
Toward Real-Time Grocery Detection for the Visually Impaired

Tess Winlock, Eric Christiansen, Serge Belongie
Computer Science & Engineering

University of California, San Diego
{twinlock, echristiansen, sjb}@cs.ucsd.edu

Abstract

We present a study on grocery detection using our ob-
ject detection system, ShelfScanner, which seeks to allow a
visually impaired user to shop at a grocery store without ad-
ditional human assistance. ShelfScanner allows online de-
tection of items on a shopping list, in video streams in which
some or all items could appear simultaneously. To deal with
the scale of the object detection task, the system leverages
the approximate planarity of grocery store shelves to build
a mosaic in real time using an optical flow algorithm. The
system is then free to use any object detection algorithm
without incurring a loss of data due to processing time. For
purposes of speed we use a multiclass naive-Bayes clas-
sifier inspired by NIMBLE, which is trained on enhanced
SURF descriptors extracted from images in the GroZi-120
dataset. It is then used to compute per-class probability
distributions on video keypoints for final classification. Our
results suggest ShelfScanner could be useful in cases where
high-quality training data is available.

1. Introduction
The problem of specific object detection in video streams

is well established in computer vision literature. For cer-
tain objects, various classifiers including boosted Haar-like
wavelets [13], SIFT keypoint matching [7], and random
forests for classification [12] all show very good perfor-
mance on this task. We focus on real-time product detec-
tion from mobile video in grocery stores, with the intent of
enabling a blind user to scan a scene with a camera and
have it detect items on her shopping list. This problem
presents difficulties for reasons beyond the standard per-
spective, occlusion, and specularity distortions that exist in
natural scenes. This is because product appearances have a
tendency to change often and algorithms must be efficient
enough to run quickly on constrained hardware.

Standard object detection algorithms require some
amount of training data. The best performance is often
found when the training data are sampled from the same

distribution as the testing data. In our problem domain, in
which object detection algorithms are used to help the vi-
sually impaired shop in a grocery store, it is infeasible to
maintain equality between the training and testing distri-
butions. This is because product packaging changes regu-
larly, and so maintaining equality between the distributions
would require constant updating of the training examples.
We instead work in the paradigm explored by [9], in which
training and testing data are drawn from entirely different
distributions. For training data, they use in vitro images,
which were gathered from the Web and were taken under
ideal lighting and perspective conditions. For testing data,
they use in situ images1, which were obtained from video
streams captured in a grocery store, and are thus subject to
natural conditions such as occlusion, specularity, and per-
spective distortion. We use the same dataset, the GroZi-120,
and we work in the same paradigm, using in vitro images of
items on a user’s shopping list to detect items in situ.

Detection of items from a shopping list is a problem pre-
viously unexplored in the study of the GroZi-120. A usable
system would likely need a multiclass detector which would
be capable of detecting the items on the shopping list and
which would be efficient enough to process the incoming
stream of video frames in real time. In the case of many ob-
ject detection applications, such as pedestrian detection, this
requires keypoint extraction and matching from full frames,
in which each frame is processed independently of the other
frames. This approach is necessary when the state of the
world could change drastically from one frame to the next; a
pedestrian could move or a car could veer in the way. In the
case of grocery store shelves2, the scene is both static and
mostly planar; thus, we can assume minimal change in the
scene from one frame to the next. This allows ShelfScanner
to compute a local image registration using standard opti-
cal flow techniques, and only extract keypoints from pixels
known to be new to the system. For simplicity our system

1In the language of the LFW database, these images would be “in the
wild” [5].

2In this study we focus on standard product shelves; produce and deli
sections are not included.

1
978-1-4244-7028-0/10/$26.00 ©2010 IEEE

assumes a translational motion model for local image align-
ment, but it can be readily extended to more general models
such as affine or projective [6]. This enables ShelfScanner
to process less data and run more quickly.

