
Video Text Detection and Recognition: Dataset and Benchmark

Phuc Xuan Nguyen

Department of Computer Science and Engineering

University of California, San Diego

Kai Wang

Google Inc.

Serge Belongie

Cornell NYC Tech

Cornell University

Abstract

This paper focuses on the problem of text detection and

recognition in videos. Even though text detection and recog-

nition in images has seen much progress in recent years, rel-

atively little work has been done to extend these solutions

to the video domain. In this work, we extend an existing

end-to-end solution for text recognition in natural images

to video. We explore a variety of methods for training lo-

cal character models and explore methods to capitalize on

the temporal redundancy of text in video. We present de-

tection performance using the Video Analysis and Content

Extraction (VACE) benchmarking framework on the ICDAR

2013 Robust Reading Challenge 3 video dataset and on a

new video text dataset. We also propose a new performance

metric based on precision-recall curves to measure the per-

formance of text recognition in videos. Using this metric,

we provide early video text recognition results on the above

mentioned datasets.

1. Introduction

Text detection and recognition in unconstrained environ-

ments is a challenging computer vision problem. Such func-

tionality can play valuable role in numerous real-world ap-

plications, ranging from video indexing, assistive technol-

ogy for the visually impaired, automatic localization for

businesses, and robotic navigation. In recent years, the

problem of scene text detection and recognition in natural

images has received increasing attentions from the com-

puter vision community [1, 2, 21, 20, 18, 17, 5]. As a

result, the domain has enjoyed significant advances on an

increasing number of datasets of public scene text bench-

marks [12, 4, 22, 21, 13, 10].

Even though the amount of video data available is

rapidly increasing due to extensive use of camera phones

and wearable cameras (e.g. Google Glass, GoPro and video-

sharing websites such as YouTube), relatively little work

has been done on extending text reading solutions to the

video domain. The ICDAR 2013 Robust Reading Chal-

lenge 3 [7] introduced the first public video dataset for the

Figure 1: Example frames in the YouTube Video Text

dataset. The green bounding boxes indicate the annotated

locations of text regions. Images in the top row are exam-

ples of scene text while the bottom rows show examples of

overlay text.

purpose of providing a common benchmark for video text

detection. We refer to this dataset as ICDAR-VIDEO for

the remainder of the paper. Apart from the ABBYY base-

line provided by the organizers, TextSpotter [15, 16] was

the only participant in this challenge. To the best of our

knowledge, both of these systems were originally designed

for the task of text detection and recognition in images and

were tweaked slightly to fit the competition format. Further-

more, while the ICDAR-VIDEO dataset provided both the

position and string annotations for the words within each

frame, only detection results were reported.

In this work, we focus on the problems of detection and

recognition of text in videos. Figure 1 shows frames with

text content in example videos. Similar to the image do-

main counterparts [18, 20], this paper focuses on the prob-

lem of text detection and recognition in videos given a list

of words (i.e., a lexicon). In many applications, the lexicon

availability assumption is reasonable. Consider the problem

of assisting a blind person to shop at a grocery store: in this

case the lexicon would be a list of products in the store or

within a given aisle.



Figure 2: An overview of our system. Starting from the left, raw input frames are fed independently to the character detection

module. This module returns a list of bounding boxes describing locations, character classes, and detection scores. These

character bounding boxes are temporally smoothed to remove false positives. Next, we perform word detection using Pictorial

Structures, rescore each word using global features, and perform non-maximum suppression. Word detections in each frame

are then passed through another round of temporal smoothing to remove false positive words. Finally, we link the per-frame

detections into tracks.

Contributions Our contributions are three-fold. (1) We

extend Wang’s solution [20] to the video domain by em-

ploying a different character detection method and includ-

ing multiple modules that exploit temporal redundancy to

improve the performance of the system. (2) We propose a

precision/recall metric suited to the task of text recognition

in video. (3) Finally, we introduce a new video text dataset.

2. System Overview

Our approach is based on an extension of Wang’s solu-

tion [20] as the components of this pipeline are simple yet

effective. The source code is publicly available1. Figure 2

shows the complete overview of our video text detection

and recognition system. We describe each module in detail

in the following sections.

2.1. Character Detection

The first step in our pipeline is to detect characters given

an image frame. We perform multi-scale character detection

via scanning-window templates trained with linear SVM

and Histogram of Oriented Gradients (HOG) [3] features.

