), the three
variables (0, ¢, , ,) in Equation (4) can be determined using three points and their images.
For four points, we can construct a model-based recognition function Z(a), where a =
(a1, a9, a3,a4) is a vector of the image measurements in camera frame. Without loss of

generality, we can let “p; = (0,0) and “p 4 = (1,0) by translating, rotating and scaling the

!To represent the coordinates of a vector, we follow the notation established by Craig [6]; the leading
superscript indicates the frame in which the coordinates are expressed. Premultiplying the coordinates of a
vector written in frame w by a rotation matrix ;R yields the coordinates in frame c.



four points. The recognition function is then of the form:

I(a) = a12(k1 + koag + kroas + kiras + kisazas + krgasas + kaoasas) + a22(k2 + kgaq + kigas
+ kysag + kararas + kasaray + kasasay) + a1(ksas + ksaq) + az(keas + kray)
+ aras(ks + krsas + kisas) + asas(kigar + kiras + kagaqaz). (5)

where

ki = ko = 24ys — T3ys + Yz — Ya

kay = koo = 24ys — w3y4

ks = —ka1 = kaa = —2(4ys — Taya) — Y3 + v
ky = —ke = —kig = koy = 4

ks = —kr = —kis = ka1 = —y3

ks = —kg = —kis = k17 = —x3 + 24

k1o = —kis = —ysys — x34 — 3

ki1 = —kiz = yaya + v324 + 24

kis = —kis = 2(yays + v324) + 3 + 74

The coefficients k; are constants determined by the world coordinates of the four model
points. Note that Z(a) is a quartic polynomial in the image measurements «;. The value
of the recognition function Z(a) is not affected by changes in viewpoint. In our case, Z(a)
evaluates to zero for all image views if there is no noise.

By construction, the function Z(a) is independent of the coordinate system used to specify
p;. Any two point sets that differ by a similarity transformation lead to the same recognition
function, and so they are indistinguishable under Z(a). Two sets of points that differ by a
reflection will also be indistinguishable.

The goal of identifying and recognizing distinguishable landmarks from a set of 3D fea-
tures is then simplified to the following 2D problem: Given a set of 2D points, generate
model-based invariant recognition functions for all of the four-point models and select the
one with the lowest Bayes cost as the most recognizable landmark. We now consider the

selection problem.



3 Selecting distinguishable landmarks

If there were no measurement noise or detector bias, every instance of a model would be
correctly recognized; the only falsely identified or missed landmarks would arise either from
objects that are equivalent to the model up to some transformation or would occur from an
accidental viewpoint. With image noise, the situation is different; the recognition function
will no longer evaluate to precisely zero, and so a range R of values is employed. If Z(a) € R,
then a is considered to arise from an instance of model M. Two similar 3D objects are likely
to be indistinguishable from many viewpoints since their images will be similar; consequently
for both objects, Z(a) may fall within R. To use a Bayesian approach for selecting the
landmark that is most recognizable in noisy image data from the majority of viewpoints, we
first need to find the probability distribution of the recognition function p(Z | M, v) over the

set of viewpoints for which the features are visible.

3.1 Probability distribution for one viewpoint

First, let us consider the distribution of Z(a) from a single viewpoint when a is corrupted
by noise. For a model M, the ideal image measurements a from a particular viewpoint
v = (f,1,,0) can be expressed as a(M,v) as given in Equation (2). We assume that
image measurements are corrupted by additive Gaussian noise (zero mean, a known constant
variance o), and that the noise associated with each measurement is independent. With
noise, we have

a=a(M,v)+n

w where n is a vector of m independent, zero mean, Gaussian random variables, each with
variance o.