This paper presents an approach taken on the GroZi-120
dataset to detect items from 10-item grocery lists. The re-
mainder of this paper is organized as follows: Section 2
details related approaches, Section 3 details ShelfScanner’s
approach and methods, Section 4 outlines our experimen-
tal construction, and finally Sections 5 and 6 discuss our
results.

2. Related work

2.1. Object detection algorithms

A commonly used method for object detection, feature
point descriptor matching relies upon extracting robust fea-
tures from training data that can be accurately matched
to features extracted from testing data. Among the more
commonly used descriptor extraction algorithms is Lowe’s
SIFT, which outperforms most others with its invariance to
both scale and local deformations. It does so by capturing
large amounts of local spatial intensity pattern information
which it then stores in the form of a 128 bin histogram.
The robust nature of these features has been shown to be
very useful for interest point matching in object detection
applications, including previous studies of the GroZi-120
dataset [9].

Bay’s SURF descriptors [3] have robust qualities rem-
iniscent of SIFT descriptors and can be computed faster.
The descriptor works very similarly to that of SIFT, in that
it places local intensity information about the interest points
into histograms. Its approach relies on computing the re-
sponses of many Haar-like wavelets within the neighbor-
hood of the feature point, which are faster to compute than
gradients. A recommended object detection strategy, as
taken by Bay, is to match keypoints found in the test im-
age to keypoints in the bag of training keypoints and then
fit a homography to the matched points to determine an
object’s location in an image. This approach works well
for images with well registered keypoints and a single item
search. However, we have found that computing a homogra-
phy through standard RANSAC [4] is too computationally
expensive to be applied to every item in a shopping list in
parallel, and is error prone due to the approximate nature of
our mosaicing, which we discuss further in Section 3.3.

A computationally cheaper method that lends itself
to descriptor-based object recognition is the naive Bayes
model used by NIMBLE [2]. In NIMBLE, an image is as-
sumed to contain exactly one item from exactly one class,
and the descriptors extracted from the image are assumed to
be conditionally independent of each other given the class
of the image. NIMBLE uses nonparametric density estima-

tion techniques to estimate the probability of a descriptor
given a class. Through Bayes’ theorem and the conditional
independence assumption, one can estimate the probability
that an image corresponds to a particular class given all the
descriptors extracted from the image.

Previous work on this dataset provides a performance
baseline with results for SIFT, Viola and Jones, and color
histogram matching [9]. They showed that on average SIFT
performed the best, due to its invariance to scale, rotation
and other factors. Color histogram matching showed very
good performance, which is justified as grocery store prod-
ucts tend to be colored to attract attention and distinguish
themselves from competitors. The Viola and Jones method
had a performance only slightly better than random.

2.2. Mosaicing

Building mosaics from video sequences has been ex-
plored for many years in various applications. Irani [6]
described two general approaches for mosaic frame regis-
tration: static and dynamic. Static refers to offline global
frame registration, and dynamic refers to online frame reg-
istration. A 2D alignment scheme is used which places each
image in the mosaic relative to either the first frame or a mo-
saic coordinate system. The choice of motion models for
the camera can range significantly depending on the appli-
cation. Simple affine models can be used for translational
motion cases, or more general perspective models can be
used to account for significant parallax and perspective dis-
tortion. The final step in Irani’s method is to improve the
mosaic by performing image blending.

A faster approach as described by Adams, Gelfand, and
Pulli [1], is to align subsequent images using integral pro-
jections of edges. This approach extracts these integrals and
then computes the least squares estimate of the best sim-
ilarity transform (rotation, uniform scale, and translation).
They have shown that this can run at 30 frames per second
(FPS) on a standard smart phone, which shows promise in
moving ShelfScanner onto this platform.

3. Our approach
ShelfScanner assumes the user holds a camera and

sweeps the camera’s field of view (FOV) across grocery
shelves. This restriction stems from our translational model,
which will be aleviated in future work when we move to a
more general motion model. When the FOV contains an ob-
ject on the user’s shopping list, ShelfScanner should detect
the object, with the purpose of notifying the user.

