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Abstract

Face recognition systems classically recognize people
individually. When presented with a group photograph con-
taining multiple people, such systems implicitly assume sta-
tistical independence between each detected face. We ques-
tion this basic assumption and consider instead that there
is a dependence between face regions from the same image;
after all, the image was acquired with a single camera, un-
der consistent lighting (distribution, direction, spectrum),
camera motion, and scene/camera geometry. Such nat-
urally occurring commonalities between face images can
be exploited when recognition decisions are made jointly
across the faces, rather than independently. Furthermore,
when recognizing people in isolation, some features such as
color are usually uninformative in unconstrained settings.
But by considering pairs of people, the relative color differ-
ence provides valuable information. This paper reconsiders
the independence assumption, introduces new features and
methods for recognizing pairs of individuals in group pho-
tographs, and demonstrates a marked improvement when
these features are used in joint decision making vs. inde-
pendent decision making. While these features alone are
only moderately discriminative, we combine these new fea-
tures with state-of-art attribute features and demonstrate ef-
fective recognition performance. Initial experiments on two
datasets show promising improvements in accuracy.

1. Introduction
With the advent of inexpensive digital cameras and so-

cial networking sites such as Facebook, millions of personal
photographs are uploaded daily. Many photographs include
multiple individuals. There is a strong desire to identify
and tag faces in these photographs - automatically and accu-
rately. And, unlike access control systems which typically
include images with a single person, video surveillance im-
ages commonly include multiple people and even crowds.
These scenarios require face recognition systems to iden-
tify multiple individuals in a single image and they have to
be effective in unconstrained imaging conditions.

There has been a great deal of progress in recognizing
people over pose and lighting variation [12, 15]. While

these techniques seem reasonable for photographs contain-
ing single individuals, there is an opportunity to exploit the
common imaging conditions across individuals in the same
photograph. Figure 1 shows a few sample images from a
television show. One can readily notice various correla-
tions. Faces of taller people tend to appear higher than
others in an image. Despite variations in lighting, fairer
skinned individuals have brighter skin than darker skinned
individuals. There is also similarity in the direction of shad-
ows and gaze. Effects introduced by the camera are more
subtle - color balance, spectral response, exposure setting,
noise and even motion blur will all be similar for every face
in a group photograph. Some of these variations such as
height can potentially be used to aid in recognition. While
others such as shadow or blur can be uniformly ignored for
all people in the group shot.

Face recognition systems largely identify individuals in-
dependently. For an image with two detected faces, the
recognition decision of one face does not influence the de-
cision of the second face. For controlled imaging condi-
tions, systems with remarkable performance have been de-
veloped [14]. In an unconstrained setting, the face recog-
nition problem is harder. There is an emerging area that
addresses this setting and evaluates performance on uncon-
strained datasets such as Labeled Faces in the Wild (LFW)
[5] and PubFig [6]. While most methods operating in con-
strained settings have been based on aligning gallery and
probe images in some way, including cross pose, some of

Figure 1. Collection of frames containing multiple individuals
from the television show Buffy the Vampire Slayer



the most promising methods in unconstrained settings rely
on extracting localized features (e.g. attributes, similes, etc.)
that are trained with many examples images and are to a
large extent insensitive if not invariant to imaging condi-
tions. More recent techniques such as [2, 10] further push
the accuracy envelope. Highly discriminative features are
desired.

Some features, such as color, might be expected to be
discriminative, but they are not in an unconstrained setting
because image color is not only a function of face color, but
also of illuminant color which varies. Yet when two faces
are seen in the same image, the illumination color is very
likely to be the same for both faces, and so the colors of the
same pair of individuals as seen in two different images is
expected to be highly correlated.

In this paper, we question the basic assumption of inde-
pendence. Considering the many commonalities that peo-
ple share in a group photograph, would it be beneficial to
try and model these commonalities across groups of peo-
ple? We try to answer this question by focusing on a few
features that would usually be considered ineffective when
considered individually (e.g. face color and the height of
the face box in an image), and we show that there is signif-
icantly greater discriminative power of these features when
used in joint decision making.

