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Abstract

The problem of feature-based surface reconstruction is con-
sidered in this paper. Our main contribution is the ability to
handle visibility constraints, obtained from the projections
of points, curves and silhouettes, in the surface fitting pro-
cess. While traditional methods often ignore such informa-
tion, we show that visibility constraints not only give better
initial surface estimates and faster convergence, but also
provide an important cue for determining surface topology.

The problem is cast as a variational problem with con-
straints within the level set framework. It is shown how to
evolve the surface without violating the visibility constraints
using methods from variational calculus. Applications of
the theory are detailed for a number of important cases
of geometric primitives: points, curves and visual hulls.
Several experiments on real image sequences are given to
demonstrate the performance of the approach.

1. Introduction
Reconstructing scene models from images is a classical (in-
verse) problem in computer vision. The most common tech-
niques for obtaining a dense 3D model can be categorized
as (i) multi view stereo which gives a camera centered rep-
resentation in the form of depth maps [14], (ii) volumet-
ric approaches such as space carving [8] and (iii) surface
fitting which gives a scene centered representation in the
form of surfaces [2, 23, 6]. This paper will pursue the scene
centered approach by fitting a surface to (sparsely) recon-
structed scene features.

State of the art structure from motion systems usually
only reconstruct the scene as a set of points [5], usually re-
ferred to as point clouds. Fitting a surface to these points
has turned out to be a challenging problem since there is no
information regarding the connectivity of the points or the
topology of the true surface. Also, the density of the points
may vary greatly over the scene.

When representing the surface, one has to choose be-
tween explicit and implicit surface representations. Re-
cently, there has been a lot of activity using implicit repre-

Figure 1: The visual rays between image features and scene
features provide constraints on the surface geometry.

sentations, especially in the area concerning level set meth-
ods [13]. The variational level set method is a frequently
used framework where the surface motion is derived as the
gradient descent of a functional, cf. e.g. [22].

The present paper deals with the variational level set
method applied to the case of surface fitting to data ob-
tained from the motion, the images and 3D features. In the
simplest form, surfaces are fitted to unorganized 3D points,
i.e. there is no information regarding the connectivity of the
points, cf. [23]. Given observations in images where scene
points, curves or contours are visible, the surface should
evolve so that visual rays between the scenes features and
their projections are never crossed, cf. Figure 1. In other
words, the surface should never move in a direction such
that it occludes the visible parts. As will be shown, this
gives a constrained variational problem. The derivations are
performed for a general class of functionals and then spe-
cialized to the case of surface fitting to unorganized points
and visual hulls.

When fitting surfaces to unorganized points, visibil-
ity observations give valuable information. By observing
points on the surface, points in the background or bound-
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ing contours, difficult questions regarding the topology of
the surface can be answered. This fits nicely with the use
of the level set method as it can represent surfaces that can
change topology automatically. The framework introduced
can also incorporate other constraints such as e.g. that the
surface has to be in front of the cameras (known as chirality
[4]) or that the surface is restricted to a predefined volume
in space of any shape.

Related Work This work is most closely related to the
popular surface fitting method of Zhao et. al. [23] where
level sets are fitted to point clouds. It was extended to in-
corporate image correlation in a robust manner in [9].

Visibility information has previously been applied in a
discrete setting for different purposes. In [7] scenes are re-
constructed using graph cuts. In [4], chirality is used to im-
prove upon point cloud reconstructions. Chirality has also
successfully been applied as an auto-calibration constraint
[12]. In [11], an algorithm for producing a triangular mesh
for sparse 3D structure is developed which is guaranteed to
obey visibility constraints for point and line features. In a
similar spirit, by reasoning about freespace, a principle for
guiding surface triangulation is derived in [21]. The main
difference to our work is that we are using a continuous
framework both for the surface representation and evolution
and for representing the visibility constraints. This leads to
the formulation of a variational problem. In this setting,
matters concerning for example smoothness or shape priors
are naturally handled. Furthermore, by using a level set rep-
resentation, surface topology can automatically be inferred.