The total input to the system is:

1. Images of items from the user-supplied shopping list.
These images come from the in vitro subset of the
GroZi-120 dataset. The in vitro images are taken from
the Web, and the images usually show ideal specimens

Figure 1: A mosaic under construction. The green box is
the current FOV. The black space represents parts of our
scene we have not yet explored. The blue-tinted pixels are
pixels that were revealed for the first time by this FOV. The
red-tinted pixels lie in a region we have already seen, but
will be updated by this FOV.

of each product, taken under ideal conditions. The
GroZi-120 dataset supplies between 2 and 14 in vitro
images per item, with an average of 5.6 images per
item.

2. A video stream taken from the user’s camera as she
sweeps its FOV along shelves. The GroZi-120 video
has resolution 720x480.

The total output of the system is a set of points from
frames in the video stream that ShelfScanner thinks are
likely to belong to items in the shopping list. ShelfScan-
ner finds these points in an online manner, so the user could
theoretically be notified that the camera FOV contained a
shopping list item mere moments after sweeping the FOV
across the item. See 5.2 for more information on real-time
performance. ShelfScanner also maintains a sense of where
the current FOV is with respect to previous FOVs by build-
ing a mosaic as it runs; see Figure 1 for an example. This
global position information could be used to direct the user
back to an item if the item has already passed out of the
current FOV.

ShelfScanner consists of an offline training component
and an online evaluation component. Each cycle of the eval-
uation component is driven by the arrival of a new frame

from the camera, and the actions performed in this cycle are
as follows:

1. Mosaicing 3.2. The new frame is added to the mosaic.
Besides extending the mosaic to include new data, this
allows us to determine which regions of the new frame
have been seen before, and can therefore be ignored,
and which regions are new, and must therefore be ex-
amined.

2. Interest point detection and descriptor extraction
3.3. We use SURF to identify interest points in the
unseen regions of the current frame, and we extract a
ShelfScanner descriptor from each interest point. The
point from which the descriptor was extracted, along
with the descriptor itself, will be called a ShelfScan-
ner keypoint.

3. Descriptor-specific probability distributions 3.4.
For each new keypoint, we estimate a distribution over
shopping list classes given the keypoint.

4. Window probability distributions 3.5. For each new
keypoint, we use the distributions estimated in the pre-
vious step to estimate a distribution over shopping list
classes given all the keypoints within a radius of this
keypoint.

5. Keypoint selection 3.6. Of the keypoints whose win-
dow probability distributions were just calculated, we
threshold by estimated class probabilities to select a
subset, where each keypoint in this subset is believed
to correspond to an item on our shopping list. These
keypoints give locations on the shelf where the user
should search for items from the shopping list.

3.1. Training

Our training set consists of all the images of items from
the shopping list, plus some fixed background images. The
background images are photos from the inside of a different
grocery store that don’t contain any possible shopping list
items. In our setup, the background images are thought to
be training examples for their own class, the background
class. Each training image is processed with SURF, which
provides us with a set of descriptors for each image. We
use a Hessian threshold of 500 and a window size of radius
20 pixels. In addition, we calculate a color histogram at the
location of each descriptor, and append it to the end of the
descriptor. For brevity, we will call the concatenation of the
SURF descriptor and color histogram a ShelfScanner de-
scriptor. Because luminance varies considerably between
the in vitro training images and the footage from the store,
we use the L*a*b* color representation scheme, and dis-
card the lightness “L”. Using a window width of 21, we
compute histograms containing 16 bins for the remaining a

and b channels, yielding a total of 32 additional dimensions
for the descriptor. To fight redundancy and for later com-
putational expediency, we reduce the number of descriptor
dimensions from 64 + 32 = 96 to 25 using PCA. The prin-
cipal components are calculated using the descriptors from
all the images.

We then combine descriptors from images of the same
class, producing a bag of descriptors for each class. These
bags of descriptors will later be used for nearest-neighbor
based nonparametric density estimation, so for each class
we initialize the randomized kd-tree algorithm from its bag
of descriptors, using OpenCV’s interface to the FLANN li-
brary [10].