But do these features offer independent information
when integrated in an existing system. To address this, we
also extracted state-of-the-art attribute descriptors [6] that
have been shown to perform well in an unconstrained set-
ting, and we used both the attribute features and the new fea-
tures for recognition in a generative (probabilistic) frame-
work. We propose two models that attempt to recognize
pairs of individuals in group shots. While one model com-
putes the conditional probability of a person based on an-
other person’s feature vector (in addition to his own), the
second model computes a joint probability for the pair of
individuals. We evaluate this on two datasets containing
groups shots, and show that joint decision making using the
proposed methods exceeds independent decision making.

While recognizing multiple people simultaneously has
been explored [13, 8], it was meta-data such as GPS loca-
tions and timestamps that was modeled. Our approach on
the other hand models visual image features directly.

2. Relative Features
Group photographs contain multiple people in the same

photograph – imaged in roughly the same illumination con-
ditions with the same camera – and we would like to use
features that can exploit this fact. In unconstrained settings,
it is well known that a probe face can appear very different
from its gallery examples, due to pose, expression, light-
ing, and imaging variations. For example, under bright illu-
mination and heavy shadow, an intensity- or texture-based

feature will produce a vastly different response than under
more neutral conditions, leading to incorrect recognition.

However, if we look at pairs of faces in an image, we
can use a relative feature such as the difference in bright-
ness between the two faces. If one individual has a darker
skin tone, then that person’s brightness should generally be
lower than the other’s – regardless of the actual illumina-
tion conditions in the scene. Of course, the benefit of such
relative features is not limited solely to lighting and color; a
wide variety of attributes will show similar correspondences
when multiple people are imaged together: relative heights,
ages, degree of facial hair, nose size, eyebrow thickness,
roundness of face, etc. While the variety of confounding
effects in natural images will affect the appearance of (and
therefore measurement of) these attributes, it will often do
so to all faces in the image in a similar way, leaving their
relative strengths roughly the same.

To explore the effectiveness of this approach, we use a
number of different types of features, described in the fol-
lowing subsections. First, we use the describable visual at-
tributes of Kumar et al. [6], which have been shown to be
very effective on real-world face verification benchmarks
such as Labeled Faces in the Wild (LFW) [5]. Second,
we include color features that capture the median color and
brightness of different parts of the face for each individ-
ual. These are expected to greatly benefit from using rel-
ative measurements. Third, we expand beyond the face to
consider a feature that is heavily used by humans, but of-
ten ignored in computer vision – the height of a person. Of
course, since we often do not see the full person in an im-
age, we use the height of the face-detection box as a proxy
for the person’s height; however, we show that this is still
effective.

2.1. Describable Visual Attributes

Kumar et al. [6] introduced a novel approach to face ver-
ification using classifiers trained to recognize the presence
or absence of (and degree of) describable visual attributes
such as age, gender, ethnicity, hair color, etc. These classi-
fiers are trained using a supervised learning approach: hun-
dreds of images are manually labeled for each attribute and
used to train a binary classifier. The training process in-
cludes a greedy feature selection algorithm that automat-
ically determines the most useful low-level features to use
for a given attribute (via cross-validation), resulting in a sys-
tem that can learn to classify new attributes efficiently and
accurately given labeled training images.

We computed attribute values using the system described
in [7], which consists of automatic face and fiducial point
detection, affine alignment based on the fiducial points,
and attribute classification using Support Vector Machines
(SVMs). The complete list of 73 attributes used in this work
can be found in [7].



Figure 2. Detected fiducial points (left), eyes and mouth regions
(center), and convex hull of fiducial points (right)

2.2. Color Descriptors

To capture characteristic color traits, we introduce four
new descriptors. As described in the previous section, at-
tribute computation includes fiducial point detection as a
sub-step. This produces six keypoints corresponding to the
corners of each eye and the corners of the mouth. With this,
we define four regions from which we extract color infor-
mation - two around the eyes, one around the mouth, and
one on the convex hull of all 6 points. The first three are
rectangular regions defined using two fiducial points each,
with a width that is 115% of the distance between the two
points and a height that is one half of this width. The latter
encompasses primarily the nose and parts of the lower-eyes,
upper lip, and cheeks.

Figure 2 shows the fiducial points automatically detected
on the face, followed by the four regions. Each region is
then converted to the HSV color space with a hue shift of
180◦. The median values for each color channel are then
computed within the region, resulting in a three-component
descriptor for each region. Finally, we note that if more fea-
ture points are available, additional regions can be defined
in a similar way, e.g. around the forehead.