The result of applying the recognition function to & is another random variable Z(&).
The probability density p(Z | M, v) could be computed using Z(a), a(M,v), and the known
statistics of n. However, because Z(a) is nonlinear, Z(&) will not be zero mean and will not
have a normal distribution. It appears to be problematic to compute p(Z | M, v) analytically,
and even if it can be found it is cumbersome. Therefore we will approximate the probability

density of (Z | M, v) by a Gaussian and retain the first two moments of (Z | M,v). We now



compute these two moments.

Let m denote the power of the Gaussian noise n;, then the moments of n; are

mr )0 m is odd
E{n }_{1-3...(m—1)0” m is even (6)

From the moments of n;, the moments of a; are given by:

Ela}=F{ai+n}=q
FE {EL?} =F {aiz + 2a;n; + niz} = a;> + o
E {EL?} =F {ai?’ + 3a.*n; 4 3a;n® + ni?’} = a;°> + 3a;0°
FE {EL?} =F {aﬁ + 4a;*n; + 6a;*nt + 4na; + nfl} = a;* + 6a;%0?% 4 30*
It is easy to show that if the random variables xq,...,x, are independent, the random
variables y1 = fi(x1),...,yn = fu(2,) are also independent. Since the n;’s are independent,

we know that a is a vector of m independent random variables. Also from the independence

of n;, if g(a,) is a function of @;, then we have

E{glaig(a;)} = E{gla:)} - E{g(a;)} . (7)

Now we can compute the moments of the recognition function for a specific viewpoint

when there is Gaussian image noise using the above results.

The mean of (Z | M, v) is

n(@a) = E{Z(a)} =7 (a) 4 [k1 + k2 + ksa1 + koag + (k1o + k12)as + (k11 + k13)aq
+ kygagas + kigasay + (koo + kas)asas + kararas + k22a1a4]02 (8)

where k; are coefficients of Z(a) given in Equation (5).

To compute the variance, we first expand Z(a),

= = 2
Z(a) —n(a) = ¢ 1+ canqg + csng + cang + csng + cgning + crng” + csnang + conins
2 2
+ c1on1n4 + C11N2Nns3 + CraNang + C13N3Ng + C1any Mg + C15Ny N3
2 2 2 2
+ c1en1 g + crrnang” + €igno N3 + CrgNe Ny + CaoNiNang + Co NNy
2 2 2
+ coaninang + caznansng + kisng“ngns + kigng “ngng + kaing“nsng

2 2 2
+ kaaningng + kasning“ng + kaang“nang + kaoningnang. (9)



where

c14 = ko + kigas + kigay, c15 = k1o + kigas + kopay

c16 = k11 + kigas + kogas, c17 = kg + koyas + kogay

c1s = k1o + koray + kasay, 19 = kis + kogay + kosas

20 = k14 + 2(kigay + karas) + koaaq, 21 = kis + 2(krear + kogaz) + kosas

Coo = kg + 2ka0ay + kogas, o3 = ki7 + 2kozas + kogay

ce = k1 + craag + kroas + as(ki1 + ksoas)

cr =ky + cr7a1 + kizas + aq(kis + kasas)

cs = ks + 2c14a1 + 2c17a9 + kyaas + ag(kis + kaasas)

cg = kg + 2k10a1 — az(karag + co0) + kisay
c10=ks + 2k11a1 — az(kazag + c21) + kisas
c11 = ke + a1(k1a + kisar + kosay) + 2¢i8a9 + kirag
c12 =k + a1(kis + kroay + kosas) + 2¢i9ag + kyras
c13 = —aq(kgoay + ca2) + az(kir + kosas), 1 = —(c6 + 07)02

e2 =2cgay + az(ks + kraas + kisaq + crras) + as(ky + kisas + kaaasay) + ksay

c3 = a1(ks + kraas + kisas + craa1) + 2a2(ky + ki2as + kisaq + crrar) + as(ke + casaq) + kray
ca=a1(ks + kraas + k1sas + ci5a1) + az(ke + kiras + kasaray + ci5as)

es = a1(ks + kisas + kisas + ciear) + az(kr + kiras + kasaras + crgas)