For each character, we train a binary classifier with five

rounds of hard negative mining. The initial round of train-

ing uses the character samples of the target class as positive

training data and the other classes as negative training data.

In subsequent rounds, we mine hard negative patches by

running the previously trained model on images from the

Flickr dataset [6] and add top-scoring detections to the neg-

ative sets. To ensure the quality of the negative pool, we

manually examined each image in the Flickr dataset and re-

moved ones containing text.

1http://vision.ucsd.edu/ kai/grocr/

Pre-processing Character Samples Character samples

from public text datasets sometimes do not have tight

bounding boxes and, in some cases, have the wrong la-

bels. We manually go through each character image, re-

move samples with wrong labels, and recrop the images for

a tight fit with the characters. Enforcing a tight bounding

box gives the training data more consistent alignment and,

hence, produces better templates.

Mixture Models We observe that there is great intra-class

variability within each character class. Different “proto-

types” of a letter can have very different appearances. Zhu

et al. [24] suggest that we can grow the model complex-

ity by adding mixture models to capture the “sub-category”

structure of the data. The first step of training mixture mod-

els involves clustering the existing data into K different

clusters. A classifier is then trained separately for each clus-

ter. This technique often requires a large amount of training

data as each cluster requires sufficient positive examples to

train a good model. Fortunately, in recent years, many text

datasets with character-level annotations have been pub-

lished [4, 12, 13, 21]. Combining the character samples

from these datasets gives a large set for training mixture

models. For each character, we split the samples into 10

clusters using K-means. Similar to Zhu’s [24] experiments,

we append the aspect ratio to the HOG features, and use

PCA to reduce the feature dimensionality prior to cluster-

ing.

2.2. Pictorial Structures and Word Rescoring

We follow Wang’s Pictorial Structures [20] approach for

constructing the word detections from character bounding

boxes. We also use the same word rescoring technique,



but construct the training set differently. To construct the

training set for the rescoring SVM, we randomly select 100

frames that contain text from each video in the training set.

We run the system on this set and label each returned word

positive if matched with a ground truth and negative other-

wise.

2.3. Exploiting Temporal Redundancy

Lienhart [11] suggests in his survey that one can exploit

temporal redundancy in video to remove false positives in

individual frames and recover missed detections. In the fol-

lowing sections, we describe three modules—the temporal

smoothing module, the linker, and the post-processing mod-

ule—that leverage temporal properties to improve the per-

formance further.

Temporal Smoothing Due to the local nature of

scanning-window approaches, false positives are often per-

vasive, especially in a system that favors recall over preci-

sion. This problem was also observed in [14]. Removing

character false positives at this step is crucial as it reduces

the search space for the word detection step.

Given a bounding box detection at a given frame, we

compute the overlap ratio between it and all detections in

the preceeding and following N frames. If a sufficient

amount of the neighboring frames contains detections that

satisfy the overlap condition with the target frame, we keep

the detection in the current frame. Otherwise we discard it

as a false positive. More formally, let b
f
i be the i-th bound-

ing box in frame f , |bfi | be the number of pixels in this

region, Dt be the number of detections in time t and α be a

real number between 0 and 1, and define

I(bfi , t) =







1
∨Dt

j=1

(

|bfi
⋂

b
f−t
j |

|bfi
⋃

b
f−t
j |

> α

)

0 otherwise

(1)

Next, we define a function H that takes an i-th bounding

box at frame f , b
f
i , and returns 1 for a true positive or 0 for

a false positive. The function is defined as

H(bfi ) =





N
∑

j=1

I(bfi , j) ≥ βN



∨

(

N
∑

k=1

I(bfi ,−k) ≥ βN

)

(2)

where β is a real number between 0 and 1.

This module has three hyperparameters: (1) N controls

the number of frames to search forward and backward, (2) α

specifies the overlap ratio condition, and (3) β controls the

fraction of neighboring frames needed to decide whether

the current detection is a true positive. We perform a grid

search on a validation set to tune these parameters.

Linker When the results are temporally smoothed to re-

move false positives, we proceed to link the per-frame de-

tections into tracks. For each detection in frame t, we search

backwards in a buffer of 10 prior frames. We consider the

following features:

• the overlap ratio between the current bounding box and

the candidate in the prior frame,

• the edit distance between the word and the candidate

word,

• the temporal distance between the current detection

and the candidate, measured in number of frames.