2.3. Height Descriptor

Similar to color, the height of a person can be a good rel-
ative descriptor. In addition, height is a form of non-facial
information that is often ignored in recognition systems, de-
spite its obvious usefulness, due to the difficulty in estimat-
ing it reliably from a single image. As an estimate of the
height of an individual, we use the distance between the de-
tected face box and the base of the image. Due to variations
in camera position and ground level, a person’s height so es-
timated may experience drastic fluctuations. Consequently,
this height value may be a weak and even misleading de-
scriptor for an individual; on the other hand, the face box of
a taller person is more likely to be found higher in a photo-
graph than that of a shorter person, and thus relative height
values are expected to be discriminative.

To account for people closer to the camera appearing
larger and taller, we normalize the distance of the face box
from the base of the image by the size (height) of the face
box itself. This ratio is treated as our height descriptor. Fig-

Figure 3. Computing height descriptors h1 and h2 for two people
in a group photograph. Note that in the common case of people
standing at the same distance from the camera, this measure pro-
vides an accurate measure of relative heights.

ure 3 illustrates this. Note that in the common case of in-
dividuals being photographed at the same distance from the
camera (i.e., many group photos), the size of all face boxes
will be roughly identical and this measure reduces to the
distance from the base of the image – which does indeed
capture relative heights.

Thus, 73 attribute features combined with 12 color de-
scriptors (3 for each of 4 regions) and 1 height descriptor
together form an 86 dimensional feature vector for our ex-
periments.

3. Recognition Models

We take generative Bayesian approach to recognition,
starting with the likelihood of a feature vector ~x1 for person
Pa as P (~x1 | Pa). For mathematical convenience, assum-
ing equal prior probability on individuals, decisions can be
said to have been made on P (Pa | ~x1). Extending this, for
a pair of people P1 and P2, we use feature vectors ~x1 and
~x2 as such:

〈P1, P2〉 = arg max
〈Pa,Pb〉, a 6=b

P (Pa, Pb | ~x1, ~x2) (1)

where Pa and Pb range over allK individuals in the dataset.
We present three different approaches to modeling the joint
P (Pa, Pb | ~x1, ~x2) – the usual model assuming statistical
independence, a conditional probability model and a joint
probability model.



3.1. Baseline Model

A regular model that assumes statistical independence
between detected faces (henceforth termed the baseline
model) computes

P (Pa, Pb | ~x1, ~x2) = P (Pa | ~x1) P (Pb | ~x2) (2)

i.e., the probability of feature vector ~x1 belonging to per-
son Pa is treated independent of ~x2 belonging to Pb – even
though ~x1 and ~x2 are derived from the same image.

Computing the class conditional density directly, we use
a Gaussian as our baseline model. Mathematically, the
model for person Pa is

P (Pa | ~x1) = N (µa,Σa) (3)

where µa is the mean feature vector for Pa and Σa is the
covariance of these vectors - both computed from train-
ing examples. Due to the relatively high dimensionality of
our feature vectors, we employ Fisher’s Linear Discrimi-
nant Analysis (FLDA) [1] to project them into a discrimina-
tive lower dimensional subspace. With K individuals in the
dataset, this subspace has K − 1 dimensions. The baseline
Gaussian model is trained using vectors in this subspace.

3.2. Conditional probability model

Identifying two people Pa and Pb from their feature vec-
tors ~x1 and ~x2 using a conditional probability model is for-
mulated as

P (Pa, Pb | ~x1, ~x2) = P (Pa | ~x1) P (Pb | ~x1, ~x2, Pa) (4)
= P (Pb | ~x2) P (Pa | ~x2, ~x1, Pb) (5)

P (Pa | ~x1, ~x2) = P (Pa | ~x1) is reasonably and implicitly
assumed. Note that though equations 4 and 5 are mathemat-
ically equivalent, they may produce different results in prac-
tice due to differing numbers of training examples. Thus, it
is advantageous to compute both and then combine them in
some way.

Any suitable model can be used to estimate P (Pa | ~x1)
or P (Pb | ~x2), e.g., the Gaussian model described in the
previous section. Unfortunately, the conditional probabil-
ities P (Pa | ~x2, ~x1, Pb) and P (Pb | ~x1, ~x2, Pa) are very
hard to estimate due to the scarcity of training data and be-
cause both ~x1 and ~x2 are real-valued vectors.