(10)

From Equation 9, we can compute the variance of (Z | M, v),
o'@)=[ {[I(é) - 77(5)]2} = ¢+ @207 + 30" + qa0° + ¢50°
where

G=c1 g2 =7 es® Feq’ +es® 4 2ei(ce + er)
g3 = 3(062 + 072) + g +co® + C%o + Cfl + C%Q + C%g + 2cy¢17 + c3c14

+ ca(ers + c18) + es(cis + cr9) + cocr

10



2 2 2 2 2 2 2 2 2 2
q1=3(c1a” + 15" + c16” + c17” + c18” + €19”) + c20” + €217 + ca2” + a3
+2(cgea6 + Cr0C2r + 11624 + C12¢25 + 13(Cas + €30) + C15¢1s + C16C19

g5 =3(c3y 4 c25” + 26" + 21" + 25" + 30°) + 207 + 228030 (11)

Note that ¢;’s are functions of a.

3.2 Probability distribution for all viewpoints

The computation of section 3.1 provides the density of Z(&a) from only one viewpoint. Now,
we can consider the distribution of Z(&) taken over the range of viewpoints V from which the
features are visible. Since we assumed that measurement noise n is independent and white,

the probability density for model M is:

PTIM)= [ p(TIMvp(v)iv (12

where p(v) is the likelihood of the camera being located at viewpoint v.
Since we assumed that measurement noise n is independent and white, the mean and

variance of (Z | M) can be computed from

i@ = [ [ ToTIMvpvidvdT = [ n@)p(vidv. (13)
@) =BT}~ = [ | T p(T| MvIp(v)dv dT =i
= [ BT M pivdy =it = [ (o tpvidy =i (1)

Thus, the average and variance of p(Z | M) over all viewpoints is given by integrating the
moments (e.g. FE{p(Z|M)}) with respect to 0,t,, and ¢, for all viewpoints within the
visible area V. Supposing that the observer is equally likely to be at any viewpoint, then

p(v) = fvelv —, then

77(::1) — fvev U(é)dv

)= fvev(a2 +1°)dv 772
fvev dV 7 ‘

and 72%(a —
( fveV dv

3.3 Viewpoint space

There is a set of viewpoints for which all of the features in a model are visible. This set

depends on camera resolution, the field of view of the camera, and possible occlusion by
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Figure 2: The visible area of a camera

other surfaces in the scene. Here, we will not be concerned with possible occlusion by
opaque objects, but will handle the other two issues.

First, let 3 denote the field of view of the camera. If all of the feature points can be
contained within a circle of radius b as shown in figure 2, then all of the features are visible

for all viewpoints outside of a circle of radius d = ﬁ. Because of the limited field of view

2
of the camera, the model will only be visible from an interval of orientation. Expressing the

location of the camera center in polar coordinates (r,«) as t, = r cos o and ¢, = rsin «, the

range of camera orientations for which all of the features are visible is given by:

g g

0 € Onin(), Onaslr) = (a7 =5 + a7+ =

?)

where ¢ = arctan (%) is the angular deviation of the camera orientation at a distance r
from the center of the circle. Thus, for any camera center outside of the circle of radius
d and orientation within (0,,in,0max), all of the feature points will be within the field of
view; therefore any model M; will also be visible. To account for the finite resolution of the
camera, we assume that all features contained within a circle of radius b will be visible from

any viewpoint inside a circle of radius K. Thus, the visible area is taken to be an annulus.

From the change of coordinates, we have df - dt, - dt, = r-df - dr - da. The spatial mean

12



of p(ZT| M) is
i(a) = S femm;x(%) n(a) rdfdrda
! 2m (1) Oy dgdrda

Omi

The spatial variance of p(Z | M) is

. o ff femm;m(%)(UQ + n?)rdfdrda
og(a) =

27 (1) [fmes 1 dfdyda

Omi

-7

Unfortunately, the mean 7(a) and the variance 6*(a) cannot be integrated analytically,
and so they can be approximated by computing the finite sum with suitably fine sampling.
Given the spatial probability distribution of p(Z | M), we now compute the recognition in-

terval of the model M using the Bayes criterion.