We train a linear classifier to determine whether the

bounding box detection in previous frames is a match for

the current bounding box. We only allow one match per

previous frame. If there is more than one, we choose the

one with the highest score. We assign the current bounding

box the identifier that is present in the majority of matched

frames.

To establish a training set, we consider each detection in

each frame and the set of candidate bounding boxes in the

previous 10 frames. We label the bounding boxes with the

same track identifier as positives and the rest as negatives.

We feed these labels and the computed features to a standard

SVM package2.

Post Processing Due to motion blur and other artifacts,

detections in some frames within a track might be miss-

ing, causing temporal fragmentations. To mitigate this ef-

fect, we linearly interpolate both the word scores and the

word bounding boxes between the detected frames to re-

cover missing detections. Finally, we remove all tracks with

less than 10 frames.

3. Experiments

3.1. Dataset

ICDAR-VIDEO In the ICDAR 2013 Robust Reading

Competition Challenge 3 [7], a new video dataset was pre-

sented in an effort to address the problem of text detection

in videos. The dataset consists of 28 videos in total: 13

videos for the training set and 15 for the test set. The sce-

narios in the videos include walking outdoor, shopping in

grocery stores, driving and searching for directions within

a building. Each video is around 10 seconds to 1 minute

long capturing scenes from real-life situations using differ-

ent types of cameras.

To construct the lexicon for a video, we extract all

ground truth words in the dataset to form a vocabulary. We

then assign a lexicon for each video by taking a union of its

2http://www.csie.ntu.edu.tw/˜cjlin/liblinear/



ground truth words and a random subset of 500 “distractor”

words sampled from the vocabulary.

In the ICDAR-VIDEO dataset, the annotators assigned

each word a quality, which can be “LOW”, “MEDIUM”,

or “HIGH”. During the competition, the “LOW” quality

was not considered. More specifically, misses on the low

quality words did not penalize the system and detections of

the low quality words did not improve the score. For the

sake of simplicity of the evaluation framework, we decided

to include words with all qualities in our evaluation.

YouTube Video Text We introduce YouTube Video Text3

(YVT) dataset harvested from YouTube. The text content

in the dataset can be divided into two categories, overlay

text (e.g., captions, songs title, logos) and scene text (e.g.

street signs, business signs, words on shirt). Figure 1 shows

examples of text content in the YVT dataset.

We downloaded a large number of videos by crawling

YouTube. We split each downloaded video into 15-second

segments and created Amazon Mechanical Turk tasks to fil-

ter out segments without text content. For each segment

that contained text, we annotated the locations of text re-

gions using VATIC [19]. We instructed the annotators to

draw tight bounding boxes only for readable English words.

Next, we asked the annotators to go through each frame in

the ground truth track and type the word contained in this

bounding box.

The dataset contains a total of 30 videos, 15 in the train-

ing set and 15 in the testing set. Each video has HD 720p

quality, 30 frames per second, and 15-second duration. We

constructed the lexicon in the same way as for the ICDAR-

VIDEO dataset.

3.2. Performance Metrics

There are many evaluation frameworks proposed for

multiple object tracking systems [8, 9]. In this paper, we

use ATA metrics from the VACE framework [8] to measure

the performance of the detection systems. We also propose

a video precision-recall metric to measure the recognition

performance.

VACE Metrics The Average Tracking Accuracy (ATA) in

the VACE framework provides a spatio-temporal detection

measure that penalizes fragmentations both in temporal and

spatial dimensions.

For every frame t, a text tracking system outputs a

set of bounding box detections {dt1, . . . , d
t
n}. We denote

the ground truth at frame t as {gt1, . . . , g
t
n}. Using their

unique identifiers, we can group these per-frame detections

and ground truth into separate tracks, {D1, . . . , Dr} and

{G1, . . . , Gq}.

3http://vision.ucsd.edu/datasetsAll

The first step is to establish a one-to-one mapping be-

tween the ground truth and the system output tracks. We

follow the mapping process described in [8].

Once the mapping between detection tracks and ground

truth is established, the Sequence Track Detection Accuracy

(STDA) is defined as

STDA =

NM
∑

i=1

∑

t m(Gt
i, D

t
i)

NGi∪Di 6=0

(3)

where NM is the number of correspondences in the map-

ping M, NGi∪Di 6=0 is the number of frames where ei-

ther Gi or Di exist and m(Gt
i, D

t
i) takes the value 1 if

overlap(Gt
i, D

t
i) > 0.5 and 0 otherwise.