Our framework also applies to visual hull reconstruc-
tions. The literature on this topic is vast, e.g. [18, 1, 20].
Again, most of the approaches work in a discrete setting by
either voxel carving or triangular meshing. In contrast, our
approach provides a continuous framework which simulta-
neously estimates the visual hull and at the same time en-
forces smoothness constraints. In addition, it is possible to
combine visual hull constraints with those of surface fitting
to point, curve and silhouette features.

2. Background
As a courtesy to the reader, the necessary background on the
level set method and how to derive gradient descent proce-
dures for variational formulations are briefly described here.

2.1. Level Set Representation
The time dependent surface Γ(t) is represented implicitly
as the zero level set of a function φ(x, t) : R3 ×R → R as

Γ(t) = {x ; φ(x, t) = 0} . (1)

The sets {x ; φ(x, t) < 0} and {x ; φ(x, t) > 0} are called
the interior and the exterior of Γ, respectively. The interior

of Γ is denoted Ω−. Using this definition the outward unit
normal n and the mean curvature κ are given as

n =
∇φ

|∇φ| and κ = ∇ · ∇φ

|∇φ| . (2)

One important, frequently used example is the signed dis-
tance function, where the additional requirement |∇φ| = 1
is imposed.

To evolve the surface according to some derived velocity
v, a PDE of the form

∂φ

∂t
+ v · ∇φ = 0 or

∂φ

∂t
+ vn|∇φ| = 0 , (3)

is solved, where vn is the velocity normal to the surface.
For a more thorough treatment of the level set method and
implicit surface representations, cf. [13].

2.2. Variational Formulations
Let Ψ : R3×S2 → R be a general function that can depend
on surface point x and surface normal n. Define the general
functional as the surface integral

f(Γ) =
∫

Γ

Ψ(x,n) dσ , (4)

where Γ is the surface and dσ the Euclidean surface mea-
sure. This general case covers many variational formula-
tions for computer vision problems. Examples of common
functionals can be found in e.g. [3, 19].

If Γ is embedded as the zero set of φ, the Euler-Lagrange
equation for f(Γ) is an equation of the form

Fδ(φ) = 0 , (5)

where δ(φ(x)) is the pullback of the Dirac distribution δ by
φ and it appears as the variation is taken over the surface Γ.
It can be shown that for the case (4), the expression for F is
given by1

F = ∇ · [∇S2Ψ + Ψn] . (6)

Minimizing f(Γ) using gradient descent gives an equa-
tion of motion as

∂φ

∂t
= F|∇φ| , (7)

where the normal velocity is vn = −F. For details on deriv-
ing the motion equation for general functionals of the form
(4) and the formula (6), see [3, 19].

3. Visibility Constrained Evolution
This section describes how to evolve surfaces in a varia-
tional level set formulation such that visibility conditions
are fulfilled at all times during the evolution. The theory is
developed for a general functional of the form (4) and in the
next section it will be specialized to treat surface fitting to
3D data.

1Here ∇S2 is the gradient on the unit sphere S2.
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3.1. Visibility Constraints
If a 3D point is visible from a certain viewpoint, the surface
should not cross the line segment joining the camera cen-
ter and the point itself, cf. Figure 1. Similarly for curves,
given a 3D curve and its projection in an image, the sur-
face should not intersect the visual cone with vertex at the
camera center.

Another type of constraint of similar character arises
from bounding silhouettes. The surface is confined to lie
on one side of the back-projected cone of the apparent con-
tour as seen from the viewpoints. This is the basis for all
reconstruction methods based on visual hulls, see for ex-
ample [1]. However, they generally start with carving off
forbidden voxels and then proceed by applying some sur-
face fitting technique. Here, it will be an integrated part of
the surface fitting procedure.

Similar arguments can be made to find whole volumes
that should be free space such as, for example, the region
behind the cameras or by intelligent reasoning about struc-
ture [21]. Denote the union of all these line segments, visual
cones and volumes as the set W ⊂ R3. Represent this set
as

W = {x ; w(x) ≥ 0} , (8)

using a signed distance function w : R3 → R. This means
that the boundary of this set is the surface2 ∂W = {w = 0},
i.e. the zero level set of w.