3.2. Mosaicing

The problem domain of a grocery store shelf is suited
to building mosaics using the Lucas-Kanade optical flow
method [8], as implemented by OpenCV3. Unlike many
other natural scenes, grocery store shelves are generally
static; the products and shelves seldom move during a shop-
per’s time spent in the store. In addition, products generally
sit on the edges of shelves to make them as visible as pos-
sible. This forms a fairly planar, static surface. When the
camera’s FOV translates along the shelves, as is the case in
22 of the 29 videos in the GroZi-120 dataset, we can use
optical flow and a simple translational model to paint a mo-
saic, as in Figure 1.

Given a new frame, we extract features using the ap-
proach described by Shi and Tomasi [11], and then use op-
tical flow to determine each feature point’s relative trans-
lation from the last FOV. We found that an individual es-
timated translation between feature points is a very noisy
estimate of the true translation between the FOVs, but by
taking the median4 of all the individual translations we can
get a fairly accurate estimate of the true translation, as as-
sessed qualitatively by the authors. Given the translation
with respect to the last frame, we can determine the location
of the current FOV in the mosaic. Finally, we overwrite the
mosaic in these coordinates with the pixel values from the
current FOV.

3.3. Interest point detection and descriptor extrac-
tion

In the previous step we calculated the mosaic coordinates
of the current FOV. Using this knowledge, and knowing
which pixels in the mosaic had been written to before the
last frame was added, we can determine which regions in
the current FOV are new, and which were viewed in a pre-
vious frame. Since regions that were viewed in previous

3http://opencv.willowgarage.com/wiki/
4Note the median of a set of n dimensional vectors is constructed by

taking n component-wise medians.

frames have already been searched for interest points, we
don’t need to search again. Instead, we can confine our
attention to new regions of the scene. Thus, we extract
SURF descriptors and color histograms (together, Shelf-
Scanner descriptors) only from previously unseen regions
in the FOV. Because ShelfScanner descriptors rely on win-
dows of width 41 about a keypoint, we must ensure we do
not extract a descriptor if its keypoint is within 20 pixels of
the current border of the mosaic. We maintain two binary
masks with the same dimensions as the mosaic to ensure
that we only process new pixels. The first mask, or new data
mask, has a value of one at the location of each new pixel
that we consider for extracting a SURF descriptor. The sec-
ond mask, or processed data mask, has a value of one at the
location of each pixel we have previously considered. Once
a new frame’s location in the mosaic is known, the new data
mask is computed for every pixel in the new frame that is
not contained in the processed mask and is at least a distance
of 20 pixels away from the edge of the frame. This ensures
that keypoints will not be extracted from the edge of the im-
age. After SURF keypoints have been extracted, all pixels
have been considered so the new data mask is added to the
processed mask.

3.4. Descriptor-specific probability distributions

We reduce the dimension of each new keypoint by pro-
jecting it onto the PCA vectors found in the training phase.
For each projected keypoint, we estimate its density under
the distributions for each of the items on our shopping list,
as well as its density under the background class. Following
an approach taken by NIMBLE [2], we obtain the density
estimates using the k-nearest-neighbor kernel, with k = 1:

p(d|c) ∝ 1
Tc · V

. (1)

Here, d is the projected ShelfScanner descriptor, c is a class
of items, Tc is the number of training examples in class c,
and V is the volume of the smallest sphere centered at d that
contains a training example in class c. Note p(d|c) can be
thought of as the probability of extracting the descriptor d
if we randomly extract a descriptor from an image of class
c.

We assume a uniform prior over classes, and so get

p(c|d) ∝ p(d|c). (2)

So by normalizing the values obtained in the previous step,
we obtain an estimate for each descriptor d that its keypoint
overlays an item of a particular class; this is the descriptor-
specific probability distribution. In Figure 2, we dis-
play these estimates for the Tide and the Arm & Ham-
mer classes in the form of a heatmap, where each key-
point is plotted as a colored pixel, the color of which re-
flects the amount of weight placed on the given class by the

keypoint’s descriptor-specific probability distribution. Note
these heatmaps are fairly noisy; not all the bright points are
clustered around the images to which they correspond. This
inspires the next step, in which noise will be reduced using
windows.