The Average Tracking Accuracy is then calculated as,

ATA =
STDA
[

NG+ND

2

] (4)

where NG and ND are the number of ground truth tracks

and the the number of detection tracks.

Video Precision and Recall Precision-recall curves are

used widely in the literature of text recognition in the im-

age domain. This metric demonstrates the tradeoff of the

system and facilitates the selection of operating points. We

propose to extend this to a sequence-level precision and re-

call performance metric. In particular, ground truths are

matched at sequence-level similar to the computation for

ATA. We, however, place additional restrictions. We define

m(Gt
i, D

t
i) to be 1 if the overlap ratio is greater than 0.5 and

the words in frame t match (ignoring cases).

A ground truth track Gi and a detection track Di are con-

sidered a match if and only if

overlap =

∑

t m(Gt
i, D

t
i)

NGi∪Di 6=0

> 0.5 (5)

The threshold at 50% is arbitrary but reasonable. This

extra restriction requires that the detected track must suf-

ficiently fit the ground truth track at least half of the time.

Once the one-to-one mapping is established, the matched

detections are considered true positives, the unmatched de-

tection tracks are false positives and the unmatched ground

truth tracks are false negatives. We then use the conven-

tional definitions of precision, and recall to evaluate the per-

formance of the detections.

3.3. Character Detection

We begin with the evaluations of 4 different charac-

ter detection models. Wang et al. [20] synthesizes char-

acters with different fonts, backgrounds, rotation angles,

and noises. (1) We train character models (SYNTH) from

these synthetic data. (2) The second set of models is



Figure 3: Character detection performance (F2-score) comparing different methods.

trained with unprocessed real characters obtained from pub-

lic datasets (REAL). (3) The third set is trained with pre-

processed data as described in section 2.1 (CLEAN). Fi-

nally, (4) we train mixture models by clustering prepro-

cessed data (CLEAN+MIX). Real characters are collected

from the SVT-CHAR [21, 14], Weinman’s dataset [23], and

the English characters of Chars74K [4]. For all character

detection experiments, we benchmark the character results

on the ICDAR 2003 Robust Reading [12] test set.

As character detection is an early step in the pipeline,

we favor recall over precision as it is often easier to remove

false positives than to recover false negatives. We use F2-

score, a modified version of the F-score, defined as Fβ =

(1 + β2). precision×recall
β2×precision+recall

, with β = 2.

Figure 3 shows the F2-score for each character detec-

tion methods. From this plot, we observe the following. (1)

Models trained from “dirty” data (REAL) produce the worst

results. This could be explained by the misalignments of the

data and the labeling errors. (2) “Clean” real training data

outperforms synthetic data. Even though synthetic data is

different across fonts, angles, noises, and blurriness, this

variation is not enough to describe the entire appearance

space of real-scene characters. (3) In general, mixture mod-

els yield small performance improvements (1-3%).

3.4. Temporal Smoothing

We also evaluate the effectiveness of temporal smooth-

ing in the task of removing false positives from the charac-

ter detection step. Currently there is no public video text

dataset that has character-level annotations. Since produc-

ing a video dataset with this level of annotation is expensive,

we choose to evaluate the method on a smaller scale. We an-

notated a small set of consecutive frames from the ICDAR-

VIDEO dataset at character-level. We selected 30 consecu-

tive frames from 6 videos and annotated the bounding box
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Figure 4: Character detection performance (F2-score) com-

paring the bounding box results with (red line) and without

(blue line) temporal smoothing. The F2-score is in square

bracket next to the method name.

locations for the character “A”. Despite its relatively small

size, this set makes possible a preliminary experiment to

demonstrate the effectiveness of temporal smoothing at the

character level. Figure 4 shows the precision and recall per-

formance with and without temporal smoothing. This fig-

ures shows the effectiveness of temporal smoothing, espe-

cially at lower thresholds. This allows the character detec-

tion modules to operate at a lower threshold and achieve

high recall without introducing an undue amount of false

positives.



3.5. Word Detection and Recognition

Our main experiment consists of evaluating end-to-end

word detection and recognition for both ICDAR-VIDEO

and YVT datasets.