3.4 Computing recognition intervals

Consider what happens when Z(a) is applied to noisy images of some other set of feature
points G. From Z(a), G, and the known statistics of n, the density function p(Z | G) can be
determined for observing G from all viewpoints. Thus we have the distribution of applying
Z(a) to the correct model M and to an incorrect set of points G. Typically the distribution
of p(Z | M) is nearly zero mean and has a fairly small variance, whereas p(Z | G) is likely to
have a mean that is far from zero and a rather broad distribution. That is, for a mismatch,

the value of Z(a) is likely to be far from zero and to vary quite a bit with viewpoint.

3.4.1 Bayes criterion

The recognition problem is to decide, based on the value returned by the recognition function
from a single observation, whether or not a set of image features is identified as M. We call
hypothesis Hy the event that image measurements are the image of M and the alternative
hypothesis Hy that the features do not arise from M. There is a probabilistic description
corresponding to each hypothesis. We know that either Hy or H;y is true. A criterion
for making the decision must be selected. That is, given a recognition value Z(a), which
hypothesis is most probably true? The Bayes criterion can be used to determine the optimal

range R of values of Z(a) which will be accepted as images of M.

13



There are two kinds of errors that can be made. One is to choose Hy given H;p is true
(false negative), the other one is to select Hy when Hy is true (false positive). Depending
upon the application, the consequences of each type of error may not be equally important,
and so costs are assigned to each type of error. Let (; denote the cost associated with
choosing hypothesis H; when in fact hypothesis H; is true. Without loss of generality, let
Coo = C11 = 0 and (g > Cyp and Cy; > Cq1. The Bayes criterion is to select a R so that
the average cost will be minimized. Thus the region R where H; is chosen is [32]:

p(Ho) Cho

R:{IE]R:}?(I|H1)>p(I|HO)(p(H1) C—Ol

We denote H; as the hypothesis that M is present and Hy as the hypothesis that M is
not present. Let §; denote some model other than M. If the only features in the scene arise
from the hypothetical models M and G;, then

p(Hy) = p(M)
p(Ho) =372 p(G)) = 1 — p(M).

Assuming that all features and consequently all models are equally probable, then we

have p(M) = L, p(Hy) = %=L, and p(G;) = —L5. Furthermore, the conditional probabilities

for the two hypotheses are given by:

p(Z|Hy) =p(T|M)
p(I | Ho) = 302! p(Z|G;)p(G;)-

Bayes’ rule and the conditional densities p(Z | M) given in Equation (12) can be used to

compute R:
C n—1
R={Z € R:p(Z|M)> (C—;T) ZP(I|QJ')}
=1

The range R will minimize the average Bayes cost.

3.4.2 Recognition Interval

The optimal range R may be composed of a set of disjoint intervals. Rather than employing
all of the intervals of R, we use the single interval about the mean of p(Z | M). In particular
we denote the interval (a,2,) C R such that n € (x,2,) as the recognition interval of

model M. Since the conditional probability density functions are differentiable, we can use

14



Newton’s method [28] to solve the following equation to find the limits of the recognition

interval (a7, x,).
Cio
D) = HT| M) = () S WT16) =
]:

To decide the lower bound z;, we repeat Newton’s method by making several initial
guesses that are smaller than the spatial mean i within a reasonable range to obtain a set
of roots. Since the recognition interval will minimize the Bayes cost, the derivative of f(T)
should be positive at both z; and x,. Since there may be more than one root, we choose
the one closest to the spatial mean 5 as x;. Similarly, we repeat Newton’s method by giving

a few initial guesses that are larger than 7 and select the root with positive derivative and

closest to 1 as the upper bound z,.