To bypass this problem, we define the approximate con-
ditional in terms of a relative binary feature vector. For in-
put feature vectors ~xa and ~xb from two face boxes in the
same image, let ~Cab denote the relative binary feature vec-
tor of ~xb with respect to ~xa, defined as

Ci
ab =

{
1 if xia ≥ xib
0 if xia < xib

(6)

where i ranges from 1 to the total number of dimensions D
in feature vectors ~xa and ~xb.

The training phase involves learning the probability that
feature component i is greater for person a than for person b.
This involves simple counting over images where person a
and person b occur in the same photograph. Mathematically,
setting zi1 = count(xia ≥ xib) and zi0 = count(xia < xib),

P (Ci
ab = 1) =

zi1
zi0 + zi1

(7)

P (Ci
ab = 0) =

zi0
zi0 + zi1

(8)

Intuitively, these equations express the probability that a
particular feature component is numerically higher for one
person when compared to another. For example, if person a
is male and person b female, then the male attribute for per-
son a will usually be higher than that for person b, i.e., one
would expect P (Cmale

ab = 1) ≈ 1 and P (Cmale
ab = 0) ≈ 0.

For attributes where the two individuals being compared
have nearly similar values, then both these probabilities
would be close to 0.5.

One drawback of such a counting estimate is that the
probability P (Ci

ab) can vanish to zero if every pair of fea-
ture components compared bear the same relationship. In
practice, while a low probability value is acceptable, a per-
fect zero can cause instability in decisions. Moreover, the
zero probability is usually a byproduct of having to work
with limited data. As a simple fix to this problem, we
perturb each probability estimate P (Ci

ab) towards 0.5 by
a small amount:

P (Ci
ab) = P (Ci

ab) +
sign(0.5− P (Ci

ab))

zi0 + zi1 + 1
(9)

This changes the probability by a fraction 1/(zi0+zi1+1) in
such a way that values less than 0.5 are increased and values
greater than 0.5 are decreased. Intuitively, for each prob-
ability estimate P (Ci

ab), we assume the existence of one
additional data point belonging to the category with lower
probability. This technique successfully eliminates perfect
zero probabilities in a controlled manner.

The conditional probability for the testing phase can now
be approximated in terms of this new metric:

P (Pb | ~x1, ~x2, Pa) ≈
D∏
i=1

P (Ci
ab = Ci

12) (10)

This assumes individual components of the relative binary
feature vector are independent of each other. In view of this,
we apply FLDA to our feature vectors before computing the
binary conditional probability. The FLDA projection is re-
stricted to 20 dimensions. The value for P (Pa | ~x2, ~x1, Pb)
can be computed similarly.

This conditional approximation is used along with the
baseline models, following equations 4 and 5. We use
the geometric mean of the two estimates thus produced for
making recognition decisions.



3.3. Joint probability model

The binary conditional model ignores the raw value
of feature components – instead looking only at relative
higher-lower relationships. A joint probability model, on
the other hand, can learn raw feature values for two individ-
uals as well as a correlation between them. Similar to our
baseline model, we learn a single Gaussian for each pair of
individuals. The input vector for such a model is simply
[~x1, ~x2], a concatenated version of feature vectors from the
two faces. We learn K(K − 1) pairwise models for K in-
dividuals in the dataset. The concatenated feature vector is
twice the usual feature size and we apply FLDA to reduce
its dimensionality. Instead of the default K(K − 1) − 1
dimensional subspace generated by FLDA (which can be
quite huge), we restrict ourselves to a 20-dimensional sub-
space. Mathematically,

P (Pa, Pb | ~x1, ~x2) = N (~µab,Σab) (11)

where ~µab is the 20-dimensional mean for the FLDA pro-
jection of the concatenated vectors [~xa ~xb], Σab is the
20 × 20 diagonal covariance matrix for the same vectors,
and N (~µab,Σab) is the single Gaussian learned for the pair
of individuals Pa and Pb.