ICDAR-VIDEO Evaluation The first two pipelines we

consider are ABBYY and TextSpotter. Even though the ac-

tual implementations of these methods are not published,

we obtained the detection results by analyzing the Javascript

structure of the ICDAR 2013 Robust Reading Competition

website4.

Next, we apply Wang’s original implementation (PLEX)

on each frame and group per-frame detections into tracks in

a manner that similar to that of ABBYY baseline. More

specifically, after obtaining the word detections for each

frame, each detected word is assigned an identifier of a pre-

viously detected word with the best overlap (at least 0.5) in

the buffer of 7 previous frames. Words are removed from

detection unless there is a matching word detected in the

immediate previous frame.

We also run PLEX with temporal enhancements,

PLEX+T. This method uses temporal smoothing after the

character detection and word detection step, links the per-

frame detections using a trained linker and uses the post-

processing as described in section 2.3.

Finally, we apply detection pipeline (DR) on every

frame using ABBYY heuristic to connect the frames. This

pipeline differs from PLEX at the character detection step.

Instead of using models trained from synthetic data, DR

uses mixtures models trained from processed real data. The

last pipeline is DR+T where we use the temporal techniques

to improve the performance of DR. Since PLEX and DR

output a score for each word in every frame, we can com-

pute a track score by averaging the scores of all words in

the track.

Since ABBYY baseline and TextSpotter detections are

produced without a lexicon, the performance results are pro-

vided mainly as references as opposed to strict comparisons.

Figure 6a shows the box plots for the ATA scores for

each method. Figure 5a shows the video precision/recall

curves. We generate the video precision-recall curves for

PLEX, PLEX+T, DR, DR+T by varying a threshold on the

track score. From these figures, we observe the following:

(1) better local models lead to better detection and recog-

nition performance as DR only differs from PLEX at the

character detection step, however, final results differs sig-

nificantly. (2) Temporal smoothing significantly improves

the performance. With a relatively large lexicon, false pos-

itives are unavoidable. Furthermore, text in frames that are

affected by motion blur and video artifacts is very hard to

4http://dag.cvc.uab.es/icdar2013competition/?ch=3

read (even for humans). Temporal smoothing and linear in-

terpolation help to mitigate these effects.

YVT Evaluation For the YVT dataset, we can only com-

pare the performances of PLEX and DR because the origi-

nal implementations of TextSpotter and ABBYY baseline

are not publicly available. Figures 6b and 5b show the

ATA metrics and the video precision/recall curves for the

YVT dataset. Even though, DR still outperforms PLEX, the

gap between PLEX and DR is smaller than in the ICDAR-

VIDEO dataset. One possible explanation is the presence

of overlay text. Overlay text often appears with standard

fonts, no occlusion, and has a high level of contrast with

the backgrounds. These appearance characteristics resem-

ble the natures of synthetic training data. Again temporal

smoothing improves the performance dramatically for both

methods. Comparing performance on the YVT dataset and

the ICDAR-VIDEO dataset reveals the relative difficulties

between the two. This is expected as YVT’s videos are of

HD720p quality and contain overlay text.

Figure 7 shows qualitative results of DR+T on example

frames from both datasets. This figure offers insights into

the successes and failures of the system. Failure cases are

often caused by perspective distortions and unseen, chal-

lenging fonts. Phan et al. [18] has recently reported promis-

ing results in the problem of recognizing scene text with

perspective distortions.

4. Conclusion

In this paper, we extend an end-to-end text detection and

recognition solution to the video domain. Our work high-

lights the importance of local character detection models to

the system as a whole. We also show the effectiveness of

exploiting temporal redundancy to remove false positives.

We propose a video precision and recall metric for bench-

marking text recognition in video. By performing different

detection and recognition experiments, we reveal the cur-

rent state of text detection and recognition in video. Clearly,

there is plenty of room for improvement in performance. In

Figure 5, the best observed sequence recalls are around 15%

and 23% for the ICDAR-VIDEO and the YVT datasets re-

spectively. This means that less than one out of every four

tracks is recognized correctly. We hope our datasets and

performance results will serve as a baseline for future stud-

ies in text detection and recognition in the video domain.
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Figure 5: Video precision-recall performance of the ABBYY baseline, TextSpotter, PLEX, and our detection-from-

recognition pipeline (DR). Methods with temporal enhancements are denoted with +T.
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Figure 6: ATA metrics for the baseline methods and our detection-from-recognition pipeline (DR), see text for details.
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