We will now introduce a measure, in the form of a non-
negative functional, to detect if the visibility condition is
violated. Define the functional as

g(Γ, W ) =
∫

Ω−∩W

dx =
∫
R3

H(w)(1−H(φ)) dx , (9)

where H(·) is the Heaviside function. This functional mea-
sures the volume of the intersection of the surface interior
and the forbidden subset, Ω− ∩ W . If g(Γ, W ) > 0 this in-
dicates that the surface occludes visible parts of the scene.
The visibility constraint is then that g = 0. The Euler-
Lagrange equation for (9) is simply

−H(w)δ(φ) = 0 . (10)

This fact will be used for the surface evolution.

3.2. Constrained Evolution
The surface evolution problem of evolving Γ such that no
seen parts (points, curves, background etc) are occluded
leads to a variational problem of minimizing f under the
constraint g = 0. This is solved using Rosen’s gradient

2In fact this is a manifold of dimension 1 or 2 since the line segments
are 1D objects. As will be seen in Section 5, ∂W can be treated as a
surface.

projection method [15]. Taking a descent PDE for the func-
tional

E(Γ, W ) = f(Γ) + λ g(Γ, W ) , (11)

gives the motion equation for the embedded surface as

∂φ

∂t
= (F − λH(w))|∇φ| . (12)

The Lagrange multiplier λ is updated as the surface evolves
and is given by the expression

λ =

∫
R3 FH(w)|∇φ|δ(φ) dx∫
R3(H(w))2|∇φ|δ(φ) dx

=

∫
Γ
FH(w) dσ∫

Γ(H(w))2 dσ
, (13)

since if the visibility constraint holds at all times then the
following relation

0 =
d

dt
g(Γ, W ) =

∫
R3

H(w)
d

dt
(1 − H(φ)) dx =

= −
∫
R3

H(w)δ(φ)
∂φ

∂t
dx =

= −
∫
R3

H(w)Fδ(φ)|∇φ| dx +

+λ

∫
R3

(H(w))2δ(φ)|∇φ| dx , (14)

must be satisfied.
This means that solving the evolution equation (12) with

λ from (13) moves the surface to decrease the energy f and,
given that the initial surface satisfies g = 0, the visibility
criteria are never violated.

It is simple to make the initial surface satisfy the
visibility criteria. Since Ω− \ W = Ω− ∩ W c =
{x ; max(φ(x), w(x)) ≤ 0}, any initial value φ(x, 0) can
be changed such that g = 0 by setting

φ(x) = max(φ(x), w(x)) . (15)

One inferior alternative to the constrained variational
formulation above is to evolve the surface without con-
straints using (7) and project the result outside the forbidden
region at each iteration using (15). The problem with this
approach is that it can give an evolution where (7) move Γ
repeatedly into the forbidden region W and gets projected
outside again. Such oscillatory behavior is undesirable and
inferior to using (12) and (13).

Finally, the set of signed distance functions representing
surfaces that satisfy the visibility criteria can be shown to be
a convex set. Let V denote the set of functions h : R3 → R,
representing surfaces according to the convention in Sec-
tion 2.1, such that their zero set satisfies the visibility crite-
ria ∫

R3
H(h(x))(1 − H(φ(x))) dx = 0 .
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This can also be written V = {h ; h ≥ −w} if h and w are
signed distance functions. It is clear that V is a convex set,
i.e. th1 + (1 − t)h2 ∈ V for any two functions h1, h2 ∈ V
and t ∈ [0, 1], since

th1 + (1 − t)h2 ≥ t(−w) + (1 − t)(−w) = −w .

This fact is useful for proving that problems are well-posed.