4. Datasets
Due to the popular implicit assumption of statistical in-

dependence between detected faces in a group shot, most
face recognition datasets do not have images containing
multiple individuals. To generate such a dataset, one op-
tion would be to use existing datasets captured under con-
trolled conditions, such as CMU PIE [11] or Multi-PIE [4].
By using subsets of these datasets corresponding to con-
stant lighting, background, or other imaging parameters,
one could simply assume that photographs of two different
individuals originated from the same group shot. However,
we believe that such a synthetic dataset would be incompat-
ible with our premise of trying to learn true correlations be-
tween face regions from a single photograph. Consequently,
we use two real datasets: the “Buffy” dataset introduced by
Everingham et al. [3] and a new dataset constructed from a
personal photo album.

4.1. The Buffy Dataset

First used by Everingham et al. [3], the Buffy dataset
consists of roughly 120, 000 total frames extracted from two
episodes of the popular television series Buffy the Vampire
Slayer (Season 5, Episodes 2 and 5). Manual annotations
corresponding to the 50, 000 automatically-detected face
boxes are provided for each image frame, covering 11 pri-
mary characters and a number of supporting cast and extras.
Everingham et al. used this dataset to test their automatic
character-naming system for TV shows. Their system used

a variety of features, including intensity and SIFT [9]-like
features computed around fiducial points, clothing-color
descriptors, visual speaker identification, and speaker in-
formation from subtitles. They reported an accuracy of
around 69% for recognizing all detected face images in both
episodes, while accuracy was around 80% when labeling
the 80% of the data which had high recognition confidence.

In our case, after retaining characters that occur in group
shots in both episodes, our working set consists of eight
individuals. Each automatically-detected face box for the
eight retained characters was run through the attribute gen-
eration pipeline described in Section 2.1, followed by com-
putation of the color and height descriptors from Sec-
tions 2.2 and 2.3. We use data from episode 2 for training
and test on episode 5. We identify two subsets of feature
data for each episode. The first, which we call group-data,
consists of features computed for characters from group
shots alone. By group shots, we mean images that contain
more than one character from our working set. The other
subset consists of features computed from all occurrences
of each individual in an episode (not just group shots). We
call this subset all-data and it includes all of group-data as
a subset. All-data contains 2 to 8 times more images than
group-data for this dataset.

By design, our joint models will only be able to use
group-data, and are hence trained on that subset. On the
other hand, all-data is used to train the baseline models
(which assume statistical independence) for a fair compar-
ison. Both models are tested only on group-data from the
test episode.

While the Buffy dataset is large and was already avail-
able for us to use, it is non-ideal in several respects for this
work. Since the dataset is derived from a television show,
heavy makeup and artistic camera effects are common. A
large fraction of the show is shot at night with artificial di-
rectional lighting. Since frames are extracted from video, a
small amount of motion blur is present. Also, frames cap-
ture a snapshot of character movements (talking, walking or
even fighting), and in some sense, represent a wider variety
of pose and expression than what one would encounter in
many real-world situations, such as personal photo albums.
Finally, as in any situation where actors are involved, most
faces are non-frontal to avoid breaking the “fourth-wall.”

4.2. A Personal Photo Album

To mitigate these issues, we also run experiments on a
new dataset constructed from one of our own personal photo
albums. This dataset consists of approximately 1, 700 pic-
tures captured on seven different days spread over a three
month period. Four different digital cameras were used.
The dataset contains a mix of images captured in bright day-
light, moderate indoor lighting and camera flash. Unlike the
Buffy dataset, most images have individuals posing for the



camera and hence contain frontal shots. Automatically de-
tected face boxes were manually annotated to obtain 116
unique individuals.

We randomly select 70% of the images for training and
use the rest for testing. (All faces in an image are consid-
ered part of the training or testing process irrespective of
the number of individuals in the image.) In order to build
good joint models, each with an appreciable amount of data,
we restrict our experiments to two sets of people. The first
set of individuals occur in at least 80 training images, while
the second set occur in at least 65 training images. This
constitutes 6 individuals (P1 to P6) and 12 individuals (P1

to P12), respectively. Unlike the Buffy dataset, most pho-
tographs here are group shots. Furthermore, every pair of
individuals has at least 10 training images.

Although the 12-person set contains more individuals
(and thus pairs) than the 6-person set, the number of train-
ing instances available is low for individuals P7 to P12 and
pairs involving them. This, coupled with the greater number
of pairwise classes, means that we expect the performance
of our relative model to deteriorate for the 12-person dataset
and hence use this set to observe and understand the reduc-
tion in accuracy.