3.5. Window probability distributions

As mentioned above, the descriptor-specific probability
distributions that we obtained in the previous step are noisy.
In particular, the distributions have high spatial variance;
two nearby keypoints are likely to correspond to the same
class, but may easily have very different descriptor-specific
probability distributions, which is due in part to the high-
variance nature of nonparametric density estimation. We
create a spatially smoother and more accurate class distri-
bution for each keypoint by taking advantage of keypoint
proximity information.

In particular, we consider a window of width 41 centered
at each keypoint, and employ the approach taken by NIM-
BLE. We assume, usually falsely, that the window contains
exactly one class from our shopping list, and we calculate
the probability of each of the classes given the keypoints in
the window, using flat priors and a naive Bayes assumption.
If D is the set of descriptors of the keypoints in the win-
dow, C is the set of classes in the shopping list, including
the background, and c ∈ C, we have

p(c|D) =
p(D|c)∑

c′∈C p(D|c′)
=

∏
d∈D p(d|c)∑

c′∈C

∏
d∈D p(d|c′)

. (3)

Here the second equality follows from the naive Bayes as-
sumption.

Note that in the previous step, we computed all the quan-
tities in the right-most expression of Equation 3. Thus for
each class c, we can calculate p(c|D) and thus obtain a
window probability distribution. This window probabil-
ity distribution is analogous to the descriptor-specific prob-
ability distribution, but it is usually much more accurate.
Heatmaps computed with window probability distributions
can be found in Figure 3. Note the qualitative improve-
ment over the heatmaps from Figure 2, which were com-
puted with descriptor-specific probability distributions.

Note that we can compute a window probability distribu-
tion for a keypoint only if we have descriptor-specific prob-
abilities for all its neighbors within a 20 pixel radius. This
is analogous to the situation described in Section 3.3, and
so we use an analogous method.

3.6. Keypoint selection

At this stage, we decide which keypoints the user should
investigate. We consider the set of keypoints with newly es-
timated window probability distributions, and for each key-
point and each shopping list class, we look at the amount

(a) Arm & Hammer heatmap

(b) Tide heatmap

Figure 2: Heatmaps generated for the Arm & Hammer and
Tide classes with descriptor-specific probability distribu-
tions. The redder the keypoint, the more its descriptor-
specific distribution believes that it overlays an item of the
given class. If you find it difficult to see the underlying
items, refer to Figure 1, which shows the same scene. Note
these heatmaps are noisier than those given in Figure 3.

(a) Arm & Hammer heatmap

(b) Tide heatmap

Figure 3: Heatmaps generated for the Arm & Hammer and
Tide classes with window probability distributions. The
redder the keypoint, the more its window distribution be-
lieves that it overlays an item of the given class. If you
find it difficult to see the underlying items, refer to Figure
1, which is of the same scene. Note these heatmaps are
cleaner than those given in Figure 2.

of weight the keypoint’s window distribution places on the
class. If the weight is above some threshold, we recom-
mend that the user search for the item at the keypoint. This
threshold is a parameter of ShelfScanner.

In addition, to prevent ShelfScanner from recommend-
ing keypoints very near each other, as they are likely to
come from the same item, we remove from future consider-
ation any keypoints that lay within 20 pixels of a previously
recommended keypoint.

4. Experiments
ShelfScanner is intended to run in real-time, so we con-

ducted experiments to measure computational performance
as well as the accuracy of the recommendations.