3.5 Selecting the landmark

We are now ready to select the most salient or easily recognized constellation of features as
a model from a given set of features. The n features in the set can be grouped into [ = (Z)
hypothetical models M; with ¢ € [1,...,[] containing m = 4 points, and the corresponding
recognition function Z; can be constructed. For a model M, all other models M, 7 # j can
be treated as G;, and the recognition interval R; of the model M; can be computed . We
can then compute the total Bayes cost Cp using the error function. Given [ models, there
are (I — 1) mismatch models G; for each model M,. Since we assume that p(Z | M,) is a
Gaussian distribution with mean 7; and variance 7, the cost of false negative recognizing
the model M; using the recognition interval (x;, x,) is:

Fo=1— [ p(TIMdT =1 —erf () et (“1)
TeR;

gy gy

The cost of false positives (misidentifying something else as the model) is
o % Sl () e (75
I g dI erf - —_ | — erf E—
p COl ]Z; IER | ] (COI ) ]Z:; g g,
where erfz is the error function

x 1 2 1
erfzr :/ e zdy — —.
— o0 \/27‘(’ y 2
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Figure 3: a. An image of an office scene. b. A drawing of the scene; the landmark is selected
from the set of vertical lines features drawn as darkened points, and the features selected for
the landmark are shown as triangles. The recognition interval is (—0.017228, —0.006332)

The Bayes cost for using 7 to recognize M with interval (2, z,) can be computed from
CB = Fp + Fn

The total Bayes cost Cg can be computed for each candidate model, and the models can
be sorted according to these rates. Those models with lower average cost are more likely to
be recognized from noisy image data and not confused from the majority of viewpoints. We

thus select the model with the lowest Bayes cost as the most distinguishable landmark.

4 Implementation and examples

The presented approach to landmark selection has been prototyped in Common Lisp. Fig-
ure 3.a shows an image of an office, and figure 3.b shows an overhead view. A subset of 12
vertical lines in the scene were considered features, and these are indicated in figure 3.b. The
landmark selection process was applied assuming that image measurements are corrupted by
Gaussian noise with a standard deviation of one pixel. The optimal landmark with the low-
est Bayes cost was selected according to procedure in section 3, and the features comprising
this landmark are indicated by darkened triangles in figure 3.b.

Note that there are two kinds of errors which can be made, the consequence of false neg-

ative will be more important than the one of false positive since we don’t want to mismatch
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a. invariant=-0.016947 b. invariant=-0.017228 c. invariant=-0.015875
correctly recognized. correctly recognized. correctly recognized.

d. invariant=-0.012982 e. invariant=-0.010899 f. invariant=-0.009315
correctly recognized. correctly recognized. correctly recognized.

g. invariant=-0.008608 h. invariant=-0.008127 1. invariant=-0.012406

correctly recognized. correctly recognized. correctly recognized.

j. invariant=-0.013397 k. invariant=-0.010230 1. invariant=-0.009026

correctly recognized. correctly recognized. correctly recognized.
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m. invariant=-0.008103 n. invariant=-0.008127 o. invariant=-0.008510
correctly recognized. correctly recognized. correctly recognized.

.
]

p. invariant=-0.012406 q. invariant=-0.009916 r. invariant=-0.009483
correctly recognized. correctly recognized. correctly recognized.

s. invariant=-0.008330 t. invariant=-0.006994 u. invariant=-0.006333

correctly recognized. correctly recognized. correctly recognized.

Figure 4: The images that selected landmark being found correctly and uniquely by applying
the recognition function to the k automatically detected edges (between 13 and 21) and

consequently (i) = (715 ~ 5985) groups of features with ordering and gradient constraints.
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o)
¥

t. detected 17 edges t1. invariant—-0.012793 ty. invariant—-0.013129
found 2 matches correct match. false match.

u. detected 17 edges uq. invariant=-0.008127 Uq. invariant—=-0.011139
found 2 matches correct match. false match.