4.3. Group Data Scarcity

Data scarcity is a major issue when building models to
recognize pairs of individuals. Consider the case where the
training dataset is a personal photo album comprising K
individuals P1, P2, · · · , PK . Let np denote the number of
photographs in which person p occurs. A conventional face
recognition system, building independent models for each
person would build K such models. For each individual p,
it would be able to use all np images. On the other hand,
a system recognizing pairs of people would have to build
K(K − 1) models, corresponding to every ordered pair of
individuals (p, q). Furthermore, the model for (p, q) can
only use that fraction of np or nq images where p and q
occur together. On average, this would be np/(K − 1) or
nq/(K − 1) images. Thus, each pairwise model for person
p will always have less training data than its corresponding
independent model. However, with the ease of capturing
and storing ever-increasing numbers of photos, this limita-
tion may not have a practical impact in the near future.

5. Experiments

Given an image containing n individuals, n(n − 1) or-
dered pairs are possible. We treat each of these as separate
pair-recognition problems. If a particular test pair had no
corresponding training pairs, then this test pair is simply ig-
nored. Accuracy is computed per-person – i.e., if a model
correctly recognizes one person, but makes a mistake with
the other, this is counted as 1 correct and 1 incorrect recog-
nition.

For each dataset, we experiment with three sets of feature
vectors – attributes alone, our new color and height based
descriptors alone, and both attributes and our new descrip-
tors. We now present recognition results for each of our
three models.

5.1. Baseline

While the conditional and joint probability models pro-
duce pair-recognition decisions, the baseline model by de-
sign identifies one person at a time. In order to enable easy
comparison of accuracy values, our baseline model is pre-
sented with the same pairs of individuals as our other mod-
els. Due to the independence assumption, separate recog-
nition decisions are produced for each individual in the
pair. We apply FLDA as stated in Section 3.1 before learn-
ing Gaussian models. Results from this experiment can be
found in Table 1.

Buffy Photo Album
6 people 12 people

Attrib. only 63.56 91.38 89.59
New descp. only 32.92 61.08 42.14

Attrib. + new descp. 64.60 92.86 89.82
Table 1. Gaussian baseline accuracy (in percentage)

As seen from the table, performance is poor using just
our new descriptors. This is expected, as these descriptors
are few in number and rather weak on their own. Using
attributes along with the new descriptors is better than using
attributes alone. We believe FLDA is largely responsible
for this increase, as skipping it caused the new descriptors
to have a detrimental effect when included with attributes.

5.2. Conditional probability

We implement the conditional model from Section 3.2
and use the best Gaussian model from the previous experi-
ment as our baseline model (Gaussian trained on a combi-
nation of attributes and our new descriptors, with FLDA).
Results of this experiment are presented in Table 2.

Buffy Photo Album
6 people 12 people

Attrib. only 72.00 91.87 88.92
New descp. only 66.66 93.10 89.74

Attrib. + new descp. 69.14 91.62 87.80
Table 2. Binary conditional model accuracy (in percentage)

Using our new descriptors alone for the binary condi-
tional model, an improvement in accuracy over the best
baseline can be seen for the Buffy dataset and the 6 per-
son photo album. For the 12 person photo album, due to an
increase in the number of recognition pairs and having less
data, we notice a slight decrease in accuracy when com-
pared to the best baseline. Also, the largest improvement in
accuracy for the Buffy dataset is seen when the conditional
model is trained on attributes alone. Attribute values are



Figure 4. Variation in accuracy with number of attributes used for
baseline (dashed red) and conditional (solid blue) models on the
Buffy dataset. The latter consistently do better.

Figure 5. Variation in accuracy with number of attributes used for
baseline (dashed red) and conditional (solid blue) models on the 6
people photo album dataset. The latter consistently do better.

intended as binary outputs from SVMs and we believe the
binary conditional model is exploiting this.

To further illustrate the accuracy increases provided by
the conditional model, we train a baseline model with a ran-
dom subset of attribute features, for an increasing number
of attributes. For each attribute subset, a baseline recogni-
tion experiment is performed as detailed previously. Corre-
spondingly, with each baseline model thus trained, a binary
conditional model trained on all of our new height and color
descriptors is used to provide a relative decision. The entire
experiment is repeated and results from each run are av-
eraged. Figure 4 shows results for this experiment on the
Buffy dataset, and Figure 5 for the personal photo album
with 6 people. As can be seen in both figures, the con-
ditional model using our new descriptors consistently pro-
vides higher recognition accuracy than baseline models.