4. Surface Fitting to 3D Data
This section shows how to evolve surfaces for fitting them
to 3D data containing points and curves. Let the 3D data be
denoted by the set S. The functional to be minimized is

f(Γ) =
∫

Γ

d(x) dσ , (16)

where d(x) = dist(x,S) is the distance from the point x to
S as in [23]. The Euler-Lagrange equation for (16) gives

F = (∇d · n + dκ) . (17)

Hence, the constrained version of the complete evolution
PDE is found to be

∂φ

∂t
= (∇d · n + dκ − λH(w)) |∇φ| (18)

λ =

∫
Γ
(∇d · n + dκ)H(w) dσ∫

Γ(H(w))2 dσ
(19)

by combining (12) and (13). The details on the standard
procedure of surface fitting using (16) can be found in [23].

5. Numerical Implementation
The motion PDE is solved on a fixed equidistant grid in the
volume of interest. At all times during the evolution the
functions φ and w are kept to be signed distance functions.

In Sections 3 and 4 the Heaviside function and Dirac dis-
tribution H and δ occur frequently. In practice it is neces-
sary to introduce continuous approximations. Here H is a
C2 approximation and δ a C1 approximation defined as in
[22] as

H(x) =




1 x > ε
0 x < −ε
1
2 [1 + x

ε + 1
π sin(πx

ε )] |x| ≤ ε ,

and

δ(x) =
d

dx
H(x) =

{
0 |x| > ε
1
2ε [1 + cos(πx

ε )] |x| ≤ ε .

The line-of-sight constraint arising from the fact that a
3D point is visible from a viewpoint give a forbidden region
as a line. To be able to measure this constraint on a fixed

grid it is represented as a tube with radius ε > 0 as w(x) =
ε− dl(x), where dl(x) is the distance to the line. Typically,
ε is set to some fraction of a grid cell, i.e. 0 < ε < 1.

Once all constraints are determined and represented with
functions wi as the sets {x ; wi(x) ≥ 0} for i = 1, . . . , N ,
the function w in (8) is simply

w(x) = max(w1(x), . . . , wN (x)) .

Finally, the boundary of the region is cleaned up with con-
tinuous morphological operations (opening/closing) to re-
move small protrusions and holes in the set W using a ver-
sion of the operations defined in [16].

6. Experiments
In this section the proposed method is tested on synthetic
and real data for several different cases of visibility con-
straints. For some examples the surface is visualized us-
ing triangulation with the marching cubes algorithm [10]
and for all examples the equations (18) and (19) are used.
The experiments are chosen to illustrate the benefits of us-
ing visibility constraints. Note that there are many different
choices for functionals that can be used for these surface re-
construction problems. Our intent is only to show the pos-
itive effects of adding visibility constraints, not to evaluate
or compare surface reconstruction methods.

Synthetic test data with points on a torus was created to-
gether with a visibility criteria corresponding to a clear line
of sight along the symmetry axis of the torus. The initial
surface was a sphere enclosing the torus, projected using
max(φ, w) to give the surface shown in Figure 2a. The evo-
lution is shown in Figure 2. It can be seen that the proposed
method with evolution according to (18) gives the desired
motion while using standard evolution and projecting the
surface outside the forbidden region at each iteration gives
an oscillatory motion where the surface repeatedly moves
into the forbidden region and gets projected outside again.

Figure 3 shows a setup with time-of-flight data obtained
using a laser radar system. Part of the recovered structure,
the tree in the foreground, was used as data points for the
surface fitting. In this case points are only recovered on the
side of the tree facing the scanner. This means that it is nec-
essary to use the techniques for initializing and fitting open
surfaces introduced in [17] if one is to use a level set repre-
sentation. The resulting surface reconstruction is shown in
Figure 4 with and without visibility constraints. From the
same data set a point cloud is extracted at the depth corre-
sponding to the inside of the room. Figure 5 shows the point
set and the resulting surface with and without using visibil-
ity constraints. As can be seen the surface fit is better with
the constrained motion. The grid size was 40× 40× 80 for
both the tree and man data.