Figure 5: The experimental results of finding two matches with ordering and gradient con-

straints by applying the recognition function to (147) =

2380 groups of features. Each image
has one correct match and one false match.

_ m :

B
|

v. detected 17 edges v1. invariant=-0.011153 vq. Invariant—-0.014390
found 2 mismatches false match. false match.

Figure 6: The result that selected landmark was not correctly recognized. There were two
false positive matches in the image.
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Co1

oL was assigned to be close

the correct landmark. In our implementation, the cost factor
to the number of all hypothetical landmarks. The mean value of Z(a) for the selected land-
mark was —0.00825 and the recognition interval was (—0.01722 — 0.00632). The computed
average cost for this landmark was 0.04951. Note that the worst hypothesized landmark had
a average cost of 0.40276.

We then attempted to recognize the selected landmark in images. A camera was moved
to 24 positions covering a quarter circle at three depths, and images were digitized with
a resolution of 640 by 480 pixels. The selection of an optimal landmark assumed that all
features are visible and no other vertical lines were considered as additional features in the
image. This is done by extracting the 12 selected vertical edges manually. Given 12 features,
fracl2(12 — 4)! = 11880 groups of hypothetical landmarks can be formed. Without any
constraints, the recognition function was applied to 11880 groups of features, and those
falling within the recognition interval were taken as instances of landmark. There were
totally 18 false positive matches and 1 false negative match found in the 24 images. The
resultant Bayes cost was 0.049 which is close to the threoretical one.

Since the order of the selected vertical lines doesn’t change in the image, we can use
the ordering constraint to reduce matching combinatories. Given 12 features, there are
(142) = 495 groups of hypothetical landmarks can be formed with ordering constraint. The
recognition function was applied to 495 groups of features and the resultant Bayes cost was
0.048. The landmark was recognized in 23 out of 24 images, and it was recognized as the only
landmark in 18 of those 23 images. In the other 5 images, there were 1 to 4 false matches
found in addition to the correct one and resulted in tatally 11 false positive matches. The
landmark was not recognized in only one image and there were two false matches found in
that image.

Since the signs of the gradients of the gray levels of the four edges in the landmark and the
the ones in the subsets of features must be consistant, we can apply this gradient constraint to
the recognition process to improve the performance. With ordering and gradient constraints,
the Bayes cost was 0.047 and the number of false positive matches was reduced from 11 to
0.

To detect the edges automatically, we apply a one dimensional edge detector across one
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row of the image to extract all of the k vertical edges (between 13 and 21) crossing that line.
k!

Given k features, there are (= (17160 ~ 143640) groups of hypothetical landmarks can
be formed. With no constraints, the recognition function was applied to 17160 ~ 143640
groups of features and the resultant Bayes cost was 0.048. There were totally 72 false positive
matches and 1 false negative match were found in the 24 images. With ordering constraint,
we apply the recognition function to (715 ~ 5985) groups of features and the Bayes cost was
0.048. The selected landmark was correctly recognized in 23 images and 57 false positive
matches were found in the 24 images. With ordering and gradient constraints, the Bayes
cost was 0.047 and the number of false positive matches was reduced to 3. This results are
shown in Figure 4, Figure 5 and Figure 6.

Figure 4 shows a series of 21 images for which the selected landmark was correctly and
uniquely recognized by applying the recognition function to 13 ~ 21 automatically detected
vertical edges and consequently 715 ~ 5985 groups of features with ordering and gradient
constraints. The four highlighted vertical edges in the image indicate the selected landmark.
Figure 5 shows the 2 images that two matches were found, each with one correct match and
one false match. Figure 6 shows the image that the selected landmark was not found. There

were two false positive matches in the image.