5.3. Joint probability experiment

Following the framework detailed in Section 3.3, we
build a 20-dimensional Gaussian for pair of individuals.
Due to group data scarcity and despite applying FLDA, the

covariance matrix is singular for many models. So, we set-
tle for a diagonal covariance matrix – effectively modeling
each of the 20-dimensions separately. Results for this ex-
periment can be found in Table 3.

Buffy Photo Album
6 people 12 people

Attrib. only 50.40 90.15 86.30
New descp. only 50.26 58.13 46.03

Attrib. + new descp. 53.52 91.87 88.55
Table 3. Gaussian joint model accuracy (in percentage)

Comparing this to Table 1, we notice that when using
attributes alone or in combination with our new descrip-
tors, net accuracy for all datasets drop when compared to
corresponding baseline versions. This decrease is largely
attributed to the reduced amount of data available for each
pairwise model. For the Buffy dataset, reduction in train-
ing data is substantial and accounts for the large decrease
in accuracy. Using our new descriptors alone, a 17% boost
in accuracy is seen for the Buffy dataset and nearly 4% for
the 12 person photo album when compared to similar base-
line experiments. This shows that while the joint model
is able to exploit natural correlations encoded in our new
descriptors, providing an increase in accuracy, the greatly
reduced amount of group data hurts performance more than
the gains.

To further understand the performance boost due to our
new descriptors, we compare the accuracy of a baseline
model and a joint model both trained with just one of our
new descriptors. Figure 6 shows results for this experiment
on the Buffy dataset. Figure 7 shows similar results on the 6
people personal photo album. In all cases, the height based
descriptor is a single number, whereas the other color de-
scriptors each consist of 3 components. While the overall
accuracy of each descriptor is numerically low, every de-
scriptor provides a boost in accuracy when used in a joint
Gaussian model, often substantially so.

6. Conclusions and Future Work
Face recognition systems have traditionally built mod-

els for each individual in isolation. In group photographs,
statistical independence is usually assumed between the de-
tected faces during recognition. However, by virtue of the
fact that all individuals in a group photo are in the same
scene and captured by the same imaging system, there are
a number of exploitable characteristics, such as common
lighting, blur, etc. We have taken the first steps in using
this information by building joint and conditional models
for recognizing pairs of people in group photos more ac-
curately. Our models use a variety of features, including
describable visual attributes, median color and lighting in
different regions of the face, and normalized height, which
show the gains possible by using relative features. When



Figure 6. Comparison of accuracies provided by baseline (blue)
and joint (red) models using our new descriptors on the Buffy
dataset. The joint models consistently do significantly better.

Figure 7. Comparison of accuracies provided by baseline (blue)
and joint (red) models using our new descriptors on the 6 people
photo album. The joint models consistently do better.

combined carefully (e.g., using LDA), these models pro-
vide improvements over baseline techniques – the condi-
tional model more so than the joint, which suffers due to
data scarcity. Further, the conditional model can be easily
added to existing face recognition systems, providing an ac-
curacy boost when looking at group photographs.

We believe that a promising area for future work is in
questioning many assumptions of traditional face recogni-
tion – independence of multiple faces, the use of only facial
appearance, single-image processing – to exploit the nu-
merous other sources of information present in many typ-
ical operating scenarios. First, it may be possible to for-
mulate additional descriptors that capture commonalities in
group photographs, including possibly those built on cloth-
ing or the body. Second, relative information can be inferred
through transitivity to mitigate the data scarcity issue. For
example, if two particular people are never seen together in
group shots, but each is seen with a common third person,
one could transitively infer relationships between the fea-
tures of these two individuals. Indeed, one could extend this
to chains of inference through multiple individuals. Relat-
edly, while we have shown how to exploit common informa-
tion between pairs of people, more gains might be possible
by using triplets or an even greater number of individuals si-

multaneously, i.e., because there would be more constraints
for each person. Finally, techniques that can squeeze more
information from existing data would be very useful – for
example, to learn from a single group photograph, or lever-
age estimates from all pairs (or triplets, etc.) in an image to
form a single recognition decision for every person.
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