4.1. Recommendation performance

For a particular class, we first ask whether ShelfScanner
will ever recommend a keypoint that overlays an item of that
class. Second, we ask how many keypoints are mistakenly
recommended before a correct keypoint is recommended. If
we assume the user can navigate to the item whose keypoint
we recommend, and has some way of verifying the identity
of an item, such as with a hand-held barcode scanner, then
the first question asks whether the user would ever find the
item, and the second asks how many items she would in-
vestigate before finding her item. This is closely related
to precision and recall, but more focused for our applica-
tion. With the mosaic providing a global coordinate system,
we believe it would be straightforward to navigate the user
to the item whose keypoint we recommend, and hand-held
barcode scanner software such as RedLaser5 for the iPhone
or photo object recognition software such as LookTel6 for
Window’s Mobile can be obtained for smartphones.

We choose 10 videos from the dataset that are free of cut-
ting between shots and in which the camera approximately
adheres to a translational motion model. We then randomly
select 10 items for the shopping list from the 52 items that
appear in these 10 videos and run ShelfScanner with this
shopping list as an input. We execute this last step a total
of 25 times, randomly generating a new shopping list each
time.

Before we could run our experiments, we had to label
the test data. We did this by labeling the regions of the
generated mosaic that correspond to each item class.

4.2. Computational performance

For all ten of the videos from the recommendation per-
formance experiment, we run ShelfScanner with a random
shopping list and measure how much time it takes, on aver-
age, to process a new FOV. As the current system is meant

5http://redlaser.com/
6http://www.looktel.com/

Figure 4: The right axis shows the average number of mis-
takenly recommended keypoints (false positives), the left
shows the average number of shopping list items that are
not retrieved by the user in a visit to the store. Note with a
threshold of .9999, the user should expect to find around 4
of her 10 shopping list items, and investigate around 1000
items that are not on her shopping list.

to be run on a powerful laptop worn on the the user’s back,
the timing data comes from a single core on an Intel Core
2 processor running at 2.4GHz computer running a 64-bit
ArchLinux with 8 GB of RAM.

5. Results
5.1. Recommendation performance

Plots of our two metrics as a function of threshold can
be found in Figure 4. Naturally, as the threshold increases,
the risk of missing items on the shopping list increases and
the number of mistakenly recommended keypoints (false
positives) is reduced. Unfortunately, there does not exist a
threshold where a user is likely to retrieve a majority of her
shopping list items and be subject to a reasonable number
of false positives.

To understand the difficulty ShelfScanner has with this
dataset, we investigate the differences between classes
ShelfScanner performs well on and classes on which it does
not. To determine the difficulty of a class for ShelfScan-
ner, we first find its strict threshold. We define the strict
threshold of an item to be the highest threshold which re-
sults in at least one true positive. Next, we look at all the
keypoints we have extracted which do not overlay an item
of this class, and count the number with window distribu-
tion weight for this class exceeding the strict threshold for
this class. These are keypoints that persist as false positives
even with the extremely demanding strict threshold.

Using strict thresholds, we find that of the 52 item
classes, 17 easy items can be identified with zero false pos-

Figure 5: In vitro (top) and in situ (bottom) examples of
easy items, which ShelfScanner can detect using a strict
threshold with zero false positives.

Figure 6: In vitro (top) and in situ (bottom) examples of
hard items, which ShelfScanner cannot detect with a rea-
sonable number of false positives.

itives, 8 moderate items require between 1 and 100 false
positives, and the remaining hard items all require more
than 100 false positives. Examples of easy item classes can
be seen in Figure 5. Note that these items share the prop-
erties of good lighting, pose, and product design parity be-
tween the in vitro and in situ images. Contrasting this with
the hard items in Figure 6 we see that these images vary
significantly with respect to item pose, lighting, and most
importantly, product design. This shows a difficulty Shelf-
Scanner has with the dataset is likely the quality of the train-
ing data. This would underscore the need to have training
data that is current with the product’s design.