The implementation results are shown in the following atbles,

theoretically manually automatically
constraints Cg I, F, Cg Ny, Ny, | Cg Ny Ngp
none 0.049 0.008 0.041 | 0.048 282 1 0.047 1346 1
ordering 0.045 0.005 0.040 | 0.048 11 1 0.049 57 1
ordering and gradient 0.047 0 1 0.047 3 1

Table 1: Implementation results of selected landmark.

theoretically manually automatically
constraints Cg I, F, Cg Ny, Ny, | Cg Ny, Ny,
none 0.402 0.045 0.347 | 0.388 1832 8 0.387 10243 8
ordering 0.384 0.031 0.353 | 0.391 116 8 0.387 437 8
ordering and gradient 0.384 41 8 0.381 102 8

Table 2: Implementation results of the bad landmark.
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In both tables, Cp denotes the Bayes cost, [}, is the false positive cost, F}, is the false
negative cost, Ny, denotes the number of images that the landmark is false positive recog-
nized, and Ny, is the number of images that the landmark is false negative recognized. As
we can see from the above tables, the low Bayes cost of the selected landmark resulted in
a much larger number of correct matches than the bad landmark in all cases, that is, the

selected landmark is much more distinguishable than the bad landmark.

5 Discussion

The method described is a starting point for a Bayesian approach to landmark selection.
In the process, a number of assumptions and simplifications were made. Further empirical
investigation is needed to determine the validity of this model for landmark selection. There

are a number of issues, improvements and extensions to this basic scheme.

o First, we assumed that measurements are corrupted by additive Gaussian noise; other
more realistic noise models or distributions which are more computationally attractive

should be considered.

o When hypothesizing possible landmarks, all (7171—14)! hypothetical groups of features were
considered. This is an explosive number, and so principled means of reducing the

number of hypothetical landmarks must be developed.

o We assumed that all features were visible from all viewpoints in the viewpoint space
VY when computing of R;. Instead, an aspect graph or similar representation could be
used to determine the set of viewpoints for which the features in M, are not occluded,

and this could be used to compute p(M;), the probability that M, is visible within V.

o The detectibility of the individual features could also be considered, perhaps as a

function of viewpoint, and this could be folded into the above scheme.

o A relevant variation is to also consider selecting the most salient landmark when the
coordinates of the 3D features used to define the models are noisy. This would arise

when landmark selection is performed on-line.
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We have presented the methodology in terms of landmark selection, but the same tech-
niques can be applied to other object recognition problems. For example, in interpretation
tree [10, 11] or alignment methods, the above analysis can be used for automatically deter-
mining the thresholds for accepting a hypothetical model, to determine termination condi-
tions, and to order the search process through the interpretation tree. A set-based approach
as opposed to a probabilistic approach to this problem was presented in [12]. An outgrowth
of the above work may indicate what feature geometries and recognition functions are least
sensitive to noise independent of the other features; this could lead to a method of object
selection that does not require strict pairwise comparison. It may also indicate how to design
artificial landmarks.

The two methods outlined above rely on having three dimensional data available for con-
structing the models. A very interesting extension is to consider the problem of landmark
selection using only data from a single image of a scene. Between two images of an object,
the epipolar constraint has to be satisfied for all corresponding features [24]. An object can
be modelled by the image coordinates of a set of features from one viewpoint. A recognition
function is then constructed which measures the degree to which another set of image fea-
tures measured in a second image violates the epipolar constraint. Without noise, a correct
correspondence will evaluate to zero, and mismatches will evaluate to some other number.
This recognition function could be directly used in the above Bayes classification scheme.
In practice, the epipolar constraint is likely to be too weak to be used alone. Other con-
straints will have to be brought to bear to determine which model is most distinguishable:
These might include feature type, connectivity or adjacency relationships between pairs of
features, and photometric information; this would couple some of the notions of qualitative
image structure given by an aspect graph and would lead to a multiple-view representation

of individual objects.
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