To illustrate the procedure for bounding silhouettes, i.e.
the surface is constrained to stay inside the objects visual
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(a) (b) (c) (d)

Figure 2: Evolution for surface fitting to points on a torus. (top) proposed evolution with constraints, (bottom) standard
evolution with projection to max(φ, w) at each iteration. (a) initial surface, (b) after 33 iterations, (c) after 66 iterations, (d)
after 100 iterations.

tree

man

Figure 3: Setup for time-of-flight data where part of the
scene is scanned using a short laser pulse. (a) image of the
scene with rectangle in the center roughly indicating what is
scanned (the actual scanned area does not coincide perfectly
with the rectangle), (b) recovered 3D points.

(a) (b) (c) (d)

Figure 4: Tree data. (a) recovered 3D points. (b) initial sur-
face. (c) reconstructed surface using visibility constraints
and (d) without visibility constraints.

hull, experiments were performed on the Oxford dinosaur
data set3. The top row of Figure 6 shows three of the 36
images used, together with the recovered 3D structure. The
surface of the intersection of the back-projected cones of
the silhouettes is shown in the middle row and the bottom
row shows the final reconstruction. This gives a continuous
silhouette carving formulation since the visual hull is repre-
sented as the zero level set of the signed distance function
w. The grid size was 100 × 100 × 100.

Finally, we show results for an image sequence of a
pitcher4. The top row of Figure 7 shows three of the 80
images used, together with the recovered 3D structure. To
show the influence of different visibility constraints a sur-
face was fitted to the 3D data without constraints, with line-
of-sight constraints from points on the pitcher visible in im-
ages and with bounding silhouettes. The results are shown
in Figure 7 and a quantitative comparison is shown in Ta-
ble 1. As can be seen, the correct topology is only recovered
with visibility constraints.

7. Conclusions
In this paper we showed how to evolve surfaces in a varia-
tional setting such that visibility constraints were never vi-
olated. In Section 3 the constraint was formulated using
a functional and the constrained surface evolution was de-
rived for a general case. Then we used the concrete example
of surface fitting to 3D data to illustrate the procedure in ex-
periments.

The benefits of using visibility; better initial estimates,
more consistent surface topology and a better surface fit are

3Available at http://www.robots.ox.ac.uk.
4Sequence is available at http://homeweb.mah.se/∼tsjeso/downloads/.
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(a) (b) (c) (d)

Figure 5: Man data. (a) part of the recovered 3D points. (b) initial surface. (c) reconstructed surface using visibility
constraints in the form of visible background points. (d) reconstructed surface without visibility constraints.

Figure 6: Reconstruction from the Oxford dinosaur sequence. (top) Sample images, frames 1, 10 and 19 out of 36 and recov-
ered 3D points using structure and motion techniques. (middle) the zero surface (triangulated) of the function representing
the forbidden region W obtained from bounding silhouettes. (bottom) four views of the reconstructed surface (triangulated),
using the constraint that the surface should be inside the surface above.
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Figure 7: Reconstruction from the pitcher sequence. (top row) Sample images, frames 1, 38 and 56 out of 80 and the 2069
recovered 3D points. (second row) initial surface and 3 views of the final reconstruction without visibility constraints. (third
row) initial surface obtained as max(φ, w) where w represents a set of line segments computed from points on the pitcher
that are visible in images and 3 views of the final reconstruction. (last row) initial surface obtained as max(φ, w) where w
represents the intersection of bounding silhouettes and 3 views of the final reconstruction.
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Constraint Mean Median Grid size Iterations Correct topology
none 7.38 6.47 100 × 100 × 100 268 No
line-of-sight only 7.57 6.44 100 × 100 × 100 267 Yes
bounding silhouettes only 7.18 6.07 100 × 100 × 100 21 Yes

Table 1: Comparison for pitcher sequence for different constraints; no constraints, line-of-sight constraints for visible points
on pitcher and bounding silhouettes. Mean and median distance of points to the surface measured in grid units, grid size,
number of iterations and correct surface topology.

demonstrated in the experiments. Finally, the general vari-
ational formulation makes it easy for the reader to include
visibility constraints in his/her favorite surface evolution or
reconstruction method.
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