5.2. Computational performance

The average performance of ShelfScanner is reported in
Table 1. Note the system is set to process every fifth frame,
requiring the system to run at a minimum of 6 frames per

Component Total time (ms)
Optical flow 70.20
SURF keypoint
identification and
descriptor extraction

109.74

Color histogram ex-
traction

266.95

NIMBLE prediction 5.25
Keypoint selection 1.66
Total time 453.8

Table 1: Average time in milliseconds taken by the compo-
nents of ShelfScanner.

second (FPS). As observed by the authors, the system re-
quires this frame rate to generate a reasonably accurate mo-
saic. The FPS determines the average number of new key-
points in each frame, which affects the processing time of
a frame. The table shows ShelfScanner can currently only
process about 2 FPS, which is too slow to be considered
real-time. Real-time performance could be achieved if the
components were split between mosaicing tasks and detec-
tion tasks. The mosaicing portion would perform optical
flow and keypoint extraction in about 180ms. Given these
keypoints, the remainder of ShelfScanner could be easily
run in parallel in many background threads, allowing the
detection components to lag behind the current FOV with-
out incurring a significant performance penalty.

6. Discussion and future work
ShelfScanner is a novel approach for object detection

within the GroZi-120 dataset. We have shown that by lever-
aging the properties of grocery stores we can build a system
that is capable of detecting a shopping list’s items. With the
aforementioned optimizations the system could be made to
run in real-time. Mosaic construction proves to be the key
to this approach, allowing the system to avoid processing
regions of a scene twice. Future work could apply more
general motion models to the camera. This would allow the
system to handle a wider variety of user movement, which
would increase the accuracy of our mosaics and perhaps al-
low for object detection based on matching keypoints via
homographies.

Currently the memory cost of maintaining a large mosaic
suggests that work must be done on eventually forgetting
old areas of the mosaic. A quickly vanishing mosaic could
also enable the system to make do with simple motion mod-
els in complex environments, as local camera motions are
often well-approximated by simple motion models, where
extended camera motions require more complicated motion
models.

Our detection results suggest that for ShelfScanner to be
truly usable, up to date product images must be used for
training. Future work could incorporate text recognition to
reduce the sway of product packaging.

Our timing results suggest the possibility of a real time
system that can keep pace with the video stream. We intend
our future work to move the system into a parallel archi-
tecture that can run in real time and take full advantage of
machines with multicore processors.

7. Acknowledgements
The authors would like to thank the Winter 2010

CSE 190-A class for their helpful feedback. Further
we would like to thank Florian Schroff for his assis-
tance. This work was supported in part by DARPA Grant
NBCH1080007 subaward Z931303 and NSF CAREER
Grant #0448615.

References
[1] A. Adams, N. Gelfand, and K. Pulli. Viewfinder alignment.

In Eurographics, volume 27, pages 597–606, 2008. 2
[2] L. Barrington, T. Marks, and G. Cottrell. NIMBLE: A kernel

density model of saccade-based visual memory. In CogSci,
pages 77–82, 2007. 2, 4

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. {SURF}
speeded-up robust features. 110(3):346–359, June 2008. 2

[4] M. A. Fischler and R. C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image anal-
ysis and automated cartography. Commun. ACM, 24(6):381–
395, 1981. 2

[5] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Re-
port 07-49, University of Massachusetts, Amherst, October
2007. 1

[6] M. Irani, P. Anandan, and S. Hsu. Mosaic based represen-
tations of video sequences and their applications. In ICCV,
page 605, Washington, DC, USA, 1995. 2

[7] D. Lowe. Object recognition from local scale-invariant fea-
tures. In ICCV, pages 1150–1157, 1999. 1

[8] B. D. Lucas and T. Kanade. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
pages 674–679, San Francisco, CA, USA, 1981. 4

[9] M. Merler, C. Galleguillos, and S. Belongie. Recognizing
groceries in situ using in vitro training data. In CVPRW,
2007. 1, 2

[10] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In VISAPP,
pages 331–340, 2009. 4

[11] J. Shi and C. Tomasi. Good features to track. Technical
report, Cornell University, 1993. 4

[12] L. B. Statistics and L. Breiman. Random forests. In Machine
Learning, pages 5–32, 2001. 1

[13] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In IJCV, pages 511–518, 2001. 1

